Subscribe via RSS

Green Hills, Nou, Itoigawa – June, 2024

Whilst driving with friends from Osaka to Aizuwakamatsu, we needed a place to split the trip and I started Googling. Toyama was a logical mid-way point, but I didn't want us to have to slug it into a boring business hotel when we just needed a place to sleep. Instead, I wanted to enjoy the summer twilight, rail-side in a country house and I managed to find just the place!: Green Hills in Nou.

This beautiful house is perched directly next to the Nihonkai Hisui Line. This happens to be a private line; but it's also the main trunk up the northern coast of Japan and the fastest route for freight from Hokkaido when trying to get further west than Tokyo. So, whilst you won't see JR Limited express trains (thanks to the Hokuriku Shinkansen), you will see trains of the Echigo-Tokimeki Railway and a parade of freight trains hauled by EF510 locomotives.

So, above was taken from the left window that you can see in the first image above. It was the 'second bedroom' on the second floor of the house. It had a beautiful view of the railway! Despite the morning rain, I managed to get up in time for the first 'daylight' freight just after 4am. Disregard the tapping in the video as it's just a leak from the gutter above, beating on the first floor roof.

The trains thundered by like clockwork... and I really need to emphasise on the word 'thundered'. Due to there being a crossover right in front of the tunnel portal next to the house, the katan-katan of the wheelsets was loud enough to actually rattle the foundations of the house.

On the next trip to Japan, I'll probably book this place for a few days and set up a temporary live camera so everyone can enjoy the sights.

Filed under: JPN No Comments

Curry Station Niagara, Yutenji, Tokyo – June, 2024

This post has been in draft state since mid-2019... as I'd promised myself to visit this restaurant back then, but had never made it. The restaurant in question is Curry Station Niagara in Yutenji, Tokyo. It's a train-themed curry cafe and it's only open from 11-5pm each day. This timing does make it hard... and somehow I'd always targeted it for dinner. Fortunately, this time I had time for lunch!

It's easy to get to, being just a short walk from Tokyo Metro's Yutenji Subway Station. Note that only local trains stop at Yutenji Station!... don't try and take an express! Exit the station via the east exit and turn left. You'll soon find a hint on a corner that you're heading in the right direction...

Follow the extension cable that powers that sign and you'll arrive at the destination.

Once inside, you'll find a bench on the right to wait, whilst a counter seat or booth becomes free. At the end of the waiting area there is a ticket machine to purchase food and beverage. Talk to the proprietor first to work out where to sit and then purchase your tickets.

I went for a counter seat (pretty cramped!) as the three booths were occupied. There's a G-Scale railway running around the perimiter of the restaurant which delivers food, where possible.

Whilst other passengers receive their lunch...

Make sure you take in the full surroundings!

Before-long, my katsu curry arrived... and it was delicious!

Absolutely worth the visit. You even get a ticket as a souvenir of your visit.

Filed under: JPN No Comments

Commodore 64C Set – Refurbishment

It's been while since I last had one of these units. A member of an FB group mentioned they had a C64 + Floppy Disks up for grabs, but only offered for someone to come and collect it. It was a 40 minute drive for me, and a good price, so I went for it. I'd asked for pictures whilst negotiating, but none were provided... so I had no idea what I was in for.

Turns out I was in for a great surprise! Included was a Commodore 64c with Commodore 1802 PAL Monitor. Also included was a 1541-II Disk Drive (with a box of disks!) and a Star NX-1000C Dot Matrix printer. I gave it all a cursory once-over and then applied power... but as you can see from the shot above, the happiness was short-lived.

Commodore 1802 Monitor

This unit was only producing a flat squished pattern. The image could be made-out in the squished pattern on the screen, but there was no dial to adjust vertical height... so something had to be going wrong inside. I spooled up What broke on this Commodore 1802 monitor? from Adrian's Digital Basement and left it playing whilst I started dismantling and reviewing the monitor's guts.

Hilariously, we both pulled out the same loose capacitor at the same time... couldn't believe it.

It was an absolute mess where that capacitor was. Its juices had wrecked a few resistor legs as well.

Anyway, the problematic capacitor was replaced and the vertical picture issue was fixed!

Unfortunately, there was no colour. Every site online pointed to a dead R225 (some places incorrectly mention this as R255), and so I looked at R225 on this board...

Crusty! I had no 1w 5.1Kohm resistors in stock, so I paralleled four 22kohm 0.25w resistors.

Did it work? Not really.. I started getting weird colour bars from the composite (ERROR!, this was an assumption) output of the video cable from the C64C.

So I went on a capacitor rampage and replaced everything on the board. Note that the photo below is whilst I was half-way through... trying to clean the gunk off.

This didn't fix it, so I reviewed the data on the Commodore Monitor Information Site. Unfortunately, the Commodore 1802 (tall) was the NTSC version and there was no PDF for my PAL version. Regardless, the schematics sort-of lined up... I just had issues trusting the resistors? Let's have a closer look at that (supposed) 5.1Kohm:

That resistor above has the visible colour-bands of brown red orange gold? It's meant to be a 5.1kohm? Using Element 14's Resistor Calc, I tapped in the colours I could see and was told it's actually a 12kohm resistor? Double? What gives? I then looked at R329 as seen in the photo above-above... it's meant to be a 560ohm resistor, but the colours are showing green-poo-poo-gold? Brown? Red? No idea... but that second colour is meant to be Blue! So wait... these colours have actually cooked so much that their pigment has changed?

I went back to Jaycar and bought 1w resistors that I could actually use to do proper serial maths on... instead of the parallel maths above...

560ohm was a 1:1 install... 5.1k was 1.8k + 3.3k.

Still a crap picture from the C64. A good lesson here is that you should be absolutely sure that your video signal source works... don't just assume that 40 year-old tech can produce a proper composite signal. For this reason, I tried my Playstation 2:

Oh nup, it works... it's me. I'm stupid. Every time I've written composite above, I need to be punished.

That Momement You Realise You're Stupid

This unit was built in 1987. It's a complete set. It plugs together. Why would the unit have a DIN-8 to RCA cable with Yellow+Red+White plugs if they didn't expect you to plug them into the matching sockets on the monitor?

I had assumed all along that they were stereo sound... because... 1995 called and that was the standard. Of course, that's an incorrect assumption as this machine pre-dates any such standards. So... what happens when you plug in the correct colour plugs into the correct colour sockets and switch to the "SEP" mode (i.e. separated Chroma and Luma, as per the plug names)?

LOL. Didn't I feel a little silly? Turns out a C64 DIN-8 Video cable has Yellow=Luma, Red=Chroma and White=Mono-Audio.

Floppy Drive

I tested the voltages out of the power supply, finding that the 5v line was down near 3.2v. Plugging it in and turning on the drive just saw the disk spinning and all lights on.

I found the nearest spare power supply with the relevant 12 and 5v and wired it in. It worked perfectly!

On the original drive power cable, red was 12v, green was 5v and black was ground... but always test, test and re-test before plugging anything together!

Star NX-1000C

Supposedly this thing is colour. I powered it on and it emitted an annoying beep at first. Turns out it just wanted paper. To test, you just need to hold down the online button as you power it on...

Well I'll be... it just worked. It even printed from GEOS. Time to find some tractor-feed dot-matrix printer paper! A quick google tells me that wont be cheap!


Rummaging around in the random box of floppy disks proved to be fruitful. There was a GEOS Applications disk, but no base boot disk. I randomly selected a blank disk with no label from the box and tried LOAD "*",8,1. Would you believe it? GEOS booted!

Unfortunately, the desktop wasn't grey... instead it was a hideous shade of smeared pink. All images I could find on the net showed that GEOS should have a light grey background, similar to a macintosh boot. I did find an eBay auction that had similar issues as mine.

I thought it may be chroma/luma, so I rigged up a composite video cable and tested it:

Seems I might need a LumaFix for this... it's on order. Of course, it might just be how it's meant to be displayed.

S-Video Conversions

I nearly fell for the same fallacy again... make sure you can trust your inputs! The 1802 monitor has S-Video style inputs, but it's using RCA plugs. This makes it hard to both connect something else to this 1802 and connect the C64 to another S-Video display. So, what to do? Build an adapter...

Hideous, right? I read here that I needed a 300ohm resistor inline in the Chroma, so that was wedged in. I then whipped out my trusty Sony PVM LCD and ... well, the C64 looked stunning.

The jailbars are there, so I'm looking forward to receivng the LumaFix... but even without it, this monitor goes very well with the C64! So, with the adapter in hand, I flipped the game and routed my Playstation2 through S-Video and into the C64 1802 Monitor.

Shite. So. What's going on here? I know I twiddled all of the potentiometers inside the monitor to oblivion... but those colours are an entire primary-colour off. Just in case you're wondering...

Right behind the 'external' contrast potentiometer is the "sub-brightness" control. "Tint" is R507, next to the grey-box mid-picture. Anyway, something was off, and I had a hunch! I loaded up Sim-City to check how green the grass was and it proved to be grey! The entire green channel was missing? After an hour of multi-metering... I accidently knocked Q555 on the board that plugs into the back of the picture tube and green came back!

Yup, that's Q555, sitting proud at the top of the PCB. I must've bumped it during capacitation and broken the solder joints. A quick re-solder and ....

It's glorious!

Filed under: C64/Amiga No Comments

PC-98 – Window Accelerators

Thanks to the complexity of Kanji characters, early Japanese 'DOS' machines needed high-resolution text displays. This requirement resulted in the PC-98's 640x400 standard console mode. The video cards to run this were purposely-built and were never really meant to run Windows.

Due to these limitations, companies started coming out with "Window Accelerators" which provided a secondary video device, of which could produce much higher resolutions at higher colour depths. I happened to get my hands on an IO-DATA GA-1280A-2, capable of 1280x1024 @ 256 colours.

Being a secondary video device, these cards require a passthrough cable from the primary machine video output to their 'input' port. When the machine is displaying standard PC-98 graphics, accelerators will route this output straight to the monitor. Once the card is initialised, you'll hear the internal relays 'click' and video will be displayed from the card's internal ram buffer, which specific software is now sending the graphical data to.

Unfortuantely, my specimen came as-is with no cable... so a trip was made to Jaycar for a male and female set of ribbon-crimp IDC 15-pin plugs.

The card was mounted in the machine and the wiring was hooked up...

With no drivers, the card will just pass the standard video through. This is what happened until I installed the drivers for DOS and Windows 3.1. And then? Reboot... a beautiful "CLICK" from the relay on the card and...

Windows 3.1 at a ridiculous resolution.

Does it play Doom?

By default, a PC-9801 can't play doom with it's in-built EGC video card. The settings only give you the following options:

And yeah, GA-1280* is there and it works perfectly.. not even needing other drivers! Well. It runs terribly on the PC-9801VX, even with the 486 Upgrade. The shots above were taken with the card installed in my newly-acquired FC-9801K with 486-Overdrive processor and Doom runs nicely!

Filed under: Retro No Comments

PlayStation 2 – Linux And VGA

Back in University, our fourth year project was a Billiards game on the PlayStation 2. I still don't know how we wrangled making games as an educational experience, but it was fun nonetheless. We used PS2 Dev Kits that came with a linux distro, mouse and keyboard. There was also a VGA adapter which only worked with sync-on-green monitors and I specifically remember having to make a lot of desk space for the 21" Sony Trinitron. Since I'd been mucking around with the 'fake' HDD adapters for the old PS2s recently, it came to me that I should try install Linux and get VGA-out going... turns out it's not as easy as one might think!

Third-Party HDD Adapters Won't Work

If you've got a SATA adapter by PPH, or something similar, and the ethernet port is covered, or totally missing, then you're out of luck. The Linux distributions I've tried require the Original Sony HDD Adapters (or one of the original clones that HAD ethernet) and will just freeze up and stuggle if you try anything else.

Fortunately, I'd secured one for AU5$ from a Hard-Off somewhere in the bowels of Japan. Currently they're going for AU50$ on eBay AU, or ~AU20$ on Yahoo Auctions Japan.

Free MCBoot As A Bootloader

You'll need Free MCBoot installed on a memory card, unless your PS2 is already physically modded. Some versions of the PS2 work with a simple "DVD" method to install Free MCBoot and you can follow these instructions if your that happens to be the case.

I disregarded the warnings and tried to use the ISO that lined up with my 5000x version, as per the version info:

It threw the expected error...

The alternative method is to make the HDD bootable to, in turn, make the Memory Card bootable. It's all a little chicken-and-egg, but it worked in the end. I downloaded the FHDB installer 1.966 and used the HDD Raw Copy Tool to flash the IMG from the archive over the HDD I indended to use in the PS2.

This disk was connected to my PC via a USB adapter to do so. Note that I was using a blank HDD here... don't use a drive with precious data! Slap the freshly formatted HDD in your PS2 and boot it up. At the same time, copy the guts of this zip file to a folder on a USB key, as we want to run the installer to get the software installed onto a Memory Card. On the PS2, scroll down to uLE/wLE and navigate to MASS and then the folder you used above. Select the installer and hit the circle button.

After it's done, shut the unit down and unplug the HDD. Reboot with just the memory card in to make sure that it works. From here plug the HDD back into your PC and format it with WinHIIP so that it wont try to boot from the HDD again!

Linux Live DVD

You'll find a miriad of Linux Live DVDs here. We'll go with Version 3. You'll then find a huge list of ISOs to choose from. We'll take the PAL Large No Modchip. Download and burn it to a DVD. Whilst that's happening, grab Kernel Loader 3.0 and copy it to a USB drive. We'll need to copy this to the Memory Card...

Disregard the jump to the kloader folder. In fact, disregard that that folder even exists. Just use the R1 shoulder button and paste the kloader file in the root of MC0. Once it's done... insert the DVD and run the loader!

I was joking... don't insert it yet. As you can see above, they've added a DVD video folder with a static image to tell you that the DVD ain't bootable... thanks for the warning! So, boot into Free MC Boot, scroll down to the Loader, open it and, whilst it's opening, put the DVD back in. You can then select the kernel loader from the memory card and go for gold.

We're up, and we can ping! The experience is as slow as molasses from the DVD and sound doesn't work... but let's get installed first.

Installing to the HDD

There's a great tutorial here that I followed to get this done. Download INITRD.GZ, VMLINUX.GZ, ps2fdisk and fstab and send them to a USB Key. Boot into the Linux Live DVD and open xterm.

As above, insert the USB key into the PS2 and mount SDA1 in Linux. Copy ps2fdisk from the SDA1 to a usable folder and partition the disk. Note that you cannot use the already-included ps2fdisk from the Live DVD.. it just wrecks your HDD setup. Meanwhile, since we're using a memory card to bootstrap the HDD, we can wipe the entire HDD and use the lot for our Linux partitions. Just make sure to not try and fill the entire disk with the second partition as you'll get out-of-space errors. Next, mount it and copy everything over. Finally, copy FSTAB from the USB key to the hdd's /etc/ folder. Once all that's done... reboot. It's now time to configure kloader!

Finally, reboot and copy INITRD and VMLINUX to your Memory card.

As above, reset the configuration and then set the Ramdisk, kernel and root partition. Save the configuration the Memory card and boot. Excuse the shitty video quality as my internal HDMI capture card stopped working and I had to switch to a crappy USB HDMI capture device. Also notice how much quicker that boot was when compared to the DVD boot above. And yeah, still no sound. Let's fix that...

Getting Sound Going...

Seems the 'drivers' are IRX files and we can borrow them from game discs. Unfortuantely, the newest versions don't work, so use these files: LIBSD.IRX and SDRDRV.IRX. Copy them to your USB Thumb drive and insert it.

Follow the above steps to copy them to a folder called kloader on MC0.

Next open up kloader and configure the modules. Choose the configuration rows with upper-case file-names, just because. Sound! Network! We're up! But the video quality is awful...

VGA Output

So, officially, the PS2 outputs R+Sync-On-G+B. This means that your monitor needs to understand that the green channel is a combination of video synchronisation and green data. If it doesn't then you won't get a picture. Fortunately, and since this whole topic is already 20 years old, there's numerous people online who have already solved the problem for us: use an LM1881N sync-splitter.

                      LM1881(M or N)
 VGA PIN 13   -----------|1    8|-----  +5v PS2 PIN 10
                         |      |
 VGA PIN  2  --\   0.1uF |      |
 PS2 PIN 12  --+----||---|2    7|    
                         |      |          ____ 680 kOhm Resistor 
                         |      |    /----|____|----\
 VGA PIN 14  ------------|3    6|----|              |-----\
                         |      |    \------||------/     |
 PS2 PIN  8 --+----------|4    5|          0.1uF          |
 VGA PIN  6 --|          ========                         |
 VGA PIN  7 --|                                           |
 VGA PIN  8 --+-------------------------------------------/ (GROUND)

PS2 PIN 11 ------------- VGA PIN 1 (RED)
PS2 PIN  9 ------------- VGA PIN 3 (BLUE)

PS2 PIN  4  -- AUDIO RIGHT                                      PS2 PIN  7  -- SVIDEO CHROMA
PS2 PIN  3  -- AUDIO RIGHT GROUND                               PS2 PIN  5  -- SVIDEO LUMA
PS2 PIN  2  -- AUDIO  LEFT                                      PS2 PIN  8  -- SVIDEO GROUND
PS2 PIN  1  -- AUDIO  LEFT GROUND                       (Share PIN 8 with GROUND in above circuit)


So, it's all pretty self-explanatory above. The PS2 AV port provides +5v, so I've used that... regardless of everyone saying to use an external source? I've also used a 680kohm resistor as the original 585k was nowhere to be found. Finally, tie all the video grounds together, leaving the audio grounds separate. Also note that PS2 Pin 1 is left-most as you're looking at the PS2.

I built up a crappy prototype and tested it out... haphazardly...

And it worked beautifully! So I mounted it a little more safely in a crappy ziffy box from Jaycar...

And gave it a spin on a real monitor...

And yes, your success may vary. You'll need to configure two variables in the boot loader and if you only configure X and not the console, you'll get the distortion as above.

Oh yeah, to configure VGA output, just press R2 when you're at the kernel boot loader and it'll cycle through the video modes. Then you just need to edit your kernel parameters to include the following: crtmode=vesa0,60 xmode=VESA,1024x768x24. Note that you may have to manually create an xmode config file in /etc/ with the contents VESA,1024x768x24 if X doesn't listen to the command line argument.

Success! I've started productionising the adapter, so tell me if anyone wants one!

Still waiting for a few parts.

What's next?

Of course, after doing all this, I find there's a newer version of Gentoo for the PS2? Learn how to build a bootable USB here. Unfortunately, the newer version doesn't support sound?.

I wonder if I can build OTTD, like I did on the PowerCenter 180.

Filed under: Retro No Comments

Sony HitBit HB-F1 II – Power Supply Modifications

Whilst picking this up from a Hard-Off in DenDen Town, Osaka, I was told by the cashier that there was no power supply and that finding one would be a challenge. I wasn't too worried about this as using a 110v power supply in AU is just painful. Secondly, there seemed to be enough information on the internet to rig something together once I'd found time to do so back home.

So yeah, the power supply is a three-pin jack with AC 18v, DC 9v and Ground. This is confirmed on my unit by the voltage ratings inscribed on the base of the unit.

Finding an external supply with these two voltages would be an expensive task, so the better answer was to review the two links above to see what they did to convert. After a quick scan, it seemed that the AC voltage was used to create a -12v rail for the cartridge port and a +12v, which also was only for the cartridge port?. It seems that the MSX itself only needed the 9v DC, which it then also converted to 5v DC to run the entire system. Let's open'er'up! There are six screws under in the base that need removing. The lid will then lift off. The keyboard can then be removed, being gentle with the mylar ribbon cable.

You're then presented with the RF shielding. They've used a plastic-coated foil and it's quite soft! It's held down by screws around the bottom half, so find them all and remove them.

From here, it's the usual Sony-esque work of art. The PCB is so clean and tidy and the layout is precise. All the power paraphenalia is top-left and most of it will be redundant once we're finished with it. We're removing the power socket, so I went ahead and removed the motherboard from the case. There's 3 screws holding this down.

They went out of their way with the PCB graphic layer. They've actually drawn the connecting circuit lines on the underside of the board. There's no need to constantly flip it over if you're trying to trace a connection! There's also amazing information on pins of important ICs... and, for that note... DC sockets?

Seeing this written on the underside of the power plug threw me! Can I just supply the above voltages and get away with it? I won't need a complex supply for AC voltage if this is the case? I wired in the 12v line and, well, nothing came out! Hah. This seems to be a mis-print on the PCB? Those are NOT the voltages required.

So, I could go on about how I tested voltages in random locations and got some things going, whilst others stopped... and vice versa... but I wont, I'll just present the answer for this unit. You'll need a power supply that has +5v, +12v and -12v. Officially, you don't need the latter two if you're just using boring game cartridges. The unit only makes +12v and -12v to send to the cartridge port, and these are only used for "special" carts.. such as RS-232, etc.

Because I'm a perfectionist, I wanted to not 'downgrade' this machine... so I chose a Pico-ATX supply, as it had all the required supply voltages and an easy-to-use DC socket.

I de-soldered the ATX plug as it was just going to consume vital space inside the MSX.

On the MSX board, there's a large horizontal cable marked +/-12v. Desolder this from the left end and solder the appropriate wires to the associated supply voltages on the PicoATX.

Finally, there are two 7805 regulators that need to be removed. There's one that's bolted to the heatsink on the left and I de-soldered the wires from the mainboard. There's another nearby with a tiny heatsink on it that also needs to be removed.

With them both out, just flip the board and solder a wire into each of the OUT pins.

These need to be fed with 5v. I love how, even though the top regulator doesn't have the OUT pin described, that you can follow the traces easily from the IN of the lower regulator. The jumper wire, on the other side of the board, in the top-left of the image is drawn on this side of the board!

Once you've de-soldered the power socket, print out my personally-designed DC socket mount and use it to mount the DC socket to the board.

Finally, de-solder the power switch cable from both ends. Using one side of the power switch (it's DPST), connect one pin to ground and the other to PS_ON on the PicoATX.

Jam the lot back into the case.

When re-assembling, make sure to not screw the latches on the printer port. Try not to slice your fingers as you pinch them together and feed the board into the case.

Don't forget the two screws on the back of the case which hold the RCA socket and DC socket in place. These poor connectors get a lot of punishment. Before totally closing up this machine, I threw all the parts I removed into a zip-lock bag and stuck it under the lid. You never know, someone in the future might want to restore it to original condition?

And then it was done! Test? Of course...

Unfortunately, this unit doesn't have cursor keys! It's only got the gamepad directional arrows, and so I can't even play my favourite game.

Filed under: Retro 2 Comments

Atari 7800 Controller Button Replacement

This Atari 7800 Gamepad came to me with one of the plastic buttons missing. They're held into the shell via two 2x2mm lugs and they must have perished after decades of abuse.

Without waiting around, I popped open the case and measured up the surviving button.

The button has a slight gradient on top, which I'm sure my 3D printer will struggle with...

And underneath there's a small tab to press on the rubber membrane inside the controller. Anyway, straight into Tinkercad I went to design a replacement.

I didn't even bother with the tab on the base... it's all just flat. The rubber membrane in the controller has a flat top anyway.

It printed OK! Could do with a sand, but I didn't have any wet-dry.

Not the prettiest... but it works perfectly! Here's the STL.

Filed under: Retro No Comments

Python: Close Files If You’re Going To Open Them

I've been trying to archive some videos off Youtube lately, using yt-dlp. It's an amazing tool, but my target files have been episodes in parts. Usually four parts and Plex really hates jogging through... so what to do? Combine the files together with ffmpeg. The code was meant to be pretty simple (and 98% of it was written by ChatGPT... whoops)...

def concat_episodes(episode_name, concat_files):
    plfile = "file_list.txt"
    f = open(plfile, "w", encoding="utf-8")
    for filename in concat_files:
        f.write("file '" + filename + "'\r\n")
    concat_command = f"ffmpeg -stats -safe 0 -f concat -i {plfile} -c copy '{episode_name}'"
    print(concat_command), shell=True)

But no amount of wrangling would get ffmpeg to work. The concat filter kept throwing: Invalid data found when processing input. No amount of "-safe 0", relative paths or absolute paths worked! No permissions... no cwds or shell arguments. If I let the python script drop to the shell, then the same line pasted (since I printed it out) worked perfectly fine! What the?

OH RIGHT. I missed the memo that I should be closing a file so that it lands on disk... prior to trying to open it in another process!:

def concat_episodes(episode_name, concat_files):
    plfile = "file_list.txt"
    f = open(plfile, "w", encoding="utf-8")
    for filename in concat_files:
        f.write("file '" + filename + "'\r\n")
    concat_command = f"ffmpeg -stats -safe 0 -f concat -i {plfile} -c copy '{episode_name}'"
    print(concat_command), shell=True)

The file was still open and not flushed to disk... so ffmpeg would always open an empty file! This has been a public service announcement.


Random HDMI Capture Cards

I can't believe I'm calling these cards retro, but they are! They're all early 00s and the drivers are only for Windows XP and Vista? How random... I had no idea there were cheap PCI-E HDMI Capture cards back then. I would not have had any reason for them back then, and hardly do today, but I'd picked them up in a Hard Off somewhere across Japan for 1$ each and thought I should finally test them out.


First up is a DRECAP DC-HC1. It's tiny and came with a low-profile case bracket. I unscrewed the bracket and loosely placed it in my machine, making sure to NOT move the HDMI cable once connected.

Whilst looking for drivers... actually, prior to that, whilst trying to ID the card (there are no valid serial numbers or other identifying marks), I found other cards that also seemed to be identical. I then stumbled across this blog post which indicated that the base card was a Timeleak HD72A and that the drivers could be found here.

With the correct drivers installed, everything worked nicely!


The second card was identified via Yodobashi Camera product listing! How cool. Out of stock! Knowing the product name, I then went googling for drivers. It turns out the original site is long gone and, since their support page had ugly javascript, webarchive can't help to find drivers.

I stumbled across this blog post with great info on installation. It turns out you can use the Monster X3A drivers here for this card. The X3A only has one port, so it seems we'll only use the closest port to the motherboard? ... it actually turned out that any port on the card worked! Unfortunately, sound didn't.

Mucking around with Composite Signals

As that I couldn't get audio from the second card, I went with using the bracket of it on the first card! I wasn't ready to have a loose card hanging around inside my PC's case.

The HDMI port, by total fluke, lined up 98% and cables were securely connected. From there, I purchased this little beast for AU12$ on eBay...

And you know what? It works nicely! Here's a Sega Master System II hooked up. I've got a switch to toggle the PAL/NTSC pin, so when you see (and hear) it switch from PAL 60 to PAL you'll know why!

Nice... No more mucking around with other TVs... I can now use this to continue the long chain of Atari and Sega mods/repairs.

Filed under: Retro No Comments

Christmas ’94, Tandy-Style!

This turned up on eBay and I couldn't resist! Recently I'd found stamp books and Australia Philotelic Assoc orders forms, amongst Lego Catalogue order forms (unfulfilled, I must admit!), but nothing from Tandy. I saw this for sale and new it needed to be preserved!


Filed under: Retro No Comments