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Preface

The DEC 4000 Technical Manual documents the functional, physical and
environmental characteristics of the DEC 4000 system with the emphasis placed
on the KN430 CPU subsystem. A brief description of each subsystem is given in
Part I.

This manual is intended for a design engineer or applications programmer
and should be used along with the Alpha Architecture Reference Manual as a
programmer’s reference to the system.

The manual is divided into five parts, five appendices, a glossary and an index.

• Part I provides a list of the distinctive characteristics of the DEC 4000 system
and its enclosure, the BA640. It gives a technical description of the system
including physical and functional descriptions of each subsystem. Figure 1–10
shows the order in which the KN430 CPU Subsystem modules must be
installed in the backplane.

• Part II provides in depth information about the 21064 CPU chip and a brief
description of basic Alpha AXP architecture. This chapter lists all the internal
processor registers used in the processor design. Some information on error
handling is given also.

• Part III provides in depth description of the operation of the I/O module. It
describes the registers used by the Ethernet controller as well as the NCR
SCSI controller registers.

• Part IV provides information about how the system bus handles transactions
and arbitration. It lists the system bus signal characteristics.

• Part V describes the operation of the system firmware. It lists the console
commands and gives a block diagram showing the locations of the different
pieces of firmware in the system.

• Appendix A discusses the state of the internal processor registers on power-up
and system reset.

• Appendix B lists the errors flows that occur on system errors.

• Appendix C lists the electrical, environmental, and physical characteristics of
the DEC 4000 system.

• Appendix D lists the console commands.

• Appendix E lists the environment variables used by the Alpha AXP
Architecture and the DEC 4000 system.

• The Glossary provides descriptions of terms used in the DEC 4000
documentation set.
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Documentation Conventions
The following table lists the conventions used throughout this manual and explains
their usage.

Table 1 Conventions

Convention Meaning

<x:y> Represents a bit field, or an "extent", a set of lines, or signals, ranging
from x through y. For example, R0 <7:4> indicates bits 7 through 4
in a general purpose register R0.

The associated field name (if defined) typically follows the field
definition and appears in parentheses. For example, PSL<20:16>
(IPL) represents the five-bit field for the Interrupt Priority Level in
the Processor Status Longword.

x..y Represents a range of bits, from y through x.

n, n16, n2 Numbers are decimal unless otherwise marked with a subscript
number. Where there is ambiguity, the radix is explicitly stated.

2.0123.FFFF Nine-digit numbers throughout this document typically represent
34-bit hexadecimal addresses and are grouped in four digit clusters
separated by periods. This number is implied as hexadecimal and if
marked will be marked with a subscript sixteen.

Return A label enclosed in a box represents a key (usually a control or a
special character key) on the keyboard (in this case, the carriage
return key.)

Note Flags special information that should be considered while using the
manual.

Caution Flags information that will help you prevent damage to equipment.

n Boldface small n indicates a variable.

{} Represents a console command element

[ ] Represents a console command element that is optional

... Represents a list command element

SIGNAL NAME L Signal names are emphasized in small capital letters

Internal Code Names
Certain LSI components in the DEC 4000 system were developed within Digital
and are referred to with internal code names. These are:

• C3, the command, communication , and control gate array on the processor
module in some cases it is expressed as simply C3.

• IONIC, the system bus interface and write-merge buffer gate array on the I/O
module.

• CMIC, the ECC and bus interface gate array on the memory modules.

• EV4, the 21064 CPU chip on the processor module, also known as the
DECchipTM.
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This manual contains many figures that show the format of various registers
followed by a description of each bit field. In general, the fields on the register are
labeled with a signal name or mnemonic. The description of each field includes the
name or mnemonic, the bit range, and the bit type.

Table 2 Bit Type Conventions

Bit Type Description

Bit types A bit type denotes the mode used to access it.

0 Denotes a bit reserved for future expansion - Ignored on Write, Read
as ‘‘0’’

1 Reserved for future expansion - Ignored on Write, Read as ‘‘1’’

Read-write A read-write bit or field, may be read and written by software

Read-only A read-only bit, may be read by software, It is written by hardware.
Software writes are ignored

Write-only A write-only bit may be written by software. It is used by hardware
and reads by software return an unpredictable result.

Write A write bit or field may be written by software. It is used by
hardware and reads by software return a 0.

Write-one-to-clear If reads are allowed to the register, then the value may be read
by software. If it is a write-only register, then a read by software
returns an unpredictable result. Software writes of a 1 cause the bit
to be cleared by hardware. Software writes of a 0 do not modify the
state of the bit.

Write-zero-to-clear If reads are allowed to the register then the value may be read by
software. If it is a write-only register then a read by software returns
an unpredictable result, Software writes if a 0 cause the bit to be
cleared by hardware, Software writes of a 1 do not modify the state
of the bit.

Write-anything If reads are allowed to the register then the value may be read
by software. If it is a write-only register, then a read by software
returns an unpredictable result. Software writes of any value to the
register cause the bit to be cleared by hardware.

Read-to-clear The value is written by hardware and remains unchanged until read.
The value may be read by software, at which point hardware may
write a new value into the field.

IGN Ignored. Fields specified as ignore are ignored when written.

RAZ Read as zero. Fields specified as such return a zero when read.

MBZ Fields specified as must be zero must never be filled by software with
a non-zero value. If the processor encounters a nonzero number in a
field specified as MBZ, a reserved operand exception occurs.

SBZ Fields specified as should be zero should be filled by software with a
zero value. These fields may be used at some future time. Nonzero
values in SBZ fields produce unpredictable results.
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Timing Diagram Conventions
The conventions used in the timing diagrams are shown in Figure 1.

Figure 1 Timing Diagram Conventions
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Related Documents
The following documents are related to the DEC 4000 CPU.

• Alpha Architecture Handbook (EC-H1689-10)

• Alpha Architecture Reference Manual (EY-L520E-DP)

• DECchip 21064-AA Microprocessor Hardware Reference Manual (EC-N0079-
72)

Comments and Suggestions
We welcome your comments and suggestions on this book. Write to:

Entry Systems Engineering Group
Digital Equipment Corporation
MLO5-5/E71
146 Main Street
Maynard, Massachusetts USA, 01754-2571

Attention: Susan Yuryan
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Part I
DEC 4000 System Description

This part contains a technical overview of the DEC 4000 system.



1
DEC 4000 System Features

This chapter introduces the DEC 4000 system and provides a list of system
features to familiarize the reader with the DEC 4000 system’s capabilities.

The DEC 4000 product is a member of a new family of reduced instruction set
computer (RISC) systems that support both the VMS and OSF/1 operating system
software. It is designed for use in high-speed, real-time applications in an open
office environment.

The DEC 4000 is Digital’s entry product in the multi-user and symmetric
multiprocessing technical server market using the first generation Alpha
microprocessor. This chapter describes the main configuration features of the
DEC 4000 system.

CPU
The DEC 4000 system is equipped with the DECchip TM 21064-AA
microprocessor, running at a clock speed of 160 MHZ. In addition to the EV4’s 16
kB on-chip cache, the DEC 4000 provides 1 MB cache on the processor module,
for significantly enhanced system performance. DEC 4000 can be configured with
one or two processor modules. The second processor module provides a near-
doubling of system compute performance, and allows operation in a symmetric
multiprocessing mode.

Memory capacity
The DEC 4000 system can be configured using up to four memory boards, each of
which may contain 64 or 128 MB, for a maximum total of 512 MB (4x128).

Fixed storage I/O
DEC 4000 is configured with one of two fixed storage I/O options, depending
on the user’s functional requirements. One option supports up to four fast
SCSI buses (10 MB/S each), for users that require maximum single stream data
transfer rates to and from disk.

The second option supports up to four buses (5 MB/S each) that can each be set to
run either the DSSI or the SCSI protocol. The DSSI option is available for those
users who want to take advantage of DSSI’s clustering and multihosting features.

Depending on which fixed storage I/O option is selected, either a fast SCSI or
DSSI/SCSI I/O board is installed in the DEC 4000 cabinet. The fast SCSI I/O
board provides integral support for one Ethernet port. The DSSI/SCSI I/O board
provides integral support for two Ethernet ports.
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Fixed storage devices
There are four storage compartments in the DEC 4000 cabinet. Each
compartment can hold up to four 3.5" disks or one 5.25" disk. Each fixed
storage I/O bus connects to the fixed disks installed inside the respective
compartment; thus all disks in a given compartment must be of the same type
(for example, SCSI or DSSI), as appropriate to that compartment’s bus type.
Each compartment (except for the Fast SCSI compartment) provides a front-panel
connector for expansion of the bus outside the DEC 4000 cabinet. 1 DEC 4000
requires that at least one compartment have a fixed disk mounted to act as a
system disk.

System I/O
For system I/O, all DEC 4000 configurations provide six Futurebus+ (Profile B)
slots, with a peak data transfer rate of 160 MB/S. These support both Digital
and 3rd party Futurebus+ options for various communications and expansion
purposes.

Removable storage I/O
For removable storage, DEC 4000 provides one SCSI bus (5 MB/S) to support
the installed RRD42 CD reader and various tape backup options. This bus is not
optional, and is provided in all DEC 4000 configurations. The DEC 4000 front
panel provides a port that allows expansion of this SCSI bus outside the cabinet,
for connection to additional SCSI devices.

Removable storage
DEC 4000 comes standard with one RRD42 CD reader. Additional mounting
space is provided for up to three half-height tape backup devices (or one full-
height and one half-height drive), depending on the user’s backup requirements.
These devices all connect to the removable storage SCSI bus.

Table 1–1 gives a summary of system features:

1 For enhanced data transfer integrity, the fast SCSI bus must run at 5 MB/S when
expanded outside the DEC 4000 cabinet.
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Table 1–1 System Features Summary

CPU 1 or 2 processor module, 21064-AA CPU w/ 1 MB cache

Memory 1 to 4 Memory Boards; 64 or 128 MB

Fixed Storage I/O 1 I/O Board, either:

Fast SCSI (4 buses @ 10 MB/S each; each bus also operates
at Standard SCSI speeds of 5 MB/s), plus 1 Ethernet port
DSSI/SCSI (4 buses @ 5 MB/S each), each bus selectable
DSSI or SCSI, plus 2 Ethernet ports

Fixed Storage 1 to 4 Storage Compartments

Compartment 1: 1 - 5.25" -or- up to 4 - 3.5" fixed disks
Compartments 2-4: 1 - 5.25" -or- up to 4 - 3.5" fixed disks

Note: Empty compartments are allowed.

System I/O 6 Futurebus+ (Profile B) slots, 160 MB/S

Removable Storage 1 SCSI bus (5 MB/S) I/O

Removable Storage 1 RRD42 CD Reader; 0 to 3 half-height tape drives or 1
full-height and 1 half-height tape drive.

Figure 1–1 shows a system block diagram.
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Figure 1–1 System Block Diagram
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The DEC 4000 system consists of a CPU subsystem, an I/O expansion area
implemented with the Futurebus+ Profile B, a mass storage area, and a
power supply subsystem integrated together and housed in the BA640 cabinet.
Figure 1–2 provides a front view of the DEC 4000 system with the front door
removed.
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Figure 1–2 The DEC 4000 System Front View
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1.1 BA640 Cabinet
The BA640 cabinet has a plastic frame covered with plastic panels and sits on
four casters. This cabinet provides both front and back access doors for the DEC
4000 system. The front of the system has the mass storage devices for both fixed
and removable media, and the operator control panel (OCP). The back of the
system has the CPU subsystem modules, an area to plug in Futurebus+ modules,
and the power supply modules. The cooling fans are at the bottom of the system.
Figure 1–3 shows the front and back views of an opened DEC 4000 system.
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1.1 BA640 Cabinet

Figure 1–3 BA640 Enclosure Views
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The operator control panel measures approximately 4.6" x 2.6" and sits in the
front of the system above the removable storage media devices. This panel
contains 4 switches and 9 indicator lights. This panel works with the serial
control bus to provide the user with a way to interface with and control the
system. Figure 1–4 shows the operator control panel detail.
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1.1 BA640 Cabinet

Figure 1–4 Operator Control Panel
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• DC on/off switch (Enables DC power to flow to the systems modules)

• Halt switch (Halts the CPU, forcing the system to invoke console mode)

• Reset switch (Resets the system)

• Power-up baud rate select switch (Provides the console baud rate for system
power-up)

• The nine status LEDs indicate the presence of DC power, and faults in the
I/O, CPU, Memory, and Futurebus+ modules.

The circuit board behind the OCP panel contains an 8-bit I/O expander chip
(PCF8574) that interfaces to the serial control bus. This module also contains
the switch hardware and LEDs, and a connector to the Vterm module that links
the operator control panel to the storage backplane module. Figure 1–5 shows a
functional block diagram of the operator control panel’s circuit board.
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1.1 BA640 Cabinet

Figure 1–5 The OCP Circuit Board Block Diagram
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1.1.1 DC on/off Switch
The DC on/off switch is a latching rocker switch. This switch is connected to
an external green LED located on the OCP below the DC on/off switch. The DC
on/off switch debounce logic resides on the PSC. The LED is controlled entirely
by the operator control panel module. There is no control of this LED by the
firmware. When the DC on/off switch is moved to the "1" position, the DC_ON_OCP
L signal is asserted and sent to the power supply controller (PSC). The DC LED
is lit by the power system controller module whenever the 5 volt line is within
tolerance. When the switch is moved to the "0" position, the PSC negates DC_ON_
OCP L and extinguishes the LED.

1.1.2 RESET Switch
The Reset Switch is a momentary switch with an integral green LED. The
integral LED is controlled entirely by the firmware. There is no control of this
LED by the OCP module. The RESET L signal is a open-collector output. Its
pull-up resistor is located on the PSC and its debounce circuitry is located on the
OCP module. The switch, when pressed activates a one-shot device that asserts
the RESET L signal pulse to the power supply (PSC) which resets the system by
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1.1 BA640 Cabinet

providing the ASYNC_RESET L signal. The duration of this pulse is minimum of
10.1 ms and a maximum of 12.5 ms.

The reset switch LED is illuminated by the firmware when the reset switch is
pressed and extinguished by the firmware when the reset switch is released.
The firmware illuminates the reset LED by writing a zero to bit P4 at the I/O
expander chip write address 42. Writing a one to this bit extinguishes the reset
LED.

1.1.3 The Halt Switch
The Halt switch is a latching switch with an integral green LED. The CHALT L
signal is a open-collector output. A pull-up resistor is provided on the processor
module. The Halt switch debounced circuitry is located on the OCP module.
When the halt switch is pressed, it activates a one-shot circuit that asserts the
CHALT L signal pulse to the processor module for a minimum of 375 ns and a
maximum of 470 ns. The CHALT L signal places the system into console halt
mode.

The firmware determines the position of the halt switch by reading bit P3 at
serial control bus read address 43. If bit P3 is read as a zero, it indicates that
the switch has been pressed and the system is in halt mode. If bit bit P3 is read
as a one, it indicates that the Halt switch has been released and the system is in
run mode. The position of the Halt switch must always be determined whenever
the system executes its initialization process or during normal operation. In
conjunction with the Halt switch, there is a halt LED controlled by port bit P2
at write address 42. This LED is written with a zero (Halt switch depressed) to
illuminate the LED and written with a one (Halt switch released) to extinguish
the LED.

1.1.4 Power-up Console Baud rate switch
The power-up console baud rate selection switch is a thumbwheel switch
numbered 0 through 7. The selected number can be confirmed through a window
on the switch body. This switch provides three bitrate codes to the system
firmware at power-up time in order to program the speed of the console terminal
serial line. Table 1–2 lists the baud rate codes.

Table 1–2 PCF8574 ADDRESS 42/43 BAUD RATE BIT DEFINITIONS

Switch Baud Bit Code

Number Rate 2,1,0

1 600 1 1 0

2 1200 1 0 1

3 2400 1 0 0

4 4800 0 1 1

5 9600 0 1 0

6 19,200 0 0 1
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1.1 BA640 Cabinet

1.1.5 Status LEDs
Status LEDs exist for both CPU0 and CPU1. On a power-up and only on a power-
up of the system, the CPU0 and CPU1 status LEDs are illuminated by logic on
the operator control panel module. Thereafter, the system firmware controls and
illuminates/extinguishes these two LEDs. To extinguish the CPU0/CPU1 LEDs
on the first write after power-up, the firmware must write P1 bit in each I/O
expander to a zero. Thereafter, a write to the P0 bit in each I/O expander (0 for
illuminate and 1 for extinguish) controls these two LEDs and is more in line with
the programming control of the remaining status LEDs.

1.2 The Backplane Assembly
Inside the cabinet, the backplane assembly holds two backplane modules
positioned back-to-back in the center of the system. The modules are joined by
several tin-plated brass standoffs that carry power from the system backplane to
the storage backplane. Several cables carry signals between backplane modules.

All modules and integrated storage assemblies plug directly into designated slots
in the backplane modules eliminating the need for cables.

Figure 1–6 shows a view of the system backplane module in the backplane
assembly facing the system backplane module. The metal card cage that holds
the modules and storage devices is not shown.

Figure 1–6 The Backplane Assembly
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1.2 The Backplane Assembly

1.2.1 The Storage Backplane Module
The storage backplane module is a 10-layer module that measures 13.33" by
19.29". This backplane contains 16 connectors for connecting storage devices
and carrying signals. It uses a combination of press-pin and surface-mount
components. All components are mounted on side one.

Connectors J14 and J15 connect to the system backplane with flat ribbon cables
and carry local I/O bus signals that originate on the I/O module to the fixed media
devices. Local I/O bus 3 also extends to the removable media devices. Connector
J16 connects to the system backplane with a flat ribbon cable and carries the
serial control bus signals to the operator control panel via the vterm module.

Figure 1–7 shows the layout of the storage backplane module. Table 1–3 describes
the function of each connector.

Table 1–3 Storage Backplane Connectors

ConnectorNumber of pins Function

J1 30 Provides power and control signals to the OCP terminator card

J2 78 Accepts a removable media device

J3 78 Accepts a removable media device

J4 78 Accepts a removable media device

J5 78 Accepts a removable media device

J6 78 Accepts a removable media device

J7 78 Accepts a removable media device

J9 50 Provides SCSI-2 output signals

J10 80 Accepts a fixed media storage device

J11 80 Accepts a fixed media storage device

J12 80 Accepts a fixed media storage device

J13 80 Accepts a fixed media storage device

J14 100 Carries I/O bus signals between backplane modules

J15 100 Carries I/O bus signals between backplane modules

J16 40 Serial Control Bus
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1.2 The Backplane Assembly

Figure 1–7 Storage Backplane
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1.2 The Backplane Assembly

1.2.2 System Backplane Module
The system backplane module is a 12-layer module that contains a total of
86 connectors for connecting the system modules and carrying signals. A
combination of press-pin and surface-mount components are used. All components
are mounted on side one.

1.2.3 System Bus Routing
The system bus is routed to the processor memory modules and the topmost 192-
pin connector of the I/O module. Because CPU0 always creates and distributes
the system clocks, the slot for CPU0 contains a clock connector where the slot for
CPU1 does not. This scheme allows identical processor modules to be configured
as CPU0 or CPU1.

1.2.4 Futurebus+ Routing
The Futurebus+ interconnect is routed to the 6 Futurebus+ slots and the I/O
module. The Futurebus+ signals do not connect to the processor and memory
modules. All communication between the Futurebus+ devices and the subsystem
modules is accomplished through the I/O module.

1.2.5 LocaL I/O Bus Routing
The local I/O buses are routed from the I/O module to connectors J and J that
connect to the storage backplane.

1.2.6 Serial Control Bus Routing
The serial control bus is routed to the processor, memory, the I/O modules, as well
as the power system control module and to Jxx and routed across a flat ribbon
cable to be connected to the operator control panel on the storage backplane.
Figure 1–8 shows the layout of the system backplane module. Table 1–4 describes
how the connectors are used.

Table 1–4 System Backplane Connectors

Connector Usage Connector Usage

J1 - J9 I/O module slot J53 - J58 Futurebus+ slot 3

J10 - J14 CPU1 module slot J59 - J64 Futurebus+ slot 4

J15 - J20 CPU0 module slot J65 - J70 Futurebus+ slot 5

J21 - J25 memory module 0 slot J71 - J76 Futurebus+ slot 6

J26 - J30 memory module 1 slot J80 - J81 DC3 power module slot

J31 - J35 memory module 2 slot J82 - J83 DC5 power module slot

J36 - J40 memory module 3 slot J84 - J85 PSC power module slot

J41 - J46 Futurebus+ slot 1 J86 FEU power module slot

J47 - J52 Futurebus+ slot 2
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1.2 The Backplane Assembly

Figure 1–8 System Backplane
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1.3 KN430 CPU Subsystem
The KN430 CPU subsystem has one or two processor modules, up to four memory
modules, and one I/O module. At least one of each of these modules must be
present in order to form the most basic DEC 4000 system.

1.3.1 Processor Module Differences
Both processor modules are identical. However, their functions differ slightly
depending on the way they are configured. The difference in the way they operate
is a function of the CPU backplane slot they occupy. The module configured
as CPU0 must occupy the slot immediately to the right of memory module 0.
Similarly CPU1 must occupy the immediately left of the I/O module. Each CPU
configures itself based on its position in the backplane.
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1.3 KN430 CPU Subsystem

The modules in this subsystem represent the "brain" of the DEC 4000 system.
The processor module uses the DECchip 21064TM CPU chip to interpret and
execute instructions. The memory module contains the system’s main memory
space. System programs, including console emulation firmware are loaded into
the main memory for execution. The I/O module facilitates communication
between the processor module and all I/O devices on the system including the
mass storage devices, the console terminal, the I/O expansion modules, and the
Ethernet interfaces. Figure 1–9 shows a block diagram of the CPU subsystem.
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Figure 1–9 KN430 CPU Subsystem Block Diagram 
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1.3.2 Module order
The CPU subsystem modules are located on the back of the DEC 4000 system on
the top half of the system backplane. They occupy the seven rightmost slots of
the system. Each module has a dedicated slot that it must occupy. The order of
the CPU subsystem modules is shown in Figure 1–10.

Figure 1–10 CPU Subsystem Module Order
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1.3.3 KN430 Processor Module
The processor module contains the 21064 Alpha processor, the backup cache
memory chips, the system bus interface chips and a serial control bus interface.
This module also contains the bus clock generator/distributor circuitry, and the
clock power and detect circuit.

The CPU chip interprets and executes Digital Alpha AXP instructions. The
backup cache holds copies of data recently used by the processor and fetches
several bytes of data from the memory in anticipation that the processor will use
the next sequential series of bytes. The system bus interface logic allows the CPU
to communicate with other modules on the system bus.
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Table 1–5 shows the major differences between CPU0 and CPU1.

Table 1–5 CPU differences

CPU0 (primary) CPU 1 (secondary)

Performs system bus arbitration —

Generates the system clock —

Generates CRESET —

Has HALT signal buffer –

Addresses

System bus CSRs: 2.0000.0XXX system bus CSRs: 2.0800.0XXX

Serial control bus micro: Read/Write B1/B0 Serial control bus micro: Read/Write
B3/B2

Serial control bus NVRAM: Read/Write A9/A8 Serial control bus NVRAM Read/Write
AB/AA

Figure 1–11 shows a block diagram of the KN430 processor module.
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Figure 1–11 KN430 Processor Module Functional Block Diagram

System
Bus
Clock

Serial Control Bus To memory module, I/O module,
power supply, and operator control panel

PROC OCS
Clock DetectEEPROM

Tag Store

Backup Cache

System Bus To memory module, and I/O module

LJ-02057-TI0

Serial
ROM

Addr <33:5>

INV_ADR<12:5>

DECchip   21064 Microprocessor

Data Store

Data

Even Slice Odd Slice

System Bus Interface (SBI)

Addr <33:5>

THIS IS SCALED AT 78/100

  <127:0>

Serial Control Bus

TM

Addr<33:5>
DATA_A<4>

TAG<33:20>

CHECK<27:0>

Addr <19:5>, DATA_A<4>

Addr <19:5>

TAG<33:20>

INV_ADR<12:5>

TAG<33:20>
TAG_PAR

INV_ADR<12:5>

DATA_A<4> CHECK<27:0>

ADDR<19:5>
DATA_A<4>

TAG<33:20>
TAG_PAR
Shared, Dirty Valid
CNTRL_PAR

1.3.3.1 Processor module components
Most of the processor module’s components reside on side 1 of the module.
However a significant amount of the chips for the backup cache reside on side
2. The majority of components are implemented in surface-mount technology
with the exception of the 21064 CPU chip, the C3 bus interface unit, and some
discrete dip packages.
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Refer to Figure 1–12.

Figure 1–12 The KN430 Processor Module
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1.3.3.2 DECchip 21064 TM Alpha CPU
The CPU chip is a 431-pin PGA CMOS-4 chip that contains approximately 2.3
million transistors. This chip is a super-scaler, super-pipelined, implementation
of the Digital Alpha architecture.
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1.3.3.3 Backup Cache Memory Devices
The backup cache consists of 44 64kx4 RAM chips. These devices are 28-pin
surface-mount packages located mostly in the center of the module with chips on
sides 1 and 2.

1.3.3.4 System bus interface
The bus interface is implemented with two Command, Control, and
Communication chips called C3s. The C3 chip is a 299-pin PGA chip. Two of
these chips allow the processor module to interface with the system bus. They
check and generate parity and maintain cache coherency. The 128-bit system
bus is split into two slices with one slice handling the even longwords and the
other slice handling the odd longwords of any given octaword. The C3 chips also
contain the system bus arbitration logic which is implemented if the C3 chip
resides on CPU0.

1.3.3.5 System bus clock generator/distributor circuitry
The system bus clock frequency is generated from an 8x, 200PPM PECL oscillator
and divided by 8 using the 100E131 configured as a synchronous counter. System
bus clocks are PECL level clocks derived from the same 100E131, to minimize
skew.

The clocking scheme supports a bus cycle time of 24ns, which translates to a clock
frequency of 41.66Mhz. The system bus clock generator/distribution circuitry is
enabled only on CPU0. The 100E111 drivers are disabled when the module is
configured as CPU1.

1.3.3.6 Clock/ power detect circuit
This circuit is responsible for detecting power and clock and reporting when
either of these signals is not present. It is implemented with several discrete
surface-mount voltage supervisor chips and discrete transistors, capacitors, and
resistors.

1.3.3.7 Serial Control Bus Interface
This interface is achieved with an 87C652 8-bit microcontroller, a 256x4
EEPROM, and an octal driver. The microcontroller provides an interface between
the 2-line serial control bus implemented with the I2C bus and the processor
module. The serial control bus is intended as a system maintenance bus that
attaches to each CPU subsystem module and captures error data from failed
modules and stores the data in EEPROMs located on each CPU subsystem
module. A copy of this interface circuit is present on all CPU subsystem modules
(CPUs 0 and 1, memories 1 through 4, and the I/O module.)
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1.3.4 KFA40 I/O Module
The KFA40 module contains the SCSI/DSSI controllers, the Ethernet controllers,
the console firmware FEPROM and EEPROM, the system toy clock, a serial
control bus interface, and a system bus interface.

The I/O module performs all I/O transactions on behalf of the processor modules.
This module provides data and message routing and control between the system
bus and all I/O devices associated with the processing complex. The bus interface
unit allows the I/O module to communicate with other modules on the systems
bus. The I/O module interfaces to the system bus through coherent cache line
buffers. The SCSI controller chips interface to the local I/O buses routed to the
mass storage disks on the front of the system. The Ethernet controllers interface
to the local area network. Thinwire and standard thickwire Ethernet connections
are available on the module. The FEPROMs store console code program. The toy
clock keeps system time. The serial control bus interface provides an interrupt
driven master interface to the serial control bus.

Figure 1–13 shows high level functional partition for the module.
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Figure 1–13 I/O Module Functional Diagram

Serial Control Bus To memory module, I/O module,
power supply, and operator control panel

Serial Bus Controller
EEPROM

Console Serial
Line Unit

Auxiliary

SCSI/DSSI
Control

SCSI/DSSI
Control

SCSI/DSSI
Control

SCSI/DSSI
Control

SCSI/DSSI
Control

Script
RAM

To Futurebus+

Local CSRs

Futurebus+
Control

Bus Interface Unit

Toy Clock

TGEC Ethernet
Port 0

Cache
Line
Merge
Buffer
(Even)

Cache
Line
Merge
Buffer
(Odd)

LJ-02056-TI0

THIS IS SCALED 95/100

Line Unit

FEPROM

To
System
Bus

TGEC Ethernet
Port 1

Bus A

Bus B

Bus C

Bus D

Bus E
No DSSI

The I/O module is physically the largest of the CPU subsystem modules. The
backplane connectors are right angle 129-pin and 24-pin connectors located on the
bottom of the module. The module handle, complete with serial line connectors
and Ethernet connectors, is located at the top of the module. The majority of
the I/O module’s components are implemented in surface-mount technology and
onserted onto side 1 of the module. The exceptions are the IONIC PGA chips,
some discrete DIP and SIP packages, and the EPROM. Figure 1–14 is a drawing
of the I/O module.
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Figure 1–14 The KFA40 I/O Module
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1.3.4.1 EPROM
The EPROM is implemented in a 28-pin X2864AP ROM dip package.

1.3.4.2 FEPROMS
The FEPROMS are implemented in four 32-pin CMOS flash-erasable PROMS
used to store console programs as well as the Digital Alpha privileged library
architecture code used by the 21064 microprocessor.

1.3.4.3 Ethernet Controllers
Two Third Generation Ethernet Controller chips (ports 0 and 1) with 9 volt
converters, are located close to the top of the module where the thinwire and
thickwire Ethernet port connectors attach to the handle.
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1.3.4.4 Serial Line Units
Two serial line units (SLU) and a 44-pin 85C30 UART provide for serial line
communications with the console terminal and one other serial device. The
accompanying serial line connectors mount in the I/O module handle.

1.3.4.5 SCSI Controllers
Five 160-pin SCSI controller chips and four 68-pin DSSI driver chips, along with
support circuitry implemented in 22V10 pals provide the control for the mass
storage SCSI drivers.

1.3.4.6 IONIC gate arrays
Two 299-pin PGA chips called IONICs contain the system bus interface logic and
Futurebus+ interface logic as well as some discrete Futurebus+ interface support
logic.

1.3.4.7 Time of Year Clock (TOY)
The time of year clock is a non-volatile clock that keeps the system time and
date. There are several registers associated with the TOY clock function. These
registers are described in detail in the I/O module chapter on functionality.
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1.3.5 MS430 Memory Module
The memory module provides high-bandwidth, low latency program and data
storage for the DEC 4000 system. These modules use DRAM memory chips for
storage and high-performance CMOS ASIC chips for all interface and control
logic. The memory design uses error detection and correction circuitry that
enhances data integrity and reliability, and availability. Figure 1–15 shows a
block diagram of the MS430 Memory module.

Figure 1–15 MS430 Module Functional Block Diagram
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The module has the same mechanical dimension as the CPU module. The
memory module’s backplane connectors are right-angle 129-pin and 24-pin
connectors located on the bottom of the module. The module handle is located at
the top of the module.
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The module’s components are predominantly DRAM memory chips. Driver
chips and CMIC chips are also present. The majority of the memory module’s
components are implemented with surface-mount DIP packages, with the
exception of the CMIC chips. The module’s components are split almost equally
between side 1 and side 2 of the module, with memory banks 0 and 2 residing on
side 1 of the module and banks 1 and 3 residing on side 2.

The CMIC chips are located at the bottom of the module near the J5 backplane
connector. The DEC 4000 system can use up to four memory modules. The
modules must occupy backplane slots 4 through 7 from the right. The slots are
well marked. Refer to Figure 1–10 to see where the CPU subsystem modules are
located. Figure 1–16 is a drawing of a fully populated memory module.
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Figure 1–16 The MS430 Memory Module
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A list of significant components on the memory module follows:

1.3.5.1 DRAMS
DRAMS 20-pin surface-mount (140 per side)
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1.3.5.2 Driver chips
Driver chips 28-pin surface-mount

1.3.5.3 CMIC chips
Two 299-pin PGA CMIC bus interface chips

1.4 The System Bus
The DEC 4000 system bus is a synchronous multiplexed interconnect between
the processor module(s), the I/O module, and up to four memory modules. The
system bus is used exclusively between these modules and is not intended as a
public bus. This bus uses a five-state snooping protocol that allows a processor’s
first level write-through caches and second level writeback cache to maintain
consistent data with another processor’s caches, the system memory, and the I/O
port on a transaction-by-transaction basis.

1.4.1 Supported transactions
The system bus supports four types of transactions: Null, Exchange, Read, and
Write.

The system bus provides a snooping protocol for write back cache coherent 32-byte
block read and write transactions to system memory address space. The protocol
also facilitates non-cacheable address space directed read and write transactions
to primary registers which do not stall longer than a memory transaction’s time.

A system bus commander reads or writes a hexword of data to or from up to
four buffered memory modules, or to registers in memory, on the I/O module,
or CPU CSRs. A system bus commander node is constrained to performing one
transaction per bus grant.

When commander nodes perform non-cacheable address space hexword write
transactions, acceptance of the hexword aligned longword or quadword data is
the responsibility of the responder node, as no mask is provided. However, the
commander does not perform transactions to unaligned octawords within the
aligned hexword.

When commander nodes perform non-cacheable address space hexword read
transactions, the responder node is responsible for supplying an aligned hexword
of data and the commander node consumes the needed longword or quadword,
as no mask is provided. The non-cacheable node will not perform commander
transactions to system bus non-cacheable address space, however the system bus
provides no prevention mechanism.

Note

Primary non-cacheable address space responder nodes must acknowledge
every read or write transaction, regardless of the read only or write only
nature of the addressed register. The responder node is responsible for
the effect of these transactions.

The memory connectors provide a unique slot identification code to each memory
which is used to configure the CSR registers address space. The CPU1 connector
provides an identification code which is used to disable the clock drivers and to
configure the CSR registers address space.
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The memory modules provide 1-, 2- or 4-way hexword interleave if the modules
are the same size and are populated with the same size DRAM chips. The
size of each module’s memory banks is determined by reading each module’s
configuration CSR.

Arbitration
Arbitration on the system bus is performed by the two processor modules and the
I/O module. An arbitration control on CPU0 maintains a "round-robin" scheme
of arbitration. This scheme allows the I/O module to interleave with the two
processors. CPU0 is responsible for system bus arbitration of CPU1. The I/O
module is responsible for its own arbitration.

This bus can transfer a 34-bit address or a 128-bit piece of data with 32-bit parity
in a single cycle. DEC 4000 system bus transactions always transfer hexword
aligned data as two aligned octawords. The order of the octawords within a
hexword is specified at address time, for example, data wrap is supported in
memory address space based on address 4 which is a DEC 4000 system bus
signal CAD<2>. Octaword within hexword wrap is not supported in I/O address
space.

The CPU0 node is responsible for system bus arbitration of the CPU1 node and
the I/O node is responsible for itself. I/O node arbitration is interleaved with
the CPU nodes to minimize I/O latency. This round robin scheme of: CPU0 - I/O
- CPU1 - I/O - CPU0, where if an idle cycle passes a first come granted policy,
is effected and maintained by the arbitration control logic located on the CPU0
node.

An I/O node or CPU node is permitted to hold bus request asserted to perform
continuous system bus transactions, the arbitration controller continuously
samples requests when the system bus is idle and resamples requests near the
end of each current transaction.

The arbiter does not require system bus request signals to negate before they
reassert. However, a granted node must perform a system bus transaction
without hesitation.

A null transaction is provided to enable a commander to nullify the active
transaction request or to acquire the system bus to avoid resource contention.
A requesting commander is not permitted to withdraw a request prior to being
granted. The request and grant must result in a valid system bus transaction.

The arbiter drives the signal on the system bus indicating that a commander is
about to drive the address and command packet, and the granted commander is
obligated to comply.

Request signals may assert or negate during stalled cycles of a transaction.
The arbitration controller must monitor the bus transaction type and follow the
transactions, cycle by cycle, in order to know when to rearbitrate and signal a
new address and command cycle.

Idle cycles
The arbitration controller has provision for masking CPU0, CPU1 or I/O node
arbitration in support of diagnostics, it also maintains a counter of contiguous
transactions which is used to inject idle arbitration cycles. These idle cycles
prevent probe traffic from consuming the backup cache from a CPU node for
extended periods.
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Interrupts
The I/O module drives two device related interrupt signals which are received by
both CPU nodes. One interrupt is associated with the Futurebus+ and the other
is associated with all the device controllers local to the I/O module.

The I/O module provides a readable non-cacheable address space silo register of
Futurebus+ interrupt pointers and a readable noncacheable address space device
request register of local device interrupt requests.

It is assumed that either CPU0 or CPU1 will be the designated primary interrupt
dispatch node, responsible for reading the device interrupt register or Futurebus+
interrupt register to determine which local devices require service or which
Futurebus+ offset to dispatch into.

Note

Either CPU node is capable of servicing all or either I/O device interrupts.

A system bus readable and writeable interprocessor interrupt register and
interprocessor mailbox register is provided on each CPU node. The interrupt
register has one bit which is set to cause an interrupt and cleared by the
interrupted processor. It is possible for a CPU to interrupt another CPU and
itself. A CPU should test that the bit is cleared prior to setting the bit. The
interprocessor mailbox register is longword wide and at least one bit should be
used as an ownership flag.

The interval timer interrupt clock is distributed to both CPU nodes from the I/O
node, because the time of year clock and 1 ms interval timer clock are located on
the I/O module.

Soft errors are errors that are dynamically correctable. The system bus assumes
that soft errors, are logged with or without a posted interrupt, to be serviced or
polled by system software in proximity to the event or at periodic intervals. An
error interrupt signal is available to all system bus nodes; it is used for soft and
hard error interrupt reporting. Hard errors are generally not recoverable in a
level of operating system software, but may be recoverable in driver or user levels
of system software.

The system power supply, the operator control panel, the Futurebus+ halt CSR,
the Ethernet interface controller, or the console serial line interface are capable of
causing a system event interrupt. A non-maskable interrupt is provided to signal
both CPU nodes of the system event. System events could be one or more of the
following:

• AC or DC power failure

• Fan failure

• Overtemperature shutdown

• Reserve battery activated

• Reserve battery low voltage warning

• Halt

• Remote reboot
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1.4.2 Physical Address Space Layout
Figure 1–17 illustrates the division of the address space into memory space and
non-cacheable space. The upper 4 GB of the 8 GB memory space is reserved and
called allocate invalid address space. This space is divided into two sections,
each used by a CPU node as a backup cache address alias for flushing dirty lines
without allocation. The 512MB of primary I/O module CSR space for CPU and
I/O nodes is partitioned as follows:

• 2 0000 0000 - 2 07FF FFFF for CPU0

• 2 0800 0000 - 2 0FFF FFFF for CPU1

• 2 1000 0000 - 2 1FFF FFFF for I/O

Figure 1–17 Physical Address Space Layout in the System
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NOTES: 1. ALL ADDRESSES ARE PHYSICAL (PA<33:0>).

All 32 bits of address are significant for non-cacheable space addresses, because
device registers may have to be decoded uniquely on hexword boundaries. There
is no length field for system bus transactions. All hexword transactions in non-
cacheable space must occur to aligned hexword addresses. The actual amount of
data read or written may be a quadword or less.

1–32 DEC 4000 System Features



1.4 The System Bus

1.4.3 System clock signals
The processor clock is the source of the timing signals in the DEC 4000 system.
It is an ECL level signal with a nominal frequency of 151.51 Mhz. Each processor
module generates its own CPU clock independently of the other processor module.

The system bus clock is a free running clock with a frequency that is derived by
dividing the processor clock by four. A system bus clock generator and distributor
is located on the CPU0 processor module. Each clock signal is source terminated
on the CPU0 module and delivered to the backplane so that the absence of a
module will not negatively affect the clock driver chip.

The primary processor module, CPU0, always generates the system bus clock.
The backplane connector for CPU1 provides an identification code which is used
to disable the clock drivers and configure the CSR register address space if CPU1
is plugged into the backplane.

Two pairs of differential clock signals are generated. Each module on the system
bus receives a differential pair of clock signals. The module must terminate the
signals and AC couple them to a chip that converts them to CMOS level signals
for on-module use. Two of each of these signals are dedicated to driving the
system bus interface chip. (Each module on the system bus uses a system bus
interface chip.)

In all, there are three time domains in the DEC 4000 system. The DECchip
21064 CPU chip (6.6 ns), the system bus (24 ns), and the CPU chip to C3 (18 ns).

1.4.4 Subsystem communications with secondary buses
The secondary buses in the DEC 4000 system are the Futurebus+, which is an
open bus available for the user, and the L-bus which is a 32-bit bus that provides
communication to the local I/O devices. The L-bus is not available to users, it is
contained on the I/O module. Read operations directed at the secondary buses are
very slow relative to the processor clock speed.

A CSR read may take 1 to 10 µsec or even longer, while a processor clock
cycle is under 10 nsec. In order to decouple the comparatively long access
latencies of these buses from the system bus (which the processor uses for
access to main memory) these buses are not directly accessible by the processor.
Communications between the system bus and the secondary buses is achieved
through the interfaces on the I/O module.

A mechanism called a mailbox provides access to devices on either of the
secondary buses. There are two mailbox pointers, the L-bus Mailbox Pointer
Structure (LMBPR) for operations to the local I/O devices, and the F-bus Mailbox
Pointer Register (FMBPR) for operations to devices on the Futurebus+.

The processor builds a structure in main memory called the Mailbox Data
structure that describes the operation to be performed. The processor then writes
a pointer to this structure into a Mailbox Pointer Register. The I/O module reads
this Mailbox Data Structure and performs the operation specified (read or write)
and returns status and any data to the structure in memory.
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1.5 The Mass Storage Area
The mass storage area has four bays for fixed media and removable media
devices. Each fixed media device has a drawer part, a disk power supply and the
individual disks.

These disks are responsible for holding system software. One disk is required
to hold the operating system software. Each can be expanded. The disk power
supply converts power from the system power supply to power that the disk
assemblies can use.

The mass storage area at the front of the system contains mechanical assemblies
that accept a combination of different storage devices. Each storage assembly
includes the following:

Disk power source

• A dedicated power source module known as the local disk converter that
converts 48 volts dc bus to three voltages which all share a common return:

• 5 volts DC for powering the storage device logic

• 5 volts DC termination power for the I/O bus terminators

• 12 volts DC SCSI voltages

• A front panel that contains unit ID plugs and fault and online indicators

• A connector to allow for SCSI bus expansion

Figure 1–18 shows a functional block diagram of the mass storage area.
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Figure 1–18 The Mass Storage Area

ESB91D0025

disk
full-height
5 1/4" fixed
media disk
device

full-height
5 1/4" fixed
media disk
device

3 1/4 " fixed
media 
device

3 1/4 " fixed
media 
device

3 1/4 " fixed
media 
device

3 1/4 " fixed
media 
device

3 1/4 " fixed
media 
device

3 1/4 " fixed
media 
device

3 1/4 " fixed
media 
device

3 1/4 " fixed
media 
device

5v

12v

5v   (VTERM)

SCSI bus  A

SCSI bus  B

SCSI bus  C

SCSI bus  D

SCSI bus 
expansion 

SCSI bus 
expansion 

SCSI bus 
expansion 

SCSI bus 
expansion 

power

supply

disk

power

supply

disk

power

supply

disk

power

supply

5v

12v

5v

12v

5v

12v

Removable Media devices

To 
expansion 
enclosure 

From
system
backplane 

Front 

Panel

Front 

Panel

Front 

Panel

Front 

Panel

5v   (VTERM)

5v   (VTERM)

5v   (VTERM)

A

B

C

D

E

The mass storage area is on the front of the system. The system can have up
to four fixed-media storage devices and two removable-media storage devices.
Each fixed media device may contain a combination of full-height and 3-1/4 inch
devices, so there are several different front panels available for the front of the
mass storage area. Figure 1–19 shows the typical mass storage front panels.
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Figure 1–19 Mass Storage Front Panels
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1.6 I/O Expansion Area
The I/O expansion area has six slots for Futurebus+ modules.

These slots provide space for the system to be expanded with Futurebus+
I/O devices, both Digital and non-Digital made. The I/O expansion bus is
implemented with the Futurebus+ Profile B open standard. Futurebus+ Profile
B is a general purpose, high performance, technology independent bus. A profile
is a specification which calls out subset functions from a larger Futurebus+
specification. All I/O expansion option modules must conform to the dimensions
for the Futurebus+ Profile B specification.

The I/O expansion area provides space to install six Futurebus+ option modules
on the system backplane. Futurebus+ modules must occupy Futurebus+ slots
(1-6) to the left of the memory modules. The Futurebus+ is separate from the
system bus and all communications between the Futurebus+ modules and the
CPU subsystem are facilitated by the CPU subsystem’s I/O module.
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The Futurebus+ Profile B bus is a 32- or 64-bit, multiplexed address and data bus
located in the system backplane. It uses the following:

• Central arbitration scheme

• Simple transaction set

• Futurebus+ CSR set

• A simple interrupt scheme

• A high-performance DMA architecture

The Futurebus+ will support communication, disk controllers, and special purpose
devices as required. Figure 1–20 shows a functional block diagram of the I/O
expansion area.

Figure 1–20 I/O Expansion Area
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1.7 The Power Supply Subsystem
The power supply subsystem is an integral part of the BA640 enclosure. It is
accessed from the back of the system and has the following components:

• H7853 front end unit (FEU)

• H7851 power system controller (PSC)

• H7179 DC-DC converter unit, 5 volt (DC5)

• H7178 DC-DC converter unit, 12/3.3/2.1 volt (DC3)
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• Up to four remote local disk power converters called "disk power supplies"
that provide power for the removable-media storage devices.

The FEU, PSC, DC5 and the DC3 modules are replaceable units that plug into
the system backplane. The local disk converters are DC-DC power supplies that
are built into the fixed media assemblies. All interconnects between the modules
are routed through the backplanes. Cooling is provided by air flowing from the
Futurebus+ card cage area, through the power supply system, and into the fan
plenum below.

The front end unit module is enclosed in sheet metal and screening to prevent
contact with the high voltages inside it. The power system controller module and
the two DC-DC converter modules are open modules with backplane connectors
on the back and modular bulkhead handles on the front.

Figure 1–21 shows the location and meaning of the power supply indicator LEDs.

Figure 1–21 The Power Supply Indicators
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The power supply subsystem converts AC power to DC power that can be used by
the system. This universal supply contains a high-power-factor AC-DC converter
that is capable of working over the entire 120-240 volts AC input line voltage
without any reconfiguration of its circuitry. This eliminates the need for the user
to set a switch to select 120 or 240 volts AC.

Logic on the PSC module monitors system voltages and temperature and adjusts
the fans accordingly. Two DC-DC converter units (DC5 and DC3) provide 5, 2.1,
3.3, and 12.0 volts DC for various uses throughout the system.
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The disk power supplies provide 12.0 and 5.0 volts DC and a termination power
called Vterm (5 volts DC) power for the removable-media disk assemblies.

Figure 1–22 shows a high-level block diagram of the power supply subsystem and
shows the way power is routed in the system.
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Figure 1–22 The DEC 4000 Power Scheme
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Each power supply component is described in more detail in the following
paragraphs.
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1.7.1 H7853 Front End Unit (FEU)
The front end unit takes in AC power from the mains at near unity power factor.
The input AC is processed through a high-voltage power factor (HPF) AC-DC
converter to create a high-voltage DC (HVDC) bus at 385 VDC. The HVDC is
connected to the inputs of two DC-DC converters. These converters, known as the
step-down converters, process the 385 volts DC into a nominal 48 volts DC. The
outputs of these two converters are connected together and operate in parallel.

Circuitry on each converter assures that the load current is shared, almost
equally between the two converters. It is important to note that neither the
supply nor the return of these 48 VDC buses is referenced directly to chassis or
earth. Instead, each rail is connected to chasses through a parallel combination
of a large value resistor with a small value capacitor. This creates a floating 48
volts DC that, if measured with a volt meter, would indicate the supply rail to be
at +24 VDC and the return rail to be at -24 VDC.

It is also important to note that any loading on the 48 VDC bus be isolated from
the chassis. All current taken from the supply side of the bus must be returned
to the return side of the bus. No current can be returned to chassis or earth
connection. This means that all DC-DC converters drawing power from either of
the 48 VDC sources must be galvanically isolated input to output.

1.7.2 H7851 Power System Controller (PSC)
The power system controller is the brain of the power supply subsystem. It
provides all of the monitoring and interface functions of the power system. The
main processing component of this module is the Intel 80C196 microprocessor.
The PSC module provides the following services:

• Communicates system status information to the KN430 system processor
module via the serial control bus

• Receives commands, status, and configuration information and other
communications from the system via the serial control bus

• Initiates power-down sequence if the FEU indicates that less than 4 msec of
reserve energy exist

• Provides a power fail signal (POK H) to the mass storage devices and the I/O
module

• Receives on/off and system restart commands from the OCP

• Generates a system reset (ASYNC_RESET L) on power-up and when requested
by the OCP

• Drives the power system visual status indicators

• Provides power-up sequencing for the DC-DC converters

• Passes the fan power from the backplane to the fans through anti-beat diodes

• Provides the system with warning if temperatures are beyond normal
operating range

• Initiates the power-down sequence when temperatures are excessive

• Controls the speed of the fans

• Interfaces to external UPS and conveys status to the system

• Initiates a shutdown if the FEU indicates that one of the 48 VDC buses is out
of tolerance
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• Monitors the system temperature and cooling with thermal emulators

• Monitors the backplane voltages and shuts down when there is an
undervoltage fault

• Monitors the backplane voltages and fires the crowbar and shutdown on an
overvoltage fault

• Monitors status of the disk power supplies and reports failures to the system

• Monitors fan rotation and initiates a power-down sequence on detection of a
failure

• Interfaces to the power control bus

1.7.3 H7179 5 Volt Converter (DC5)
This unit receives power at 48 volts DC, processes it through three DC-DC
converters operating in parallel and generates an output of 5 volts DC @ 90 amps
for the system’s logic modules.

1.7.4 H7178 3 Volt Converter (DC3)
This module has three DC-DC converters on it, all operating from the 48 volts DC
input. This unit produces the following outputs:

• 12 VDC @ 12.5 A (150 W)

• 3.3 VDC @ 30 A (100 W)

• 2.1 VDC @ 10 A (21 W)

1.7.5 Disk Power Supplies
The disk power supply module is a DC-DC converter specialized for powering
small mass storage devices. Input power is taken from the 48 VDC bus and three
outputs are generated:

• 12.0 volts DC with a fast transient response and tolerance to the short-term
loading during spinup

• 5.0 volts DC for powering storage device logic

• 5 volts DC Vterm termination power, a 5 Volt output that is diode-isolated
and current limited for powering the local I/O bus terminators.

1.7.6 System Voltages
The following lists all of the system voltages:

• 48 volts DC BUS_DIRECT

• 48 volts DC SWITCHED

• 5 volts DC

• 2.1 volts DC

• 3.3 volts DC

• 12.0 volts DC

• Fan power 11.0 - 27.1 volts DC

• Disk power supply voltages:

12.0 volts DC
5 volts DC
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5 volts DC Vterm termination power

1.8 The Serial Control Bus
The serial control bus is a two -conductor serial interconnect that is independent
of the system bus. The bus master for the serial bus is the I/O module. This bus
links the processor modules, the IO, the memory, the power subsystem and the
OCP. Each module on the bus has an EEPROM that captures data that can later
be interpreted by a field service technician. This bus reports any failed devices to
the processor module so the processor module can illuminate LEDs on the OCP.
The system accomplishes a data write to this bus with the execution of a single
privileged instruction. The write is completed without further system software
intervention. The write to EEPROMS requires 25 ms maximum. Table 1–6 lists
the node addresses on the serial control bus.

Table 1–6 Serial Control Bus Node Addresses

Device Bus Node
Read
Address Write Address

D-bus microcontroller CPU0 B1 B0

D-bus microcontroller CPU1 B3 B2

NVRAM 256 x 8 CPU0 A9 A8

NVRAM 256 x 8 CPU1 AB AA

NVRAM 256 x 8 I/O AD AC

NVRAM 256 x 8 Mem0 A1 A0

NVRAM 256 x 8 Mem1 A3 A2

NVRAM 256 x 8 Mem2 A5 A4

NVRAM 256 x 8 Mem3 A7 A6

8-bit register OCP 41 40

8-bit register OCP 43 42

8-bit register VTERM 45 44

8-bit register PSC 49 48

8-bit register PSC 4B 4A

I/O port to serial control
bus

B5 B4

1.9 System Firmware
The term firmware refers to code that is stored in a fixed or firm way usually in
a read-only memory device. It contains instructions designed to help hardware
perform its assigned functions. The DEC 4000 system contains several such
pieces of firmware located in various devices throughout the system.

In general the DEC 4000 system firmware is "soft" in that it executes out of
memory. On power-up, code is transferred from the FEPROMS to the main
memory and the CPU runs this code out of main memory. This is different from
previous products where the console program is run out of firmware EPROMs.
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The functionality of each piece of firmware is described in the following
paragraphs. The locations of the firmware in the DEC 4000 system are shown in
Figure 1–23.

Figure 1–23 System Firmware Locations
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PSC Startup Firmware
The power system controller startup code is stored in one ultraviolet EPROM
(device number 27256). The UVPROM is packaged in a 28-pin, dual in-line chip
located on the power system controller module (currently in position E10). The
UVPROM holds 32K of lower memory that may be expanded with another 32K
of upper memory. This code is invoked on power-up after the deassertion of the
system reset signal. This code is responsible for starting and controlling the
80C196 microprocessor by performing the following functions:

• Monitors the power supply voltages

• Monitors the AC power line

• Facilitates communication with the processor modules
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• Monitors and controls system temperature

The DECchip 21064 TM CPU Startup Firmware
The CPU chip startup code is stored in four 20-pin, PLCC, 64x1 serial
configuration PROMS (SROM). A copy of this code is present on both processor
modules. This code is loaded into the 21064 instruction cache after the
deassertion of the system reset signal. This code works with the micro controller
to issue commands to the 21064. This code tests the most basic functions of the
processor module doing the following:

• Tests the backup cache

• Tests the system bus

• Tests the console memory

• Unloads the console program from the FEPROMS

Micro Controller Startup Firmware
The 87C652 microcontroller used on the processor modules contains internal
firmware that is invoked on initialization after the deassertion of system reset.
The 87C652 is a 40-pin PLCC chip. A copy of this code exists on both processor
modules. The 87C652 resides in location EX on both CPU0 and CPU0. This code
supports the initialization procedure by performing the following functions:

• Monitors serial ROM load progress

• Enables serial port UART when serial ROM load completes.

• Sizes for optional support module on the serial control bus

• Reads memory module configuration data from the memory modules
EEPROMs on the serial control bus.

• Sends the memory module configuration data to the CPU via the serial port.

• Controls the CPU power-up test flow and FEPROM unloading

• Sends the progress information to the LEDs on the Operator Control Panel by
way of the serial control bus.

Console Emulation and Diagnostics Firmware
Console Emulation and Diagnostics code is stored in four surface mount, 32-pin
flash EPROMS located on the I/O module. Chips E77, E91, E78, E92 represent
bytes 0, 1, 2, and 3 respectively. Each chip has 128K of non-partitioned flash
memory. This code participates in the system initialization process and is
responsible for system boot, console emulation, and console diagnostics. An
FEPROM is an electrically erasable EPROM where all the bits are erased in
parallel. FEPROMs can be erased and programmed while remaining installed on
the module. An upgrade takes approximately 30 seconds.

FEPROM Code Structure The DEC 4000 FLASH PROM firmware has several
major functional blocks of code. The firmware is invoked following system halts,
or severe errors. It is responsible for saving the machine state. It controls the
transition from halted state to the running state and it performs a restoration of
the saved context prior to the transition.

Console Based Diagnostics
The console diagnostics consist of kernel initialization, driver initialization,
subsystem tests, and system exercisers.
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Restart and Boot Code
On invocation, depending on the nature of the halt and the system context, the
firmware attempts either an operating system restart, a bootstrap operation, or
transitions to console I/O mode.

The console is responsible for restarting a processor halted by powerfail or by
error halt. The console follows the same sequence for a primary processor or a
secondary processor.

Standard Console Services
On a Digital Alpha APX system, underlying control of the system hardware is
provided by the console. The console provides the following:

• Initializes, tests, and prepares the system hardware for Alpha system
software.

• Bootstraps (loads into memory and starts the execution of) system software.

• Controls and monitors the state and state transitions of each processor in a
multiprocessor system.

• Provides services to system software that simplify system software control of
and access to hardware.

• Provides a means for a console operator to monitor and control the system.

The console interacts with system hardware to accomplish the first three tasks.
The actual mechanisms of these interactions are specific to the hardware;
however, the net effects are common to all systems.

The console interacts with system software once control of the system hardware
has been transferred to that software.

The console interacts with the console operator through a virtual display device or
console terminal. The console operator may be a human being or a management
application.

Console EEPROM
The console uses 8kb of non-volatile EEPROM located on the I/O module. The
EEPROM is implemented in a 28-pin PLCC surface mount package. Logically
this EEPROM sits on the LBUS and provides space for scripts used by the console
emulation software. This EEPROM also holds environment variables used by the
console code.

SCSI/DSSI Controller Static RAM
The SCSI/DSSI controllers have 32Kx8 of CMOS, parity protected, static RAM
space available to use as a shared resource for the controllers. This RAM is
implemented in eight 28-pin surface mount chips located on the I/O module.

Ethernet Station Address ROM
The Ethernet station address is implemented with two 32x8 ROMs, one ROM
for each Ethernet port. Each ROM holds a unique address for the system. These
ROMs are located on the I/O module.

I/O Module TOY Battery Backup RAM
The time-of-year clock on the I/O module is implemented with a Dallas
Semiconductor DS1287 real-time clock. It is contained in a 24-pin dip package.
The real-time clock provides the I/O module with 50 bytes of non-volatile static
RAM to accommodate the TOY clock registers.
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Serial Control Bus EEPROM
Each module on the system bus has an integrated serial control bus EEPROM.
The EEPROM is implemented in an 8-pin, 2K bits static CMOS device arranged
as 256 by 8-bits. It has 256 bytes of byte addressable, with byte erase/write, non-
volatile storage. Each EEPROM stores information about the module on which it
resides. Some of the information consists of the following:

• Administrative information

Material tracking
Revision control
Configuration tracking
Product functionality

• Failure/Diagnosis information

Manufacturing repair
Customer service logistics repair
Systemic problem analysis
Fault management

1.10 System Ports
The DEC 4000 system contains an AC power port, two serial line ports, an
Ethernet port, and up to four SCSI storage expansion ports. This section
describes the external ports that exist on the DEC 4000 system.

1.10.1 The serial line ports (SLU)
The DEC 4000 contains two serial line ports for the console serial line and the
auxiliary serial line. Both serial lines are implemented using a single 85C30
device and operate in asynchronous mode only.

The console serial line uses a 6-pin DECconnect MMJ connector mounted on the
I/O module handle. This line is compatible with the RS-232-C,D,E, EIA 423, and
CCITT V.28 and V.10 standards.

The auxiliary serial line provides modem control and uses a 25-pin DIN connector
mounted on the I/O module handle. This line is compatible with RS-232-C,D,E,
EIA 423, CCITT V.28 and V.24 standards. It is also compatible with BELL 101,
103 and 112 modems.

Table 1–7 lists a summary of the characteristics of the serial lines.

Table 1–7 Serial Line Features

Console Serial Line Auxiliary Serial Line

Asynchronous Asynchronous

No modem control Modem control

6-pin (DECconnect MMJ) connector 25-pin (DIN)

Connected to I/O module handle Connected to I/O module handle

Compatible with RS-232-C,D,E Compatible with RS-232-C,D,E

EIA 432 EIA 432

(continued on next page)
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Table 1–7 (Cont.) Serial Line Features

Console Serial Line Auxiliary Serial Line

CCITT V.28 and V.10 CCITT V.28 and V.24, BELL 101, 103 AND 112

1.10.2 The Ethernet Port
The Ethernet port on the DEC 4000 system provides connectors that accept
thickwire or Thinwire standard Ethernet cables. This connection allows the
system to communicate with other systems, information processing products, or
office equipment at a local business site. The Ethernet port is located on the I/O
module.

1.10.3 SCSI Storage Expansion Ports
The mass storage SCSI devices use a standard SCSI 50-conductor shielded cable.
This cable is terminated at both ends and provides for daisy chain expansion. All
signals are common between all SCSI devices.

1.10.4 AC Power Connector Port
The AC power connector port provides the connection from the DEC 4000 system
to an AC power wall outlet. The cable is a standard AC power cable.
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Part II
The Processor Module

This part contains a detailed functional description of the DEC 4000 processor
module.



2
The KN430 Processor Module

The KN430 Processor Module 2–1



The KN430 processor module is the central processing unit of the DEC 4000 system. The
processor contains 11 subsystems, many of which are found in the C³ chip developed at Digital
Equipment Corporation. In the following list, these subsystems are found in brackets next to the
C3 chip.

• The DECchipTM 21064 CPU chip

• Backup cache

• C3 chip

8>>>>>>><
>>>>>>>:

Write merge buffer
Duplicate tag store
System bus interface
System bus arbitrator
Address lock
Bcache Control machines
System bus snooping control

9>>>>>>>=
>>>>>>>;

• Clock generator/distributor

• Reset generator

• D-bus serial ROM and microcontroller

• Clock/power detect circuitry

• Address Lock to support the Load Lock/Store Conditional construct (C³)
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Alpha Architecture

The DEC 4000 system is an implementation of the Digital Alpha AXP
architecture. The following paragraphs give a brief overview of the Alpha
addressing and data types. For a complete description refer to the Alpha
Architecture Reference Manual.

3.1 Addressing
The basic addressable unit in the Alpha architecture is the 8-bit byte. Virtual
addresses are 64 bits long. An implementation may support a smaller virtual
address space. The minimum virtual address size is 43 bits.

Virtual addresses as seen by the program are translated into physical memory
addresses by the memory management mechanism.

3.2 Data Types
An explanation of the Digital Alpha supported data types is given in the following
paragraphs.

Byte
A byte is eight contiguous bits starting on an addressable byte boundary. The bits
are numbered from right to left, 0 through 7 as shown in Figure 3–1.

Figure 3–1 Byte Data Format

7 0

:A

A byte is specified by its address A. A byte is an 8-bit value. The byte is
supported in Alpha only by the extract, mask, insert, and zap instructions.

Word
A word is two contiguous bytes starting on an arbitrary byte boundary. The bits
are numbered from right to left, 0 through 15 as shown in Figure 3–2.
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Figure 3–2 Word Data Format

015

:A

A word is specified by its address, the address of the byte containing bit 0. A
word is a 16-bit value. The word is supported in Alpha only by the extract and
insert instructions.

Longword
A longword is four contiguous bytes starting on an arbitrary byte boundary. The
bits are numbered from right to left, 0 through 31 as shown in Figure 3–3.

Figure 3–3 Longword Data Format

031

:A

A longword is specified by its address A, the address of the byte containing bit 0.
A longword is a 32-bit value. When interpreted arithmetically, a longword is a
two’s-complement integer with bits of increasing significance going 0 through 30.
Bit 31 is the sign bit. The longword is supported in Alpha only by sign-extended
load and store instructions, and by longword arithmetic instructions.

Note

Alpha implementations impose a significant performance penalty when
accessing longword operands that are not naturally aligned. (A naturally
aligned longword has 0 as the low-order two bits of its address.)

Quadword
A quadword is eight contiguous bytes starting on an arbitrary byte boundary. The
bits are numbered from right to left, 0 through 63 as shown in Figure 3–4.

Figure 3–4 Quadword Data Format

63 0

:A

A quadword is specified by its address A, the address of the byte containing bit
0. A quadword is a 64-bit value. When interpreted arithmetically, a quadword
is either a two’s-complement integer with bits of increasing significance going
0 through 62 and bit 63 as the sign bit, or an unsigned integer with bits of
increasing significance going 0 through 63.
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Note

Alpha implementations impose a significant performance penalty when
accessing quadword operands that are not naturally aligned. (A naturally
aligned quadword has 0 as the low-order three bits of its address.)

F_floating
An F_floating datum is four contiguous bytes in memory starting on an arbitrary
byte boundary. The bits are labeled from right to left, 0 through 31 as shown in
Figure 3–5.

Figure 3–5 F_floating Data Format
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An F_floating operand occupies 64 bits in a floating register, left-justified in the
64-bit register as shown in Figure 3–6.

Figure 3–6 F_floating Register
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The F_floating load instruction reorders bits on the way in from memory, expands
the exponent from 8 to 11 bits, and sets the low-order fraction bits to 0. This
produces in the register an equivalent G_floating number, suitable for either
F_floating or G_floating operations. The mapping from 8-bit memory-format
exponents to 11-bit register-format exponents is explained in Table 3–1.

Table 3–1 Alpha F_floating Load Exponent Mapping

Memory Register

1 1111111 1 000 1111111

1 xxxxxxx 1 000 xxxxxxx

0 xxxxxxx 0 111 xxxxxxx (xxxxxxx not all 1’s)

0 0000000 0 000 0000000 (xxxxxxx not all 0’s)

This mapping preserves both normal values and exceptional values.

The F_floating store instruction reorders register bits on the way to memory and
does no checking of the low-order fraction bits. Register bits <61:59> and <28:0>
are completely ignored by the store instruction.
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An F_floating datum is specified by its address A, the address of the byte
containing bit 0. The memory form of an F_floating datum is sign magnitude
with bit 15 the sign bit, bits <14:7> an access-128 binary exponent, and bits <6:0>
and <31:16> a normalized 24-bit fraction with the redundant most significant
fraction bit not represented. Within the fraction, bits of increasing significance go
from 16 through 31 and 0 through 6. The 8-bit exponent field encodes the values
0 through 255. An exponent value of 0, together with a sign bit of 0, is taken to
indicate that the F_floating datum has a value of 0.

If the result of a VAX floating-point format instruction has a value of 0, the
instruction always produces a datum with a sign bit of 0, an exponent of 0, and
all fraction bits of 0. Exponent values of 1..255 indicate true binary exponents
of -127..127. An exponent value of 0, together with a sign bit of 1, is taken as a
reserve operand. Floating-point instructions processing a reserve operand take
an arithmetic exception. The value of an F_floating datum is in the approximate
range of 0.29*10**-38..1.7*10**38. The precision of an F_floating datum is
approximately one part in 2**23, typically 7 decimal digits.

Note

Alpha implementations impose a significant performance penalty when
accessing F_floating operands that are not naturally aligned. (A naturally
aligned F_floating datum has 0 as the low-order two bits of its address.)

G_floating
A G_floating datum in memory is eight contiguous bytes starting on an arbitrary
byte boundary. The bits are labeled from right to left, 0 through 63 as shown in
Figure 3–7.

Figure 3–7 G_floating Operand

015 14 4

S

3

Exp. Frac.Hi

Fraction Midh

:A

:A+2

Fraction Midl

Fraction Lo

:A+4

:A+6

A G_floating operand occupies 64 bits in a floating register, arranged as shown in
Figure 3–8.

Figure 3–8 G_floating Data Format

063 62

S

48 47 32 31 16 15

Exp. Fraction Midh Fraction Midl Fraction Lo :Fx

52 51

Frac. Hi

A G_floating datum is specified by its address A, the address of the byte
containing bit 0. The form of a G_floating datum is sign magnitude with bit
15 the sign bit, bits <14:4> an excess-1024 binary exponent, and bits <3:0> and
<63:16> a normalized 53-bit fraction with the redundant most significant fraction
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bit not represented. Within the fraction, bits of increasing significance go from 48
through 63, 32 through 47, 16 through 31, and 0 through 3. The 11-bit exponent
field encodes the values of 0 through 2047. An exponent value of 0, together with
a sign bit of 0, is taken to indicate that the G_floating datum has a value of 0.

If the result of a floating-point instruction has a value of 0, the instruction always
produces a datum with a sign bit of 0, an exponent of 0, and all fraction bits of
0. Exponent values of 1..2047 indicate true binary exponents of -1023..1023. An
exponent value of 0, together with a sign bit of 1, is taken as a reserve operand.
Floating-point instructions processing a reserve operand take a user-visible
arithmetic exception The value of a G_floating datum is in the approximate
range of 0.56*10**-308..0.9*10**308. The precision of a G_floating datum is
approximately one part in 2**52, typically 15 decimal digits.

Note

Alpha implementations impose a significant performance penalty when
accessing G_floating operands that are not naturally aligned. (A naturally
aligned G_floating datum has 0 as the low-order three bits of its address.)

D_floating
A D_floating datum in memory is 8 contiguous bytes starting on an arbitrary
byte boundary. The bits are labeled from right to left, 0 through 63 as shown in
Figure 3–9.

Figure 3–9 D_floating Data Format

015 14 7

S

6

Exp. Frac.Hi

Fraction Midh

:A

:A+2

Fraction Midl

Fraction Lo

:A+4

:A+6

A D_floating operand occupies 64 bits in a floating register, arranged as shown in
Figure 3–10.

Figure 3–10 D_floating Register Format

063 62

S

48 47 32 31 16 15

Exp. Fraction Midh Fraction Midl Fraction Lo :Fx

55 54

Frac. Hi

The reordering of bits required for a D_floating load or store is identical to those
required for a G_floating load or store. The G_floating load and store instructions
are therefore used for loading or storing D_floating data.

A D_floating datum is specified by its address A, the address of the byte
containing bit 0. The memory form of a D_floating datum is identical to an
F_floating datum except for an additional 32 low significance fraction bits. Within
the fraction, bits of increasing significance go from 48 through 63, 32 through
47, 16 through 31, and 0 through 6. The exponent conventions and approximate
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range of values is the same for D_floating as F_floating. The precision of a D_
floating datum is approximately one part in 2**55, typically 16 decimal digits.

Note

D_floating is not a fully-supported data type; no D_floating arithmetic
operations are provided in the architecture. For backward compatibility,
exact D_floating arithmetic may be provided via software emulation. D_
floating "format compatibility," in which binary files of D_floating numbers
may be processed but without the last 3 bits of fraction precision, can be
obtained via conversions to G_floating, G arithmetic operations, then
conversion back to D_floating.

Note

Alpha implementations impose a significant performance penalty on
access to D_floating operands that are not naturally aligned. (A naturally
aligned D_floating datum has the low-order three bits of its address 0.)

S_floating
An IEEE single precision, or S_floating, datum occupies four contiguous bytes in
memory starting on an arbitrary byte boundary.

The bits are labeled from right to left, 0 through 31 as shown in Figure 3–11.

Figure 3–11 S_floating operand

015 14 7

S

6

Exp. Frac. Hi

Fraction Lo :A

:A+2

An S_floating operand occupies 64 bits in a floating register, left-justified in the
64-bit register, as shown in Figure 3–12.

Figure 3–12 S_floating Register Format

015

:A

The S_floating load instruction reorders bits on the way in from memory,
expanding the exponent from 8 to 11 bits, and sets the low-order fraction bits to 0.
This produces in the register an equivalent T_floating number, suitable for either
S_floating or T_floating operations. The mapping from 8-bit memory-format
exponents to 11-bit register-format exponents is shown in Table 3–2.
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Table 3–2 S_floating Load Exponent Mapping

Memory Register

1 1111111 1 111 1111111

1 xxxxxxx 1 000 xxxxxxx

0 xxxxxxx 0 111 xxxxxxx (xxxxxxx not all 1’s)

0 0000000 0 000 0000000 (xxxxxxx not all 0’s)

This mapping preserves both normal values and exceptional values. Note that
the mapping for all 1’s differs from that of F_floating load, because for S_floating
all 1’s is an exceptional value and for F_floating all 1’s is a normal value.

The S_floating store instruction reorders register bits on the way to memory and
does no checking of the low-order fraction bits. Register bits <61:59> and <28:0>
are completely ignored by the store instruction. The S_floating load instruction
does no checking of the input.

The S_floating store instruction does no checking of the data; the preceding
operation should have specified an S_floating result.

An S_floating datum is specified by its address A, the address of the byte
containing bit 0. The memory form of an S_floating datum is sign magnitude
with bit 31 the sign bit, bits <30:23> an excess-127 binary exponent, and bits
<22:0> a 23-bit fraction.

The value (V) of an S_floating number is inferred from its constituent sign (S),
exponent (E), and fraction (F) fields as follows:

1. If E=255 and F<>0, then V is NaN, regardless of S

2. If E=255 and F=0, then V = (-1)**S x Infinity

3. If 0 < E < 255, then V = (-1)**S x 2**(E-127) x (1.F)

4. If E=0 and F<>0, then V = (-1)**S x 2**(-126) x (0.F)

5. If E=0 and F=0, then V = (-1)**S x 0 (0)

Floating-point operations on S_floating numbers may take an arithmetic
exception for a number of different reasons, including invalid operations, overflow,
underflow, division by 0, and inexact results.

Note

Alpha implementations impose a significant performance penalty when
accessing S_floating operands that are not naturally aligned. (A naturally
aligned S_floating datum has 0 as the low-order two bits of its address)

T_floating
An IEEE double-precision, or T_floating, datum occupies 8 contiguous bytes in
memory starting on an arbitrary byte boundary. The bits are labeled from right
to left, 0 thru 63, as shown in Figure 3–13.
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Figure 3–13 T_floating Datum

015 14

S

Fraction Midl

:A

:A+2

:A+4

:A+6

Fraction Lo

Fraction Midh

Frac.Hi

4 3

Exponent

A T_floating operand occupies 64 bits in a floating register, arranged as shown in
Figure 3–14.

Figure 3–14 T_floating Register Format

063 62

S

48 47 32 31 16 15

Exp. Fraction Midh Fraction Midl Fraction Lo :Fx

52 51

Frac. Hi

The T_floating load instruction performs no bit reordering on input, nor does it
perform checking of the input data.

The T_floating store instruction performs no bit reordering on output. This
instruction does no checking of the data; the preceding operation should have
specified a T_floating result.

A T_floating datum is specified by its address A, the address of the byte
containing bit 0. The form of a T_floating datum is sign magnitude with bit
63, the sign bit, bits <62:52> an excess-1023 binary exponent, and bits <51:0> a
52-bit fraction.

The value (V) of a T_floating number is inferred from its constituent sign (S),
exponent (E), and fraction (F) fields as follows:

1. If E=2047 and F<>0, then V is NaN, regardless of S.

2. If E=2047 and F=0, then V = (-1)**S x Infinity.

3. If 0 < E < 2047, then V = (-1)**S x 2**(E-1023) x (1.F).

4. If E=0 and F<>0, then V=(-1)**S x 2**(-1022) x (0.F).

5. If E=0 and F=0, then V= (-1)**S x 0 (zero).

Floating-point operations on T_floating numbers may take an arithmetic
exception for a variety of reasons, including invalid operations, overflow,
underflow, division by zero, and inexact results.

Note

Alpha implementations will impose a significant performance penalty
when accessing T_floating operands that are not naturally aligned. (A
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naturally aligned T_floating datum has zero as the low-order three bits of
its address.)

Longword Integer Format in Floating-Point Unit
A longword integer operand occupies 32 bits in memory, arranged as shown in
Figure 3–15.

Figure 3–15 Longword Integer Datum

015 14

S Integer Hi

:A

:A+2

Integer Lo

A longword integer operand occupies 64 bits in a floating register, arranged as
shown in Figure 3–16.

Figure 3–16 Longword Integer Floating-Register Format

063 62

S

59 58 45 44 29 28

xxx Integer Hi Integer Lo 0 :Fx

61

I

There is no explicit longword load or store instruction; the S_floating load/store
instructions are used to move longword data into or out of the floating registers.
The register bits <61:59> are set by the S_floating load exponent mapping. They
are ignored by S_floating store. They are also ignored in operands of a longword
integer operate instruction, and they are set to 000 in the result of a longword
operate instruction.

The register format bit <62>, "I", in Figure 3–16 is part of the Integer Hi field
in Figure 3–15 and represents the high-order bit of that field. Bits <58:45> of
Figure 3–16 are the remaining bits of the Integer Hi field of Figure 3–15.

Note

Alpha implementations will impose a significant performance penalty
when accessing longwords that are not naturally aligned. (A naturally
aligned longword datum has zero as the low-order two bits of its address).

Quadword Integer Format in Floating-Point Unit
A quadword integer operand occupies 64 bits in memory, arranged as shown in
Figure 3–17.
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Figure 3–17 Quadword Integer Datum

015 14

S

Integer Midl

:A

:A+2

:A+4

:A+6

Integer Lo

Integer Midh

Integer Hi

A quadword integer operand occupies 64 bits in a floating register, arranged as
shown in Figure 3–18.

Figure 3–18 Quadword Integer Floating-Register Format

063 62

S

48 47 32 31 16 15

Integer Hi Integer Midh Integer Midl Integer Lo :Fx

There is no explicit quadword load or store instruction; the T_floating load/store
instructions are used to move quadword data into or out of the floating registers.

The T_floating load instruction performs no bit reordering on input. The T_
floating store instruction performs no bit reordering on output. This instruction
does no checking of the data; when used to store quadwords, the preceding
operation should have specified a quadword result.

Note

Alpha implementations will impose a significant performance penalty
when accessing quadwords that are not naturally aligned. (A naturally
aligned quadword datum has zero as the low-order three bits of its
address.)

Data Types with No Hardware Support

• Octaword

• H_floating

• D_floating (except load/store and convert to/from G_floating)

• Variable Length Bit Field

• Character String

• Trailing Numeric String

• Leading Separate Numeric String

• Packed Decimal String
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3.3 Alpha Registers
The following prargraphs describe the registers defined by the Digital Alpha AXP
architecture.

3.3.1 Program Counter Register
The Program Counter (PC) is a special register that addresses the instruction
stream. As each instruction is decoded, the PC is advanced to the next sequential
instruction. This is referred to as the "updated PC." Any instruction that uses the
value of the PC uses the updated PC. The PC includes only bits <63:2> with bits
<1:0> treated as RAZ/IGN. This quantity is a longword-aligned byte address. The
PC is an implied operand on conditional branch and subroutine jump instructions.
The PC is not accessible as an integer register.

3.3.2 Processor Status Register
The Processor Status (PS) is a special register that contains the current status
of the processor. It can be read by all CALL_PAL RD_PS routine. The PS<SW>
field can be written by a CALL_PAL WR_PS SW routine.

3.3.3 Integer Registers
There are 32 integer registers (RO through R31), each 64 bits wide.

Certain of the registers are assigned special meaning by the Alpha architecture:

• R30 is the stacked pointer (SP). SP contains the address of the top of the
stack in the current mode.

Certain PALcode (for example, REI) uses R30 as an implicit operand. During
such operations, the address value in R30, interpreted as an unsigned 64 bit
integer, decreases (predecrements) when items are pushed onto the stack,
and increases (postincrements) when they are popped from the stack. After
pushing (writing) an item to the stack, SP points to that item.

• R31 When R31 is specified as a register source operand, a 0-valued operand
is supplied. With one exemption, results of an instruction that specifies
R31 as a destination operand are discarded and it is UNPREDICTABLE
whether the other destination operands (implicit and explicit) are changed
by the instructions. In this case, it is implementation-dependent to what
extent the instruction is actually executed once it has been fetched. It is also
UNPREDICTABLE whether exceptions are signaled during the execution
of such an instruction. Note, however, that exceptions associated with the
instruction fetch of such an instruction are always signaled. The exemption to
the above rule is for the following branch instructions when R31 is specified
as the Ra operand: the unconditional branch (BR and BSR) and jump to
subroutine (JMP, JSR, RET, and JSR_COROUTINE) instructions. These
instructions execute normally and update the PC with the target virtual
address when R31 is specified as the Ra operand – of course no PC value can
be saved in R31. Applying the rule above, there are some interesting cases
involving R31 as a destination.

1. STx_C R31, disp(Rb) although this might seem like a good way to 0
out a shared location and reset the lock_flag, this instruction causes
the lock_flag and virtual location {Rbv + SEXT(disp)} to become
UNPREDICTABLE.
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2. LDx_L R31,disp(Rb) this instruction produces no useful result because
it causes both lock_flag and locked_physical_ address to become
UNPREDICTABLE.

3.3.4 Floating-point Registers
There are 32 floating-point registers (FO through F31), each 64 bits wide.

When F31 is specified as a register source operand, a true 0-valued operand is
supplied.

Results of an instruction that specifies F31 as a destination operand are discarded
and it is UNPREDICTABLE whether the other destination operands (implicit
and explicit) are changed by the instruction. In this case, it is implementation-
dependent to what extent the instruction is actually executed once it has been
fetched. It is also UNPREDICTABLE whether exceptions are signaled during the
execution of such an instruction. Note, however, that exceptions associated with
the instruction fetch of such an instruction are always signaled.

A floating-point instruction that operates on single-precision data reads all
bits <63:0> of the source floating-point register. A floating-point instruction
that produces a single-precision result writes all bits <63:0> of the destination
floating-point register.

3.3.5 Lock Registers
There are two per-processor registers associated with the LDx_L and STx_C
instructions, the lock_flat and the locked_physical_address register.

3.3.6 Alpha Internal Processor Registers
There are a number of internal processor registers with specialized uses that are
available only to privileged software via the MTPR and MFPR PALcode routines.

3.3.7 Optional Registers
Some Alpha implementations may include optional memory prefetched or VAX
compatibility processor registers.

Memory Prefetched Registers
If the prefetched instructions FETCH and FETCH_M are implemented, then an
implementation will include two sets of state prefetch registers used by those
instructions. These registers are not directly accessible by software and are just
listed here for completeness.

VAX Compatibility Registers
If the VAX compatibility instructions RC and RS are implemented, then an
implementation will include the intr-flag register.

3.4 Instruction Formats
There are five basic Digital Alpha instruction formats as listed below:

• Memory

• Branch

• Operate

• Floating-point Operate

• PALcode
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All instruction formats are 32 bits long with a 6-bit major opcode field in bits
<31:26> of the instruction.
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4
The DECchip TM 21064 CPU chip

The 21064 central processing unit is a superscalar, superpipelined
implementation of the Digital Alpha AXP architecture. This 431-pin CPU
is fabricated in complementary metal-oxide semiconductor technology and
packaged in a 24x24, 100-mil pin pitch pin grid array (PGA). The 21064 features
include the following:

• Supports Alpha instruction and data types for byte, word, longword,
quadword, DEC floating point data types ( F_floating, D_floating, and
G_floating) and IEEE floating point data types ( S_floating, and T_floating).
The architecturally optional instructions RCC is also implemented.

• Contains a demand-page memory management unit that in conjunction
with properly written privileged architecture library code (PALcode) stored
in firmware FEPROMs, fully implements the Alpha memory management
architecture. The translation buffer can be used with alternative PALcode to
implement a different page table structure.

• Contains on-chip, 8-entry, instruction stream translation buffer for mapping
8 KB physical pages and a 4-entry instruction stream translation buffer
for mapping groups of up to 512 contiguous 8KB pages. It also contains a
32-entry data stream translation buffer for mapping 8-KB physical pages, and
a 4-entry data stream translation buffer for mapping aligned groups of 512
contiguous 8-KB pages.

• Implements a dynamic branch prediction algorithm using a 2 KB x 1-bit
branch history table. An internal control register bit selects one of these two
algorithms.

• Contains an integer execution unit that supports scaled add instructions
that improve the performance of address calculations for longword- and
quadword-length array elements.

• Uses a 6.6 ns cycle time as the DECchip’s nominal frequency.

• Provides low average cycles per instruction (CPI). The 21064 can issue two
Alpha instructions in a single cycle, minimizing the average CPI. Branch
history tables minimize the branch latency, further reducing the average CPI.

• Contains a fully pipelined floating point execution unit capable of executing
both DEC and IEEE floating-point instructions. The floating point unit can
accept a new instruction every cycle, except for divide instructions. The
operate-to-operate latency for all instructions other than divide is six CPU
cycles. The latencies for single and double precision divide instructions are 17
and 59 cycles, respectively.

• Contains an on-chip 8 KB direct mapped, write-through physical data cache
with a block size of 32 bytes.
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• Contains an on-chip 8 KB direct-mapped, read-only physical instruction cache
with a block size of 32 bytes (managed as a virtual cache).

• A single-entry stream buffer to prefetch 32-byte instruction cache blocks.

• An on-chip 4 entry (32 bytes/entry) write buffer with byte merging capability.

The 21064 CPU chip consists of three independent execution units: integer
execution unit (E-box), floating point unit (F-box), and the address generation,
memory management, write buffer and bus interface unit (A-box). Each unit can
accept at most one instruction per cycle, however if code is properly scheduled,
this CPU chip can issue two instructions to two independent units in a single
cycle. A fourth box, the (I-box), is the central control unit. It issues instructions,
maintains the pipeline, and performs all of the PC calculations.

4.1 I-box Internal Processor Registers
The primary function of the I-box is to issue instructions to the E-box, A-box,
and F-box. The I-box decodes two instructions in parallel and checks that the
required resources are available for both instructions. The following sections
describe the registers that facilitate this process.

4.1.1 Translation Buffer Tag Register (TB_TAG)
The TB_TAG register is a write-only register that holds the tag for the next TB
update operation in either the ITB or DTB. To insure the integrity of the TB, the
tag is written to a temporary register and not transferred to the ITB or DTB until
the ITB_PTE or DTB_PTE register is written. The entry to be written is chosen
at the time of the ITB_PTE or DTB_PTE write operation by a not-last-used
algorithm implemented in hardware.

The ITB_TAG register is written only while in PAL mode regardless of the state
of the HWE bit in the ICCSR IPR. The ITB_TAG format is shown in Figure 4–1
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Figure 4–1 TB_TAG Register Format

Small Page Format:

6
3

4
3

4
2

1
3

1
2

0
0

IGN VA[42..13] IGN

2
2

2
1

VA[42..22] IGN

GH = 11(bin) Format (DTB only):

6
3

4
3

4
2

0
0

IGN

4.1.2 Instruction Translation Buffer Page Table Entry Register (ITB_PTE)
The ITB PTE register is a read/write register representing the twelve ITB page
table entries. The first eight provide small-page (8K byte) translations while
the remaining four provide large-page (4M byte) translations. The entry to be
written is chosen by a not-last-used algorithm implemented in hardware. Writes
to the ITB_PTE use the memory-format bit positions as described in the Alpha
Architecture Reference Manual, except some fields are ignored.

To ensure the integrity of the ITB, the ITB’s tag array is updated from the
internal tag register when the ITB_PTE register is written. Reads of the ITB_
PTE require two instructions. First, a read from the ITB_PTE sends the PTE
data to the ITB_PTE_TEMP register.

Then, a second instruction reading from the ITB_PTE_TEMP register returns
the PTE entry to the register file. Reading or writing the ITB_PTE register
increments the TB entry pointer corresponding to the large/small page selection
indicated by the TB_CTL, which allows reading the entire set of ITB_PTE register
entries.

The ITB_PTE register is read and written in PAL mode only, regardless of the
state of the HWE bit in the ICCSR IPR. The format is shown in Figure 4–2.
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Figure 4–2 ITB_PTE Register Format

Write Format:
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1
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0
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0
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PFN[33..13] IGN IGN

3
4

3
3

1
3

PFN[33..13] RAZ

IGN

6
3

RAZ

1
2

U
R
E

S
R
E

E
R
E

K
R
E

0
7

0
6

0
5

A
S
M

0
3

IGN

0
1

0
0

A
S
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Read Format:

U
R
E

1
1

1
0

0
9

0
8

0
4

0
2

S
R
E

E
R
E

K
R
E

4.1.3 Instruction Cache Control and Status Register (ICCSR)
The ICCSR register contains various I-box hardware enables. The only
architecturally defined bit in this register is the floating point enable (FPE),
which enables floating-point instruction execution. When clear, all floating-
point instructions generate FEN exceptions. Most of this register is cleared by
hardware at reset. Fields not cleared include ASN, PC0, and PC1.

The HWE bit allows the special PAL instructions to execute in kernel mode.
This bit is intended for diagnostics or operating system alternative PAL routines
only. The HWE bit does not allow access to the ITB registers outside of PAL
mode. Therefore, some PALcode flows may require the PAL mode environment to
execute properly (for example, ITB fill). The format is shown in Figure 4–3 and
the register fields are described in Table 4–1.
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Figure 4–3 ICCSR Register Format

Write Format:
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Read Format:

6
3

ASN[5:0] [5:2]
F
P
E

I
C
1

H
W
E

D
I

B
H
E

J
S
E

B
P
E

V
A
X
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[2:0]
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[3:0]

PC
IGN

I
C
0

P
C
0

IGN
P
C
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1
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1
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B
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J
S
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V
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P
C
1

P
C
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R
A
Z
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P
E
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Table 4–1 ICCSR Bits

Field Type Description

FPE RW,0 If set, floating point instructions can be issued. If clear, floating
point instructions cause FEN exceptions.

MAP RW,0 If set, allows super page instruction stream memory mapping
of VPC<33:13> directly to physical PC<33:13> essentially
bypassing ITB for VPC addresses containing VPC<42:41>=2.
Super-page mapping is allowed in kernel mode only. The ASM
bit is always set. If clear, super-page mapping is disabled.

HWE RW,0 If set, allows the five PALRES instructions to be issued in
kernel mode. If cleared, attempted execution of PALRES
instructions while not in PALmode results in OPCDEC
exceptions. Use of HW_MTPR instruction to update the EXC_
ADDR IPR while in native mode is restricted to values with
bit<0> equal to 0. The combination of native mode and EXC_
ADDR<0> equal to 1 causes UNDEFINED behavior.

MAP RW,0 If set, allows super-page instruction stream mapping of
VPC<33:13> directly to physical PC<33:13> essentially
bypassing ITB for VPC addresses containing VPC <42:41>.
Super-page mapping is allowed in kernal mode only. The ASM
bit is always set. If clear, super-page mapping is disabled.

DI RW,0 If set, enables dual issue. If cleared, instructions can only
single issue.

BHE RW,0 Used with BPE. See Table 4–2 for programming information.

JSE RW,0 If set, enables the JSR stack to push return addresses. If
cleared, JSR stack is disabled.

BPE RW,0 Used with BHE. See Table 4–2 for programming information.

PIPE RW,0 If clear, causes all hardware-interlocked instructions to drain
the machine and waits for the write buffer to empty before
issuing the next instruction. Examples of instructions that
do not cause the pipe to drain include HW_MTPR, HW_REI,
conditional branches, and instructions that have a destination
register of R31. If set, pipeline proceeds normally.

PCMUX1 RW,0

PCMUX0 RW,0

PC1 RW,0 If clear, enables a performance counter 1 interrupt request after
212 events are counted. If set, enables a performance counter 1
interrupt request after 28 events are counted.

PC0 RW,0 If clear enables a performance counter 0 interrupt request after
216 events are counted. If set enables a performance counter 0
interrupt request after 212 events are counted.

ASN RW,0 Address Space Number field is used in conjunction with the
instruction cache (I-cache) in the 21064 to further qualify cache
entries and avoid some cache flushes. The ASN is written
to the instruction cache during fill operations and compared
with the instruction stream (Instruction stream) data on fetch
operations. Mismatches invalidate the fetch without affecting
the I-cache.

RES RW,0 The RES state bits are reserved by Digital and should not be
used by any software.

ICCSR<45:44> RW,0 When set, the performance counters will be enabled and will
increment. During normal operation, these bits should be
written with 0 in order to disable the preformance counters.
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Table 4–2 BHE, BPE Branch Prediction Selection

BPE BHE Prediction

0 X Not Taken

1 0 Sign of Displacement

1 1 Branch History Table

4.1.4 Instruction Translation Buffer Page Table Entry Temporary Register
(ITB_PTE_TEMP)

The ITB_PTE_TEMP register is a read-only holding register for instruction
translation buffer page table entry read data. Reads of the ITB_PTE require two
instructions to return the data to the register file. The first reads the ITB_PTE
register to the ITB_PTE_TEMP register. The second returns the ITB_PTE_TEMP
register to the integer register file. The ITB_PTE_TEMP register is updated on
all ITB accesses, both read and write. A read of the ITB_PTE to the ITB_PTE_
TEMP should be followed closely by a read of the ITB_PTE_TEMP to the register
file.

The ITB_PTE_TEMP register is read only while in PALmode, regardless of the
state of the HWE bit in the ICCSR IPR.

Figure 4–24 ITB_PTE_TEMP Register (ITB_PTE_TEMP)
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Table 4–3 ITB_PTE_TEMP Register Description

Field Description

34 ASM [read-only]

ASM

33:13 PFN [read-only]

PFN

12 URE [read-only]

URE

11 SRE [read-only]

SRE

(continued on next page)
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Table 4–3 (Cont.) ITB_PTE_TEMP Register Description

Field Description

10 ERE [read-only]

ERE

9 KRE [read-only]

KRE

4.1.5 Exception Address Register (EXC_ADDR)
The EXC_ADDR register is a read/write register used to restart the machine
after exceptions or interrupts. The EXC_ADDR register can be read and written
by software via the HW_MTPR instruction as well as directly by hardware. The
HW_REI instruction executes a jump to the address contained in EXC_ADDR.

The EXC_ADDR register is written by hardware after an exception to provide
a return address for PALcode. The instruction pointed to by the EXC_ADDR
register did not complete execution. Because the PC is longword aligned, the
least significant bit (LSB) of EXC_ADDR is used to indicate PAL mode to the
hardware. When the LSB is clear, the HW_REI instruction executes a jump to
native (non-PAL) mode, enabling address translation.

CALL_PAL exceptions load the EXC_ADDR with the PC of the instruction
following the CALL_PAL. This function allows CALL_PAL service routines to
return without needing to increment the value in EXC_ADDR.

This feature, however, requires careful treatment in PALcode. Arithmetic traps
and machine check exceptions can pre-empt CALL_PAL exceptions resulting in
an incorrect value being saved in the EXC_ADDR register. In the cases of an
arithmetic trap or a machine check exception, and only in these cases, EXC_
ADDR<1> takes on special meaning. PAL code servicing these two exceptions
should interpret a 0 in EXC_ADDR<1> as indicating that the PC in EXC_
ADDR<63:2> is too large by a value of 4 bytes and subtract 4 before executing
a HW_REI from this address. PALcode should interpret a 1 in EXC_ADDR<1>
as indicating that the PC in EXC_ADDR<63:2> is correct, and clear the value
of EXC_ADDR<1>. All other PALcode entry points, except reset, can expect
EXC_ADDR<1> to be 0.

This logic allows the following code sequence to conditionally subtract 4 from the
address in the EXC_ADDR register without use of an additional register. This
code sequence should be present in arithmetic trap and machine check flows only.

HW_MFPR Rx, EXC_ADDR ; read EXC_ADDR into GPR
SUBQ Rx, #2, Rx ; subtract 2 causing borrow if [1]=0
BIC Rx, #2, Rx ; clear [1]
HW_MTPR Rx, EXC_ADDR ; write back to EXC_ADDR

Note that bit<1> is undefined when the EXC_ADDR is read. The actual hardware
ignores this bit, however PALcode must explicitly clear this bit before it pushes
the exception address on the stack.

IPR Format:
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Figure 4–5 Exception Address Register (EXC_ADDR)
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Table 4–4 Exception Address Register Description

Field Description

63:2 PC [read/write]

PC

0 PAL [read/write]

Pal

4.1.6 Serial Line Clear Register (SL_CLR)
This write-only register clears the serial line interrupt request, the performance
counter interrupt request and the correctable read (CRD) interrupt request.
Therefore, the write of any data to the SL_CLR register clears the remaining
serial line interrupt request. The 21064 requires that the indicated bit be written
with a 0 to clear the selected interrupt source.

Figure 4–6 Serial Line Clear Register (SL_CLR)
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Table 4–5 Serial Line Clear Register Description

Field Description

32 SLC [write]

Clears the serial line interrupt request

15 PC0 [write]

Clears the performance counter 0 interrupt request

8 PC1 [write]

(continued on next page)
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Table 4–5 (Cont.) Serial Line Clear Register Description

Field Description

Clears the performance counter 1 interrupt request

2 CRD [write]

Clears the correctable read error interrupt request

4.1.7 Serial Line Receive Register (SL_RCV)
The serial line receive register contains a single read-only bit used with the
interrupt control registers and the SROMD_H and SROMCLK_H pins to provide an
on-chip serial line function.

Figure 4–7 Serial Line Receive Register (sl_rcv)
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Table 4–6 Serial Line Receive Register Description

Field Description

3 Receive [read-only]

The RCV bit is functionally connected to the SROMD_H pin after the instruction
cache is loaded from the external serial ROM. The RCV bit can be read to receive
external data one bit at a time under a software timing loop.

A serial line interrupt is requested on detection of any receive line transition that
sets the SL_REQ bit in the HIRR. Using a software timing loop, the RCV bit can
be read to receive data one bit at a time. The serial line interrupt can be disabled
by clearing the HIER register’s SL_ENA bit.

4.1.8 Instruction Translation Buffer Zap Register (ITBZAP)
Writing any value to this register invalidates all twelve ITB entries. It also resets
the not-last-used (NLU) pointer to its initial state. The ITBZAP register should
be written only in PAL mode.

4.1.9 Instruction Translation Buffer ASM (ITBASM)
Writing any value to this register invalidates all ITB entries in which the ASM
bit is equal to 0. The ITBASM register should be written only in PAL mode.

4.1.10 Instruction Translation Buffer IS Register (ITBIS)
Writing any value to this register invalidates all twelve ITB entries. It also resets
both not-last-used (NLU) pointers to their initial state. The ITBIS register should
be written only in PAL mode.
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4.1.11 Processor Status (PS)
The processor status register is a read/write register containing only the current
mode bits of the architecturally defined PS.

Figure 4–8 Processor State (PS) Register Format
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4.1.12 Exception Summary Register (EXC_SUM)
The exception summary register records the various types of arithmetic traps that
have occurred since the last time the EXC_SUM was written (cleared). When the
result of an arithmetic operation produces an arithmetic trap, the corresponding
EXC_SUM bit is set.

In addition, the register containing the result of that operation is recorded in
the exception register write mask IPR, as a single bit in a 64-bit field specifying
registers F31-F0 and I31-I0. This IPR is visible only through the EXC_SUM .
The EXC_SUM register provides a 1-bit window to the exception register write
mask. Each read to EXC_SUM shifts one bit in order F31-F0, then I31-I0. The
read also clears the corresponding bit. Therefore, the EXC_SUM must be read 64
times to extract the complete mask and clear the entire register.

Any write to EXC_SUM clears bits [8..2] and does not affect the write mask.

The write mask register bit clears three cycles after a read. Therefore, code
intended to read the register must allow at least three cycles between reads
to allow the clear and shift operation to complete in order to ensure reading
successive bits.
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Figure 4–9 Exception Summary Register (EXC_SUM)
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Table 4–7 Exception Summary Register Description

Field Description

33 MSK

Exception register write mask IPR window.

8 IOV

Indicates an Fbox convert to integer overflow or integer arithmetic overflow.

7 INE

Indicates a floating inexact error.

6 UNF

Indicates a floating point underflow.

5 FOV

Indicates a floating point overflow.

4 DZE

Indicates a divide by 0.

3 INV

Indicates an Invalid operation.

2 SWC

Indicates software completion possible. The bit is set after a floating-point
instruction containing the /S modifier completes with an arithmetic trap, if all
previous floating point instructions that trapped since the last MTPR EXC_SUM
also contained the /S modifier. The SWC bit is cleared whenever a floating point
instruction without the /S modifier completes with an arithmetic trap. The bit
remains cleared regardless of additional arithmetic traps, until the register is
written using an MTPR instruction. The bit is always cleared upon any MTPR
write to the EXC_SUM register.
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4.1.13 Privileged Architecture Library Base Register (PAL_BASE)
The PAL base register is a read/write register containing the base address for
PALcode. This register is cleared by hardware at reset.

Figure 4–10 PAL Base Address Register (PAL_BASE)
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Table 4–8 PAL Base Address Register Description

Field Description

33:14 Pal Base Address [read/write]

Privileged Architecture Library code base address

4.1.14 Hardware Interrupt Request Register (HIRR)
The hardware interrupt request register is a read-only register providing a record
of all currently outstanding interrupt requests and summary bits at the time of
the read. For each bit of the HIRR [5:0] there is a corresponding bit of the HIER
(hardware interrupt enable register) that must be set to request an interrupt. In
addition to returning the status of the hardware interrupt requests, a read of the
HIRR returns the state of the software interrupt and AST requests. Note that a
read of the HIRR may return a value of 0 if the hardware interrupt was released
before the read (passive release). The register guarantees that the HWR bit
reflects the status as shown by the HIRR bits. All interrupt requests are blocked
while executing in PAL mode.

The DECchipTM 21064 CPU chip 4–13



4.1 I-box Internal Processor Registers

Figure 4–11 Hardware Interrupt Request Register (HIRR)
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Table 4–9 Hardware Interrupt Request Register Description

Field Description

32:29 ASTRR <3:0> [read-only]

Corresponds to AST Request 3 to 0 (USEK).

28:14 SIRR [read-only]

Corresponds to Software Interrupt Request 15 to 1.

13 SLR [read-only]

Serial-line-interrupt request. See also SL_RCV, SL_XMIT, and SL_CLR.

12:10 HIRR<2:0> [read-only]

2 - Fbus+ interrupt
1 - Local I/O interrupt
0 - Hardware error interrupt

9 PC 0 [read-only]

Performance counter 0 interrupt request.

8 PC 1 [read-only]

Performance counter 1 interrupt request.

7:5 HIRR<5:3> [read-only]

5 - System event interrupt
4 - Interval timer interrupt
3 - Interprocessor interrupt

4 CRR [read-only]

CRD correctable read error interrupt request. This interrupt is cleared by the
SL_CLR register.

(continued on next page)

4–14 The DECchipTM 21064 CPU chip



4.1 I-box Internal Processor Registers

Table 4–9 (Cont.) Hardware Interrupt Request Register Description

Field Description

3 ATR [read-only]

Is set if any AST request and corresponding enable is set. This bit also requires
that the processor mode be equal to or higher than the request mode. In the
21064 chip, SIER<2> must also be set, to allow AST interrupt requests.

2 SWR [read-only]

Is set if any Software Interrupt Request and corresponding enable is set

1 HWR [read-only]

Is set if any Hardware Interrupt Request and corresponding enable is set

4.1.15 Software Interrupt Request Register (SIRR)
The software interrupt request register is a read/write register used to control
software interrupt requests. For each bit of the SIRR there is a corresponding
bit of the software interrupt enable register (SIER) that must be set to request
an interrupt. Reads of the SIRR return the complete set of interrupt request
registers and summary bits. (See Section 4.1.14 for details.) All interrupt
requests are blocked while executing in PAL mode. The SIRR format is shown in
Figure 4–12.

Figure 4–12 SIRR Register Format
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4.1.16 Asynchronous Trap Request Register (ASTRR)
The asynchronous trap request register is a read/write register. It contains bits
to request AST interrupts in each of the processor modes. In order to generate an
AST interrupt, the corresponding enable bit in the ASTER must be set and the
processor must be in the selected processor mode or higher privilege as described
by the current value of the PS CM bits. In addition, AST interrupts are enabled
in the 21064 processor only if SIER<2> is set.
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This process provides a mechanism to lock out AST requests over certain IPL
levels. All interrupt requests are blocked while executing in PAL mode. Reads of
the ASTRR return the complete set of interrupt request registers and summary
bits. (See Section 4.1.14 for details.) Figure 4–13 shows the ASTRR register
format.

Figure 4–13 ASTRR Register Format
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4.1.17 Hardware Interrupt Enable Register (HIER)
The hardware interrupt enable register is a read/write register. It is used to
enable corresponding bits of the HIRR requesting interrupt. The PC0, PC1, SLE,
and CRE bits of this register enable the performance counters, serial line and
correctable read interrupts. There is a one-to-one correspondence between the
interrupt requests and enable bits. As with the reads of the interrupt request
IPRs, reads of the HIER return the complete set of interrupt enable registers.
(See Section 4.1.14 for details.) Figure 4–14 shows the HIER register format.
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Figure 4–14 HIER Format

Write Format:
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4.1.18 Software Interrupt Enable Register (SIER)
The software interrupt enable register is a read/write register. It is used to
enable corresponding bits of the SIRR requesting interrupts. There is a one-to-
one correspondence between the interrupt requests and enable bits. As with the
reads of the interrupt request IPRs, reads of the SIER return the complete set of
interrupt enable registers. See Section 4.1.14 for details. Figure 4–15 shows the
SIER register format.

Figure 4–15 SIER Format
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Read Format:
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4.1.19 Asynchronous System Trap Enable Register (ASTER)
The AST interrupt enable register is a read/write register. It is used to enable
corresponding bits of the ASTRR requesting interrupts. There is a one-to-one
correspondence between the interrupt requests and enable bits. As with the
reads of the interrupt request IPRs, reads of the ASTER return the complete set
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of interrupt enable registers. (See HIRR Section 4.1.14 for details.) Figure 4–16
shows the ASRTER format.

Figure 4–16 ASTER Format
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4.1.20 Serial Line Transmit Register (SL_XMIT)
The serial line transmit register contains a single write-only bit used with the
interrupt control registers and the SROMD_H and SROMCLK_H pins to provide an
on-chip serial line function.

Figure 4–17 Serial Line Transmit Register (SL_XMIT)
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Table 4–10 Serial Line Transmit Register Description

Field Description

4 TRANSMIT [write-only]

The TMT bit is functionally connected to the SROMCLK_H pin after the
instruction cache is loaded from the external serial ROM. The TMT bit can
be written to transmit data off the chip one bit at a time under a software timing
loop.

4–18 The DECchipTM 21064 CPU chip



4.2 A-box Internal Processor Registers

4.2 A-box Internal Processor Registers
The A-box in the 21064 contains six major sections:

• Address translation data path

• Load silo

• Write buffer

• Data cache interface

• External bus interface unit (BIU)

• Internal processor registers

The address translation data path has a displacement adder that generates
the effective virtual address for the load and store instructions and a pair
of translation buffers that generate the corresponding physical address. The
following sections describe the registers contained within the 21064 processor’s
A-box unit.

4.2.1 Translation Buffer Control Register (TB_CTL)
The TB_CTL register is write-only.

Figure 4–18 TB Control Register (TB_CTL)
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Table 4–11 TB Control Register Description

Field Description

6:5 granularity hint [write-only]

The granularity hint (GH) field selects between the 21064 TB page mapping
sizes. The 21064 CPU provides two sizes in the ITB and all fours sizes in the
DTB. When only two sizes are provided, the large-page-select (GH=11(bin)) field
selects the largest mapping size (512 * 8 Kbytes) and all other values select the
smallest (8-Kbyte) size. The GH field affects both reads and writes to the ITB
and DTB in the 21064.

4.2.2 Data Translation Buffer Page Table Entry Register (TB_PTE)
The DTB PTE register is a read/write register representing the 32-entry small-
page and 4-entry large-page DTB page table entries. The entry to be written
is chosen by a not-last-used algorithm implemented in hardware and the value
in the DTB_CTL register. Writes to the DTB_PTE use the memory format bit
positions as described in the Alpha Architecture Reference Manual except some
fields are ignored. In particular the valid bit is not represented in hardware.
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To ensure the integrity of the DTBs, the DTB’s tag array is updated from the
internal tag register when the DTB_PTE register is written. Reads of the DTB_
PTE require two instructions. First, a read from the DTB_PTE sends the PTE
data to the DTB_PTE_TEMP register. Then a second instruction reading from
the DTB_PTE_TEMP register returns the PTE entry to the register file. Reading
or writing the DTB_PTE register increments the TB entry pointer of the DTB
indicated by the DTB_CTL IPR. This allows the entire set of DTB PTE entries to
be read.

Figure 4–19 DTB_PTE Register Format
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4.2.3 Data Translation Buffer Page Table Entry Temporary Register
(DTB_PTE_TEMP)

The DTB_PTE_TEMP register is a read-only holding register for DTB_PTE read
data. Reads of the DTB_PTE require two instructions to return the data to the
register file. The first reads the DTB_PTE register to the DTB_PTE_TEMP
register. The second returns the DTB_PTE_TEMP register to the integer register
file.
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Figure 4–20 DTB_PTE_TEMP Register Format
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4.2.4 Memory Management Control and Status Register (MM_CSR)
When data-stream faults occur, the information about the fault is latched and
saved in the MM_CSR register. The VA and MMCSR registers are locked against
further updates until software reads the VA register. Palcode must explicitly
unlock this register whenever its entry point was higher in priority than a DTB
miss. MM_CSR bits are modified only by hardware when the register is not
locked and a memory management error or a DTB miss occurs. The MM_CSR is
unlocked after a reset.

Figure 4–21 MM CSR (MM_CSR)

0123456789
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

OPCODE (RO)

RA (RO)

FOW (RO)

FOR (RO)

ACV (RO)

WR (RO)

Table 4–12 MM CSR Description

Field Description

14:9 OPCODE [read-only]

(continued on next page)
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Table 4–12 (Cont.) MM CSR Description

Field Description

Opcode field of the faulting instruction.

8:4 RA [read-only]

Ra field of the faulting instruction.

3 FOW [read-only]

Set if reference was a read and the PTE’s FOR bit was set.

2 FOR [read-only]

Set if reference was a read and the PTE’s FOR bit was set.

1 ACV [read-only]

Set if reference caused an access violation.

0 WR [read-only]

Set if reference that caused error was a write.

4.2.5 Virtual Address Register(VA)
When data-stream faults or DTB misses occur the effective virtual address
associated with the fault or miss is latched in the read-only VA register. The VA
and MMCSR registers are locked against further updates until software reads the
VA register. The VA IPR is unlocked after reset. Palcode must explicitly unlock
this register whenever its entry point was higher in priority than a DTB miss.

4.2.6 Data Translation Buffer Zap Register (DTBZAP)
A write of any value to this IPR invalidates all 32 small-page and four large-
page DTB entries. A write also resets the NLU pointer to its initial state. The
DTBZAP is a pseudo register.

4.2.7 Data Translation Buffer ASM Register (DTBASM)
A write of any value to this IPR invalidates all 32 small-page and four large-page
DTB entries in which the ASM bit is equal to 0. The DTBASM is a pseudo
register.

4.2.8 Data Translation Buffer Invalidate Signal Register (DTBIS)
Any write to this pseudo register will invalidate the DTB entry that maps the
virtual address held in the integer register. The integer register is identified by
the Rb field of the HW_MTPR instruction, used to perform the write.

4.2.9 Flush Instruction Cache Register (FLUSH_IC)
A write of any value to this pseudo-IPR flushes the entire instruction cache.

4.2.10 Flush Instruction Cache ASM Register (FLUSH_IC_ASM)
In the 21064 CPU, a write of any value to this pseudo-IPR invalidates all
instruction cache blocks in which the ASM bit is clear.
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4.2.11 A-box Control Register (A-BOX_CTL)
The A-box control register directs the actions of the 21064 processor’s A-box unit.

Figure 4–22 A-box Control (Abox_CTL)
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Table 4–13 A-box Control Description

Field Description

11 DC_FHIT [write-only]

D-cache force hit. When set, this bit forces all data-stream references to hit in
the data cache. This bit takes precedence over DC_EN, for example, when DC_
FHIT is set and DC_EN is clear all data-stream references hit in the data cache.

10 DC_EN [write-only]

D-cache enable. When clear, this bit disables and flushes the D-cache. When set,
this bit enables the D-cache.

9 MBZ

8 NCACHE_NDISTURB [write-only]

When set, any reference to non-cacheable memory space will not cause an
arbitrary invalidation of a primary D-cache location. This should be set.

7 STC_NORESULT [write-only]

Must be cleared

6 EMD_EN [write-only]

Limited hardware support is provided for big endian data formats by way of bit
<6> of the A-box_CTL register. When set, this bit, inverts physical address bit
<2> for all D-stream references. It is intended that chip endian mode be selected
during initialization PALcod only.

(continued on next page)
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Table 4–13 (Cont.) A-box Control Description

Field Description

5 SPE_2 [write-only]

This bit, when set, enables one-to-one super-page mapping of D-stream virtual
addresses with VA<33:13>, if virtual address bits VA<42:41> = 2. Virtual address
bits VA<40:34> are ignored in this translation. Access is only allowed in kernel
mode.

4 SPE_1 [write-only]

This bit, when set, enables one-to-one super-page mapping of D-stream virtual
addresses with VA<42:30> = 1FFE(Hex) to physical addresses with PA<33:30> =
0(Hex). Access is only allowed in kernel mode.

3 IC_SBUF_EN [write-only]

I-cache stream buffer enable. When set, this bit enables operation of a single
entry I-cache stream buffer.

2 CRD_EN [write-only]

Corrected read data interrupt enable. When this bit is set the A-box generates
an interrupt request whenever a pin bus transaction is terminated with a cAck_h
code of SOFT_ERROR.

1 MCHK_EN [write-only]

Machine Check Enable. When this bit is set the A-box generates a machine
check when errors (which are not correctable by the hardware) are encountered.
When this bit is cleared, uncorrectable errors do not cause a machine check, but
the BIU_STAT, DC_STAT, BIU_ADDR, FILL_ADDR and DC_ADDR registers are
updated and locked when the errors occur.

0 WD_DIS [write-only]

Write Buffer unload Disable. When set, this bit prevents the write buffer from
sending write data to the BIU. It should be set for diagnostics only.

4.2.12 Alternate Procssor Mode Register (ALT_MODE)
ALT_MODE is a write-only internal processor register. The AM field specifies
the alternate processor mode used by HW_LD and HW_ST instructions that have
their ALT bit (bit 14) set. The format of the register is shown in Figure 4–23.

Figure 4–23 ALT_MODE Register Format6
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Table 4–14 ALT Mode

ALT_MODE[4..3] Mode

0 0 Kernel

0 1 Executive

1 0 Supervisor

1 1 User

4.2.13 Cycle Counter Register
The 21064 supports a cycle counter as described in the Alpha Architecture
Referencs Manual. This counter, when enabled, increments once for each CPU
cycle. HW_MTPR Rn,CC writes CC<63..32> with the value held in Rn<63..32>,
and CC<31..0> are not changed. This register is read by the RCC instruction
defined in the Alpha Architecture Reference Manual.

4.2.14 Cycle Counter Control Register (CC_CTL)
The cycle counter register is a write-only IPR. HW_MTPR Rn,CC_CTL writes
CC<31:0> with the value held in Rn<31:0>, and CC<63:32> are not changed.
CC<3:0> must be written with 0. If Rn<32> is set then the counter is enabled,
otherwise the counter is disabled.
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4.2.15 Bus Interface Control Unit Register (BIU_CTL)
The BIU_CTL register directs the actions of the bus interface unit.

Figure 4–24 Bus Interface Control Unit Register (ITB_PTE_TEMP)
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Table 4–15 Bus Interface Control Unit Register Description

Field Description

43 BC_BURST_ALL [write-only]

42:40 BC_BURST_SPD [write-only]

39 MBZ [write-only]

38 SYS_WRAP [write-only]

37 BYTE_PARITY [write-only]

36 BAD_DP [write-only]

Bad Data Parity - When set, BAD_DP causes the 21064 CPU to invert the value
placed on bits <0>,<7>,<14> and <21> of the check_h<27:0> field during off-chip
writes. This produces bad parity when the 21064 CPU is in parity mode, and bad
check bit codes when the CPU is in EDC mode.

35:32 BC_PA_DIS [write-only]

Backup cache physical address disable - This 4-bit field may be used to prevent
the CPU chip from using the external cache to service reads and writes based on
the quadrant of physical address space which they reference. Table 4–17 shows
the correspondence between this bit field and the physical address space.

When a read or write reference is presented to the bus interface unit (BIU),
the values of BC_PA_DIS, BC_ENA, and physical address bits <33:32> together
determine whether or not to try using the external cache to satisfy the reference.
If the external cache is not to be used for a given reference, the bus interface
unit does not probe the tag store and makes the appropriate system request
immediately.

The value of BC_PA_DIS has no impact on which portions of the physical address
space may be cached in the primary caches. System components control this
through the RDACK field of the pin bus.

BC_PA_DIS is not initialized by a reset.

31 BAD_TCP [write-only]

BAD Tag Control Parity - When set, BAD_TCP causes the 21064 CPU to write
bad parity into the tag control RAM whenever it does a fast external RAM write.

(continued on next page)

4–26 The DECchipTM 21064 CPU chip



4.2 A-box Internal Processor Registers

Table 4–15 (Cont.) Bus Interface Control Unit Register Description

Field Description

30:28 BC_SIZE [write-only]

Backup Cache Size - This field is used to indicate the size of the external cache.
BC_SIZE is not initialized by a reset and must be explicitly written before
enabling the backup cache. (See Table 4–16 for the encodings.)

27:13 BC_WE_CTL[15:1] [write-only]

Backup Cache Write Enable Control. This field controls the timing of the write
enable and chip enable pins during writes into the data and tag control RAMs.
It consists of 15 bits, where each bit determines the value placed on the write
enable and chip enable pins during a given CPU cycle of the RAM write access.

When a given bit of BC_WE_CTL is set, the write enable and chip enable pins
are asserted during the corresponding CPU cycle of the RAM access. BC_WE_
CTL<0> (bit 13 in BIU_CTL) corresponds to the second cycle of the write access,
BC_WE_CTL<1> (bit 14 in BIU_CTL) to the third CPU cycle, and so on. The
write enable pins are never asserted in the first CPU cycle of a RAM write
access.

Unused bits in the BC_WE_CTL field must be written with 0s.

BC_WE_CTL is not initialized on reset and must be explicitly written before
enabling the external backup cache.

12 DELAY_WDATA [write-only]

DELAY_DATA

11:8 BC_WR_SPD [write-only]

Backup cache write speed. This field indicates to the bus interface unit the write
cycle time of the RAMs used to implement the off-chip external cache, (Backup
cache on the CPU module), measured in CPU cycles. It should be written with a
value equal to one less the write cycle time of the external cache RAMs.

Access times for writes must be in the range 16..2 CPU cycles, which means the
values for the BC_WR_SPD field are in the range of 15..1.

BC_WR_SPD is not initialized on reset and must be explicitly written before
enabling the external cache.

7:4 BC_RD_SPD [write-only]

Backup (external) cache read speed. This field indicates to the bus interface unit
the read access time of the RAMs used to implement the off-chip external cache,
measured in CPU cycles. This field should be written with a value equal to one
less the read access time of the external cache RAMs.

Access times for reads must be in the range 16..3 CPU cycles, which means the
values for the BC_RD_SPD field are in the range of 15..2.

BC_RD_SPD are not initialized on reset and must be explicitly written before
enabling the external cache.

3 BC_FHIT [write-only]

Backup cache force hit. (This cache is external to the 21064 chip.) When this bit
and BC_EN are set, all pin bus READ_BLOCK and WRITE_BLOCK transactions
are forced to hit in the backup cache. Tag and tag control parity are ignored
when the BIU operates in this mode. BC_EN takes precedence over BC_FHIT.
When BC_EN is clear and BC_FHIT is set, no tag probes occur and external
requests are directed to the CREQ_H pins.

Note that the BC_PA_DIS field takes precedence over the BC_FHIT bit.

2 OE [write-only]

(continued on next page)
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Table 4–15 (Cont.) Bus Interface Control Unit Register Description

Field Description

Output enable - When this bit is set, the 21064 CHP chip does not assert its chip
enable pins during RAM write cycles, thus enabling these pins to be connected to
the output enable pins of the cache RAMs.

1 EDC [write-only]

Error detection and correction. When this bit is set, the 21064 CPU chip
generates/expects EDC on the CHECK_H pins. When this bit is clear the CPU
chip generates/expects parity on four of the CHECK_H pins.

0 BC_ENA [write-only]

External cache enable. When clear, this bit disables the external cache. When
the external cache is disabled, the BIU does not probe the external cache
tag store for read and write references; it initiates a request on CREQ_H
immediately.

The BC_SIZE bits are interpreted as shown in Table 4–16.

Table 4–16 Backup Cache Size

BC_SIZE bits Backup Cache Size

0 0 0 128 kbytes

0 0 1 256 kbytes

0 1 0 512 kbytes

0 1 1 1 Mbytes

1 0 0 2 Mbytes

1 0 1 4 Mbytes

1 1 0 8 Mbytes

The BC_PA_DIS field is interpreted as shown in Table 4–17.

Table 4–17 BC_PA_DIS

BIU_CTL Bits Physical Address

<32> PA[33..32] = 0

<33> PA[33..32] = 1

<34> PA[33..32] = 2

<35> PA[33..32] = 3

4.3 Privileged Architecture Library Temporary Registers
(PAL_TEMPs)

The 21064 contains 32 registers that provide temporary storage for PALcode.
These registers are accessible through HW_MXPR instructions.
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4.3.1 Data Cache Status Register (DC_STAT)
The DC_STAT is a read-only internal processor register for diagnostic use only.

When an external EDCor parity error is recognized during a primary cache fill
operation, the DC_STAT register is locked against further updates. If the cache
fill was due to data stream activity, PALcode may use the DC_STAT contents in
conjunction with information latched elsewhere to recover from some single-bit
EDC errors. DC_STAT is unlocked when DC_ADDR is read. The format of the
DC_STAT register is shown in Figure 4–25.

Figure 4–25 DC_STAT Register Format
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Table 4–18 Data cache Status Register

Field Type Description

DC_HIT RO Data cache hit - This bit indicates whether the last load or
store instruction processed by the A-box hit (DC_HIT set) or
missed (DC_HIT clear) the data cache. In the 21064 CPU,
loads that miss the data cache may be completed without
requiring external reads. that is, pending fill or pending
store hits.

SEO RO Second Error Occurred. Set when an error that normally
locks the DC_STAT register occurs while the DC_STAT
register is already locked.

The other DC_STAT bit (Table 4–19) following bits are meaningful only if the
FILL_EDC or FILL_DPERR bit in the BIU_STAT register is set.
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Table 4–19 Data cache status Error Modifiers

Field Type Description

RA RO This bit is the Ra field of the instruction that caused the
error.

INT RO Integer, When set, indicates an integer load or store.

LW RO Longword, When set, indicates that the data length of the
load or store was longword.

VAX_FP RO VAX floating-point, When INT is clear, this bit is set to
indicate that a VAX floating-point format load or store
caused the error.

LOCK RO Lock, This bit is set to indicate that the error stemmed from
a LDLL, LDQL, STLC, or STQC instruction.

STORE RO Store - This bit is set to indicate that the error stemmed
from a store instruction.
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4.3.2 Bus Interface Unit Status Register (BIU_STAT)
BIU_STAT is a read-only internal processor register.

When the BIU_HERR, BIU_SERR, BC_TPERR, or BC_TCPERR, is set, BIU_
STAT<6:0> are locked against further updates; the address associated with the
error is latched and locked in the BIU_ADDR register. BIU_STAT<6:0> and the
BIU_ADDR are also spuriously locked when a parity error or an uncorrectable
EDC error occurs during a primary cache fill operation. BIU_STAT<7:0> and
BIU_ADDR are unlocked when the BIU_ADDR register is read.

When FILL_EDC or BIU_DPERR is set, BIU_STAT<13:8> are locked against
further updates; the address associated with the error is latched and locked in
the FILL_ADDR register. BIU_STAT<14:8> and FILL_ADDR are unlocked when
the FILL_ADDR register is read.

BIU_STAT is not unlocked or cleared by a reset and needs to be explicitly cleared
by PALcode. The BIU_STAT register format is shown in Figure 4–26.

Figure 4–26 BIU_STAT Register Format

63 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RAZ RO RO RO RO RO RO RO RO

BIU_HERR

BIU_SERR

BC_TPERR

BC_TCPERR

BIU_CMD

FATAL1

FILL_EDC

FILL_DPERR

FILL_IRD

FILL_QW

FATAL2

RO RO RO
R
A
Z

BIU_STAT
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Table 4–20 BIU STAT

Field Type Description

BIU_HERR RO Hard Error, When set, indicates that an external cycle
was terminated with the CACK_H pins indicating HARD_
ERROR.

BIU_SERR RO Soft Error, When set, indicates that an external cycle
was terminated with the CACK_H pins indicating SOFT_
ERROR. Note that this should never occur on a DEC 4000
system.

BC_TPERR RO Backup Cache Tag Parity Error, When set, indicates that a
external cache tag probe encountered bad parity in the tag
address RAM.

BC_TCPERR RO Backup Cache Tag Control Parity Error, When set, indicates
that an external cache tag probe encountered bad parity in
the tag control RAM.

BIU_CMD RO Bus Interface Unit CMD, This field latches the cycle type
on the CREQ_H pins when a BIU_HERR, BIU_SERR, BC_
TPERR, or BC_TCPERR error occurs.

BIU_SEO RO Bus Interface Unit SEO, When set, indicates one of two
things: (1) that an external cycle was terminated with the
CACK_H pins indicating a HARD_ERROR or (2) that an
external cache tag probe encountered bad parity in the tag
address RAM or the tag control RAM while BIU_HERR,
BIU_SERR, BC_TPERR, or BC_TCPERR was set.

FILL_EDC RO EDC Error, When set, indicates that primary cache fill data
received from outside the CPU chip contained an EDC error.

FILL_DPERR RO Fill Parity Error, When set, indicates that the BIU received
data with a parity error from outside the CPU chip while
performing either a data cache or instruction cache fill.
FILL_DPERR is meaningful only when the CPU chip is in
parity mode, as opposed to EDC mode.

FILL_IRD RO This bit is meaningful only when either FILL_EDC or
FILL_DPERR is set. When set, FILL_IRD indicates that
the error that caused FILL_EDC or FILL_DPERR to set
occurred during an instruction cache fill. When cleared, this
bit indicates that the error occurred during a data chase fill.

FILL_QW RO This field is meaningful only when either FILL_EDC or
FILL_DPERR is set. FILL_QW identifies the quadword
within the hexaword primary cache fill block that caused
the error. FILL_QW can be used with FILL_ADDR<33:5> to
get the complete physical address of the bad quadword.

FILL_SEO RO Fill SEO, When set, indicates that (1) a primary cache fill
operation resulted in either an uncorrectable EDC error or
in a parity error while FILL_EDC or (2) FILL_DPERR was
already set.

4.3.3 Bus Interface Unit Address Register (BIU_ADDR)
This read-only register contains the physical address associated with errors
reported by BIU_STAT<7:0>. BIU_ADDRs contents are meaningful only when
BIU_HERR, BIU_SERR, BC_TPERR, or BC_TCPERR are set. Reads of BIU_
ADDR unlock both BIU_ADDR and BIU_STAT<7:0>.
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In the 21064 CPU, BIU_ADDR<33:5> contain the values of ADR_H<33:5>
associated with the pin bus transaction which resulted in the error indicated
in BIU_STAT<7:0>.

In the 21064, if the BIU_CMD field of the BIU_STAT register indicates that
the transaction that received the error was READ_BLOCK or LDx/L. The state
of BIU_STAT<4:2> is unpredictable. If the BIU_CMD field of the BIU_STAT
register encodes any pin bus command other than READ_BLOCK or LDx/L, then
BIU_ADDR<4:2> contains 0s. BIU_ADDR<63:34> and BIU_ADDR<1:0> always
read as 0.

4.3.4 Fill Address Register (FILL_ADDR)
This read-only register contains the physical address associated with errors
reported by BIU_STAT<14:8>. Its contents are meaningful only when FILL_
EDC or FILL_DPERR is set. Reads of FILL_ADDR unlock FILL_ADDR, BIU_
STAT<14:8> and FILL_SYNDROME.

In the 21064, FILL_ADDR<33:5> identify the 32-byte cache block that the CPU
was attempting to read when the error occurred.

If the FILL_IRD bit of the BIU_STAT register is clear (indicating that the error
occurred during a data stream cache fill) then FILL_ADDR<4:2> contain bits
<4:2> of the physical address generated by the load instruction that triggered
the cache fill. If FILL_IRD is set, then the state of FILL_ADDR<4:2> is
unpredictable. FILL_ADDR<63:34> and FILL_ADDR<1:0> are read as 0.
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4.3.5 Fill Syndrome Register (FILL_SYNDROME)
The FILL_SYNDROME register is a 14-bit read-only register.

If the CPU chip is in EDC mode and an EDC error is recognized during a
primary cache fill operation, the syndrome bits associated with the bad quadword
are locked in the FILL_SYNDROME register. FILL_SYNDROME<6:0> contain
the syndrome associated with the lower longword of the quadword, and FILL_
SYNDROME<13:7> contain the syndrome associated with the higher longword
of the quadword. A syndrome value of 0 means that no errors were found in
the associated longword. (See Table 4–21 for a list of syndromes associated with
correctable single-bit errors.) The FILL_SYNDROME register is unlocked when
the FILL_ADDR register is read.

If the chip is in parity mode and a parity error is recognized during a primary
cache fill operation, the FILL_SYNDROME register indicates which longword in
the quadword has bad parity. FILL_SYNDROME<0> is set to indicate that the
low longword was corrupted, and FILL_SYNDROME<7> is set to indicate that
the high longword was corrupted. FILL_SYNDROME<13:8> and <6:1> are RAZ
in parity mode. Figure 4–27 shows the format of the Fill_symdrome register and
Table 4–21 lists the syndromes for single-bit errors.

Figure 4–27 Fill Syndrome Register Format
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RAZ HI[6..0] LO[6..0]

FILL_SYNDROME
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Table 4–21 Syndromes for Single-Bit Errors

Data Bit Syndrome 16 Check Bit Syndrome 16

00 4F 00 01

01 4A 01 02

02 52 02 04

03 54 03 08

04 57 04 10

05 58 05 20

06 5B 06 40

07 5D

08 23

09 25

10 26

11 29

12 2A

13 2C

14 31

15 34

16 0E

17 0B

18 13

19 15

20 16

21 19

22 1A

23 1C

24 62

25 64

26 67

27 68

28 6B

29 6D

30 70

31 75

Note

A syndrome of 1F is invalid and indicates that a bad EDC code was
written intentionally into the cache. This is done when bad data is
provided by the system bus to the C3 interface. A syndrome of 0 indicates
that no EDC error was detected.
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4.3.6 Backup Cache Tag Register (BC_TAG)
BC_TAG is a read-only internal processor register. Unless locked, the BC_TAG
register is loaded with the results of every backup cache tag probe. When a tag
or tag control parity error or primary fill data error (parity or EDC) occurs, this
register is locked against further updates. Software may read the LSB of this
register by using the HW_MFPR instruction. Each time an HW_MFPR from BC_
TAG completes, the contents of BC_TAG is shifted one bit position to the right.
Then the entire register may be read using a sequence of HW_MFPRs. Software
may unlock the BC_TAG register using a HW_MTPR instruction to BC_TAG.

Successive HW_MFPRs from the BC_TAG register must be separated by at least
one null cycle. Figure 4–28 shows the format of the BC_TAG register.

Figure 4–28 BC_TAG Register Format

63 23 22 21 5 4 3 2 1 0

RAZ TAG [33..17] RO RO RO RO RO

HIT

TAGCTL_P

TAGCTL_D

TAGCTL_S

TAGCTL_V

TAG_P

RO

Unused tag bits in the TAG field of this register are always cleared, based on the
size of the external cache as determined by the BC_SIZE field of the BIU_CTL
register.
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4.4 Error Detection and Correction (EDC)
When in EDC mode, the 21064 CPU generates longword EDC on writes, and
checks EDC on reads. The CPU chip does contain hardware to correct single-bit
errors.

When an EDC error is recognized during a data cache fill, the bus interface unit
places the affected fill block into the data cache unchanged, validates the block,
and posts a machine check. The load instruction that triggered the data cache
fill is completed by writing the requested longword or longwords into the register
file. Whether or not the longword read by the load instruction was the cause of
the error, a machine check is posted.

The I-box reacts to the machine check by (1) aborting instruction execution before
any instruction issued after the load can overwrite the register containing the
load data, and (2) vectoring to the PALcode machine check handler. Sufficient
state is retained in various status registers for PALcode to determine whether or
not the error affects the longword read by the load instruction, and whether the
error is correctable. In any event, PALcode must explicitly flush the data cache.

If the longword containing the error was written into the register file, PALcode
must either correct it and restart the machine, or report an uncorrectable
hardware error to the operating system. Whether or not the failing longword was
read by the load instruction, PALcode may scrub memory by explicitly reading the
longword with the physical/lock variant of the HW_LD instruction, flipping the
necessary bit, and writing the longword with the physical/conditional variant of
the HW_ST instruction. When PAL rereads the affected longword, the hardware
may report no errors. This indicates that the longword has been overwritten.

When an EDC error occurs during an instruction cache fill, the bus interface unit
places the affected fill block into the instruction cache unchanged, validates the
block, and posts a machine check. The I-box vectors to the PALcode machine
check handler before it executes any of the instructions in the bad block. PAL
code may then flush the instruction cache and scrub memory as described in this
section.

Compared with hardware error correction, this approach is vulnerable to the
following:

• Single-bit errors during instruction stream reads of the PALcode machine
check handler

• Single-bit errors in multiple quadwords of a cache fill block

• Single-bit errors resulting from multiple silo’ed load misses
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5
Backup Cache (B-cache)

The DEC 4000 backup cache is a 1 megabyte, direct mapped, physical write back
cache. It has a fixed 32-byte block size and supports the system bus snooping
protocol to allow for a dual processor implementation.

Each cache block entry consists of three functionally identifiable storage element
arrays:

• The control store, which is parity protected, contains the binary flags that
indicate whether a particular cache block entry is valid, dirty, and/or shared.

• The tag store, which is also parity protected, contains the high order address
bits of the data currently stored in that particular cache block entry.

• The data store, which is EDC protected, and contains the actual 32 bytes of
‘‘cached’’ data.

Figure 5–1 Back-up Cache Entry

Control Tag Data
StoreStore Store

V S D TAG EDC7 LW7 EDC6 LW6 EDC5 LW5 EDC4 LW4P P

EDC3 LW3 EDC2 LW2 EDC1 LW1 EDC0 LW0

5.1 Control Store
The control store of the backup cache contains the binary flags indicating the
status of the cache block. These flags are defined in Table 5–1.

Table 5–1 Cache Block Status Flags

Flag Description

VALID When set, this flag indicates that the data found in the other bits of the
control store, the tag store, and the data store contain valid information.
The VALID bit is set only by the backup cache controller when a cache
block is filled with new data. The VALID bit is cleared only by the
backup cache controller when a system bus write requires a cache block
invalidation. To initialize the VALID bit at power-up. See Section 11.2.

(continued on next page)
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5.1 Control Store

Table 5–1 (Cont.) Cache Block Status Flags

Flag Description

DIRTY When set, the DIRTY and VALID bits indicate the data store contains an
updated copy of a main memory location. This cache data must be written
back to main memory when the cache location is victimized. In a DEC
4000 system, there is only one copy of any given memory location marked
DIRTY. The DIRTY bit is set by the processor performing a fast backup
cache write hit cycle, or by the backup cache assisting the processor
perform a STxC cycle. To learn how to initialize the DIRTY bit at power-
up. See Section 11.2. When the VALID bit is cleared the backup cache
controller guarantees that the DIRTY bit is also cleared.

SHARED When set, SHARED and the VALID bit indicates that the data store
contains a copy of a main memory location that another system bus node
also has a copy of. Writes to this location must ‘‘write-through’’ the cache
to maintain a coherent view of memory.

The SHARED bit is set (1) by the backup cache controller when the
system bus CSHARED_L signal is asserted during cache block allocation
or (2) when a system bus read hits a location found in the backup cache
(CSHARED_L must be pulled).

The SHARED bit is cleared by the backup cache controller when it
performs a system bus WRITE and the CSHARED_L signal is not
asserted. To initialize the SHARED bit at power-up, refer to Section 11.2.
When the VALID bit is cleared the backup cache controller guarantees
that the DIRTY bit is also cleared.

PARITY This flag contains EVEN parity over the contents of the Control Store.
The PARITY flag is valid even if the VALID bit is not set. To learn how to
initialize the VALID bit at power-up, see Section 11.2. Parity is checked
by the processor during every backup cache probe cycle, and by the backup
cache controller during every system bus initiated probe cycle. For details
regarding parity error detection, see Chapter 10.

5.2 Tag Store
The Tag Store contains the high order address bits <30:20> (<30:19> for a 512KB
cache) of the memory location that currently resides in the cache entry. There
is a single parity bit that provides EVEN parity over the complete Tag Store.
Once power-up initialization has occurred, the parity bit contains valid parity
regardless of the value of the control stores VALID bit.

Parity is checked by the processor during every B-Cache probe cycle, and by the
B-Cache controller during every system bus initiated probe cycle. For details
regarding parity error detection, see Chapter 10.

5.3 Data Store
The data store contains the actual data of the memory location that is ‘‘cached’’.
Every cache entry contains 8 longwords. Each longword is protected by 7 bits of
EDC. Physically the cache is only 4 longwords wide, so a cache block consists of
2 consecutive addresses aligned on a 32-byte block boundary. After initialization,
the EDC bits are valid regardless of the validity of the control store’s VALID bit.
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5.3 Data Store

Error checking occurs whenever the processor hits the cache on a read. Error
checking and possible correction is performed whenever a system bus read probe
hits dirty, the victimization of a dirty location, or a masked processor write to a
shared location. For details on EDC error detection, see Chapter 10.

5.4 Backup Cache Control Register Definitions
The backup cache subsystem is manipulated at separate times by two different
controllers. The first is the processor, which probes the tag field. If hit, it reads
or writes data into the backup cache. The behavior of the processor relative
to the backup cache is controlled or monitored by the processors BIU_STAT,
BIU_ADDR, FILL_ADDR, BIU_CTL, AND BC_TAG internal processor registers.
See Section 4.3.

The second is the backup cache controller which processes all miss traffic
and system bus probe activity. The behavior of the backup cache controller is
determined by the settings of the backup cache control and status registers
defined in the following sections.

5.4.1 Backup Cache Control Register (CSR0)
The backup cache control register contains all of the control fields to enable and
disable various functions of the backup cache. This register is primarily for the
use of diagnostic self-test code running during system initialization.

Note

The CPU ensures that the state of control flags in the low longword
are consistent with control flags in the upper longword, by performing
quadword writes.

The backup cache control register for CPU0 is located at address 2.0000.000016,
and for CPU1 at address 2.0800.000016.
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5.4 Backup Cache Control Register Definitions

Figure 5–2 Backup Cache Control Register (BCC)

0123456789
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

CACHE SIZE H (RW)

EDC H (RW)

S,D,V H (RW)

FORCE EDC/CONTROL H (RW)

ENB BACKUP CACHE INIT H (RW)

DIS BLOCK  WRITE AROUND H (RW)

ENB BACKUP CACHE COND I/O UPDATES H (RW)

ENB EDC CHK H (RW)

ENB EDC CORRECTION H (RW)

ENB COR ERR INTERRUPT H (RW)

FILL WRONG DUP TAG STORE PAR H (RW)

FILL WRONG CONTROL PAR H (RW)

FILL WRONG TAG PAR H (RW)

ENB TAG & DUP TAG PAR CHK H (RW)

FORCE FILL SHARED H (RW)

ENB ALLOCATE H (RW)

CACHE SIZE (RW)

EDC L (RW)

SHARED, DIRTY, VALID (RW)

FORCE EDC/CONTROL (RW)

ENB BACKUP CACHE INIT (RW)

DIS BLOCK WRITE AROUND (RW)

ENB BACKUP CACHE  COND  I/O UPDATES (RW)

ENB EDC CHK (RW)

ENB EDC CORRECTION (RW)

ENB COR ERR INTERRUPT (RW)

FILL WRONG DUP TAG STORE PAR (RW)

FILL WRONG CONTROL PAR (RW)

FILL WRONG TAG PAR (RW)

ENB TAG & DUP TAG PAR CHK (RW)

FORCE FILL SHARED (RW)

ENB ALLOCATE (RW)

5–4 Backup Cache (B-cache)



5.4 Backup Cache Control Register Definitions

Table 5–2 Backup Cache Control Register Description

Field Description

63:62 CACHE SIZE H [read/write]

Cleared on power-up. They must be set correctly and they must match bits <31:30> before the
backup cache is accessed.

• 11 4 MB cache

• 10 4 MB cache

• 01 1 MB cache

• 00 512 kB cache

The value of this field not only controls which tag signals are used in determining the proper
parity value for the tag, but also determines whether address bits <21> ,<20>, and <19> should be
driven by the C³ during access to the backup cache.

61:48 EDC H [read/write]

These bits are cleared on power-up. When the FORCE EDC/CONTROL bit 12 is set during backup
cache initialization, the values specified in this register are forced on the EDC field of longwords 3
and 1 of any filled backup cache locations. See Section 11.2 for details.

47:45 S,D,V H [read/write]

Cleared on power-up. These bits must always match bits <15:13> in this register.

44 FORCE EDC/CONTROL H [read/write]

This bit is cleared on power-up. This bit must always match bit <12> in this register.

43:43 ENB BACKUP CACHE INIT H [read/write]

This bit is cleared on power-up. This bit must always match bit <11> in thisregister.

42 DIS BLOCK WRITE AROUND H [read/write]

This bit is cleared on power-up. This bit must always match bit <10> in this register.

41 ENB BACKUP CACHE COND I/O UPDATES H [read/write]

This bit is cleared on power-up. This bit must always match bit <9> in this register.

40 ENB EDC CHK H [read/write]

This bit is cleared on power-up. This bit must always match bit <8> in this register.

39 ENB EDC CORRECTION H [read/write]

This bit is cleared on power-up. This bit must always match bit <7> in this register.

38 ENB COR ERR INTERRUPT H [read/write]

This bit is cleared on power-up. This bit must always match bit <6> in this register.

37 FILL WRONG DUP TAG STORE PAR H [read/write]

This bit is cleared on power-up. This bit must always match bit <5> in this register.

36 FILL WRONG CONTROL PAR H [read/write]

This bit is cleared on power-up. This bit must always match bit <4> in this register.

35 FILL WRONG TAG PAR H [read/write]

This bit is cleared on power-up. This bit must always match bit <3> in this register.

34 ENB TAG & DUP TAG PAR CHK H [read/write]

This bit is cleared on power-up. This bit must always match bit <2> in this register.

33 FORCE FILL SHARED H [read/write]

(continued on next page)
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Table 5–2 (Cont.) Backup Cache Control Register Description

Field Description

This bit is cleared on power-up. This bit must always match bit <1> in this register.

32 ENB ALLOCATE H [read/write]

This bit is cleared on power-up. This bit must always match bit <0> in this register.

31:30 CACHE SIZE [read/write]

These bits are cleared on power-up. These bits must be correctly set before the backup cache is
accessed.

• 11 4 MB cache

• 10 4 MB cache

• 01 1 MB cache

• 00 512 KB cache

The value of this field controls not only which tag signals are used in determining the proper
parity value for the tag, but also in determining whether address bits 21,20, and 19 should be
driven by the C³ during access to the backup cache.

29:16 EDC L [read/write]

These bits are cleared on power-up. When the FORCE EDC/CONTROL bit 12 is set during backup
cache initialization, the values specified into this register are written forced on the EDC field of
longwords 2 and 0 of any filled backup cache locations. See Section 11.2 for details.

15:13 SHARED, DIRTY, VALID [read/write]

These bits are cleared on power-up. When the FORCE EDC/CONTROL bit is set during backup
cache initialization, the values specified in SHARED, DIRTY, and VALID are filled into the control
field of the backup cache location referenced by a READ_BLOCK. See Section 11.2 for details.
When FORCE EDC/CONTROL is cleared, these bits have no effect.

12 FORCE EDC/CONTROL [read/write]

This bit is cleared on power-up. The state of bits <8,7,5:2> should be checked when setting this bit
to avoid machine check responses. When set, the appropriate backup cache location (indicated by
address bits <19:5>) is updated for every processor READ_BLOCK cycle to a cacheable location.

1. The Tag Probe at READ_BLOCK address is forced clean, to avoid victims.

2. The value of address bits <30:19> with its associated parity is filled into the backup cache tag
store.

3. The value of the control bits specified in this register’s SHARED, DIRTY, and VALID and
their associated parity are filled into the backup cache control store. The EDC bits specified
in EDC H and L are filled into the EDC field of the data store.

4. The backup cache is updated with the data returned on the system bus or the CSR data if the
ENB BACKUP CACHE INIT bit <11> is set. This data is also returned to the processor to
satisfy the READ BLOCK request.

This bit does not clear itself. See Section 11.2 for details.

11 ENB BACKUP CACHE INIT [read/write]

(continued on next page)
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5.4 Backup Cache Control Register Definitions

Table 5–2 (Cont.) Backup Cache Control Register Description

Field Description

This bit is cleared on power-up. When set, read transactions to memory address space are
addressed as follows:

1.0000.0000 - 1.7FFF.FFFF for CPU0
1.8000.0000 - 1.FFFF.FFFF for CPU1

The reads are forced to return data from the corresponding CPU’s CSR8-CBEAL register.

When set, memory write allocate transactions are not supported, however CSR write transactions
are supported. This causes the transactions to the system bus reserved memory address space to
supply a known pattern, which is the transaction address as it appears on the system bus, to fill
into the backup cache. For a CPU commander, the CSR data is filled to the backup cache tag and
data entry indexed by the transaction physical address as follows :

Index tag filled with address bits
<18:5> <30:19> for 512 KB cache
<19:5> <30:20> for 1 MB cache
<21:5> <30:22> for 4 MB cache

Also, when this bit is set, the tag probe at the transaction address is forced clean to avoid victims,
and if bits <32> and <0> ENB ALLOCATE are also set the backup cache tag control bits are filled
with the value specified in bits <15:13> of this register correct parity unless parity is forced bad,
regardless of the state of bit <12> and the returned data is written into the backup cache data
store.

See Section 11.2 for the actual returned data format.

10 DIS BLOCK WRITE AROUND [read/write]

This bit is cleared on power-up. When clear, only masked processor writes result in allocation.
Full block unmasked writes write around the backup cache and do not result in allocation. When
set, processor writes result in allocation regardless of the block mask.

9 ENB BACKUP CACHE COND I/O UPDATES [read/write]

This bit is cleared on power-up. When set, conditional updates of the backup cache occur due to
system bus writes when the I/O module is the commander. A system bus write causes an update
if both the contents of the duplicate tag store and the backup cache indicate a hit. When clear,
Unconditional updates of the backup cache occurs when a system bus write hits a VALID backup
cache location when the I/O module is the system bus commander. See Chapter 8 and Section 5.6
for details about conditional invalidation and updating.

8 ENB EDC CHK [read/write]

This bit is cleared on power-up. When set, the EDC of the BACKUP CACHE Data Store and
processor written data is checked. EDC is checked by the backup cache controller only when (1)
a system bus read or exchange hits dirty, (2) a masked write to a shared location occurs, or (3)
during a victim write. When clear, checking for single and multiple bit errors is disabled, but EDC
generation still occurs.

7 ENB EDC CORRECTION [read/write]

This bit is cleared on power-up to disable EDC correction of data during any transaction.
Correctable single bit errors are reported as uncorrectable. When set, enables EDC correction
of processor write data, victim data, and dirty read hit data.

6 ENB COR ERR INTERRUPT [read/write]

This bit is cleared on power-up. When set, EDC correctable errors detected during any transaction
that is logged by CSR1 results in the assertion of the HARDWARE ERROR INTERRUPT. When
clear, the interrupt is not sent but error information is captured in CSR1.

5 FILL WRONG DUP TAG STORE PAR [read/write]

(continued on next page)
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Table 5–2 (Cont.) Backup Cache Control Register Description

Field Description

This bit is cleared on power-up. When set, the wrong parity value is written in the primary data
cache duplicate tag store parity location when a primary data cache location is updated during a
processor primary data cache allocation.

This bit is NOT self clearing. When this bit is set, the ENB TAG & DUP TAG PAR CHK bits 34
and 2 should be cleared; otherwise a HARDWARE ERROR interrupt is signaled every time the
duplicate tag store is written.

4 FILL WRONG CONTROL PAR [read/write]

This bit is cleared on power-up. When set, wrong parity is forced on the backup cache tag control
store during the next backup cache allocation/updates (system bus read from this processor or
write accept). This bit is self clearing.

3 FILL WRONG TAG PAR [read/write]

This bit is cleared on power-up. When set, wrong parity is forced on the backup cache tag address
store during the next backup cache allocation/update (system bus read from this processor or write
accept). This bit is self clearing.

2 ENB TAG & DUP TAG PAR CHK [read/write]

This bit is cleared on power-up. When set, it enables parity checking of backup cache tag address,
tag control, and duplicate tag memory contents whenever the backup cache controller accesses
the backup cache and/or the duplicate tag store of the primary cache. When clear, checking of tag
address, tag control, and duplicate tag address parity is ignored.

1 FORCE FILL SHARED [read/write]

This bit is cleared on power-up. When set, forces the setting of the SHARED bit in the Tag Control
Store when a new entry is allocated in the backup cache.

0 ENB ALLOCATE [read/write]

This bit is cleared on power-up. When set, it enables the filling of the backup cache when
cacheable cycles occur. When clear, backup cache allocation is disabled, but victimization of dirty
cache lines still occurs. This means that the cache line associated with the read/write request is
written to memory if dirty and then marked invalid; or if not dirty then no change in the cache
line state occurs. In either case the processor is informed not to cache the data in either internal
cache.

The backup cache provides data to the system bus when read cycles probe dirty, system bus write
accepting continues. Invalidation of the primary cache due to system bus writes still occurs.
Because coherence is maintained, flushing the primary and backup caches is not necessary before
re-enabling them. This bit can be cleared by writing or by any backup cache error reported by
CSR3 bits 1 or 3. This bit cannot be set if CSR3 bits 1 or 3 are set.

5.4.2 Backup Cache Correctable Error Register (CSR1)
The backup cache correctable error register latches the state of the backup cache
tag and control stores when a correctable EDC error (during the data portion of
the cycle) is detected. The contents of backup cache correctable error address
register are not updated while error flags are set. Lost error flags do not inhibit
error logging.

These errors are detected only as a result of a processor masked write hit to
a shared location, victimization of a cache location, or a system bus read or
exchange to a dirty location.

The backup cache correctable error register for CPU0 is located at address
2.0000.0020 16, and for CPU1 at address 2.0800.0020 16.
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Figure 5–3 Backup Cache Correctable Error Register (BCCE)

0123456789
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

EDC SYNDROME 3 (RO)

EDC SYNDROME 1 (RO)

BC EDC ERROR (RO)

UNDEFINED (RO)

CORRECTABLE ERROR H (wc)

MISSED CORRECTABLE ERROR H (wc)

EDC SYNDROME 2 (RO)

EDC SYNDROME 0 (RO)

BC EDC ERROR (RO)

VALID (RO)

DIRTY (RO)

SHARED (RO)

CONTROL BIT PARITY (RO)

CORRECTABLE ERROR (RW)

MISSED CORRECTABLE  ERROR (WC)

Table 5–3 Backup Cache Correctable Error Register Description

Field Description

63:57 EDC SYNDROME 3 [read-only]

This bit is undefined on power-up. EDC SYNDROME 3 is valid when a correctable error has
occurred. This register is updated when the BCCE ERROR H bit is clear. The syndrome contained
in this register is relevant to longword 3 of data.

See Table 4–21 for the single bit error syndrome list.

56:50 EDC SYNDROME 1 [read-only]

This bit is undefined on power-up. EDC SYNDROME 1 is Valid when a correctable error has
occurred. This register is updated when the BCCE ERROR H bit is clear. The syndrome contained
in this register is relevant to longword 1 of data.

See Table 4–21 for the single bit error syndrome list.

49 BC EDC ERROR [read-only]

This bit is undefined on power-up. It is valid when a correctable error has occurred indicating
that the CPU or the backup cache data was the cause of the error. When set, indicates the backup
cache was the cause of the data error. This register is updated when the BCCE ERROR H bit is
clear.

48:36 UNDEFINED [read-only]

Undefined

35 CORRECTABLE ERROR H [read/write 1 to clear]

(continued on next page)
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Table 5–3 (Cont.) Backup Cache Correctable Error Register Description

Field Description

This bit is cleared on power-up. This must be cleared when CORRECTABLE ERROR is
cleared. This bit is not set if a single bit error occurs when EDC correction is disabled. (The
UNCORRECTABLE ERROR bit is set in CSR3.) Write 1 to clear.

34 MISSED CORRECTABLE ERROR H [read/write 1 to clear]

This bit is cleared on power-up. It must be cleared when MISSED CORRECTABLE ERROR is
cleared. Write 1 to clear.

31:25 EDC SYNDROME 2 [read-only]

This bit is undefined on power-up. It is valid when a correctable error has occurred. This register
is updated when the BCCE ERROR bit is clear. The syndrome contained in this register is
relevant to longword 2 of data.

See Table 4–21 for the single bit error syndrome list.

24:18 EDC SYNDROME 0 [read-only]

This bit is undefined on power-up. It is valid when a correctable error has occurred. This register
is updated when the BCCE ERROR bit is clear. The syndrome contained in this register is
relevant to longword 0 of data.

See Table 4–21 for the single bit error syndrome list.

17 BC EDC ERROR [read-only]

This bit is undefined on power-up. It is valid when a correctable error has occurred indicating that
the CPU or the backup cache data was the cause of the error. When set, it indicates backup cache
was the cause of the data error. This register is updated when the BCCE ERROR bit is clear.

11 VALID [read-only]

This bit is cleared on power-up. It contains the value of the VALID bit for the last backup cache
location accessed by the backup cache controller. This register is updated when the BCCE ERROR
bit is clear.

10 DIRTY [read-only]

This bit is cleared on power-up. It contains the value of the DIRTY bit for the last backup cache
location accessed by the backup cache controller. This register is updated when the BCCE ERROR
bit is clear.

9 SHARED [read-only]

This bit is cleared on power-up. It contains the value of the SHARED bit for the last backup cache
location accessed by the backup cache controller. This register is updated when the BCCE ERROR
bit is clear.

8 CONTROL BIT PARITY [read-only]

This bit is cleared on power-up. It contains the value of control bit parity for the last backup cache
location accessed by the backup cache controller. This register is updated when the BCCE ERROR
bit is clear.

3 CORRECTABLE ERROR [read/write]

This bit is cleared on power-up. It is set when a correctable EDC error occurs in the backup
cache causing the contents of this register (non-error bits) and the contents of the backup
cache correctable error address register to freeze. This bit is not set if a single bit error occurs
when EDC correction is disabled. (The UNCORRECTABLE ERROR bit is set in CSR3. The
UNCORRECTABLE ERROR bit will be set in CSR3. ) Write 1 to clear.

2 MISSED CORRECTABLE ERROR [read/write 1 to clear]

(continued on next page)
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Table 5–3 (Cont.) Backup Cache Correctable Error Register Description

Field Description

This bit is cleared on power-up. It is set when a correctable EDC error occurs in the backup cache
and CORRECTABLE ERROR bit is set from a previous error. A single cache block logs one error
only, even if both octawords of the cache block hexaword are bad. An error in a single cache block
does not cause the MISSED CORRECTABLE ERROR bit to be set. Write 1 to clear.

5.4.3 Backup Cache Correctable Error Address Register (BCCEA) CSR2
When a backup cache correctable EDC error is detected, this register contains
the index of the backup cache location that contains the error. The backup cache
correctable error address register for CPU0 is located at address 2.0000.0040 16,
and for CPU1 at address 2.0800.0040 16.

Figure 5–4 Backup Cache Correctable Error Address Register (BCCEA)
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Table 5–4 Backup Cache Correctable Error Address Register Description

Field Description

62:51 TAG VALUE H [read-only]

This bit is cleared on power-up. It contains the value of the Tag for the last backup cache location
accessed by the backup cache controller. This register is updated when the BCCE ERROR bit is
clear. If LW 3 or LW 1 has a correctable EDC error, this field provides an address pointer to the
backup cache.

50 TAG PARITY H [read-only]

This bit is cleared on power-up. It contains the value of Tag Store Parity for the last backup cache
location accessed by the backup cache controller. This register is updated when the BCCE ERROR
bit is clear.

48:32 BACKUP CACHE MAP OFFSET H [read-only]

This field is cleared on power-up. It contains the last backup cache MAP index. If a correctable
EDC error has been detected, the contents of this register are frozen until the BCCE ERROR bit
in the BCCE register is cleared. If LW 3 or LW 1 has a correctable EDC error, this field provides
an address pointer into the backup cache.

30:19 TAG VALUE [read-only]

(continued on next page)
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Table 5–4 (Cont.) Backup Cache Correctable Error Address Register Description

Field Description

This bit is cleared on power-up. It contains the value of the tag for the last backup cache location
accessed by the backup cache controller. This register is updated when the BCCE ERROR bit is
clear. If LW 2 or LW 0 has a correctable EDC error, this field provides an address pointer to the
backup cache.

18 TAG PARITY [read-only]

This bit is cleared on power-up. It contains the value of Tag Store Parity for the last backup cache
location accessed by the backup cache controller. This register is updated when the BCCE ERROR
bit is clear.

16:0 BACKUP CACHE MAP OFFSET [read-only]

This bit is cleared on power-up. It contains the last backup cache MAP index. If a correctable
EDC error has been detected, the contents of this register are frozen until the BCCE ERROR bit
in the BCCE Register has been cleared. If LW 2 or LW 0 has a correctable EDC error, this field
provides an address pointer into the backup cache.

5.4.4 Backup Cache Uncorrectable Error Register (CSR3)
This register latches the state of the backup cache tag and control stores when a
parity error or an EDC uncorrectable error (during the data portion of the cycle)
is detected. The contents of backup cache uncorrectable error address register
are not updated while error flags are set, the lost error flag does not inhibit error
logging.

These errors are detected only by the backup cache controller as a result of (1) a
processor masked write hit to a shared location, a LDxL or STxC, victimization of
a cache location, or (2) a system bus read, write, or exchange transaction. EDC
errors are not detected by the C³ on LDxL, and system bus write transactions as
a bystander or responder.

The backup cache uncorrectable error register for CPU0 is located at address
2.0000.0060 16, and for CPU1 at address 2.0800.0060 16.
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Figure 5–5 Backup Cache Uncorrectable Error Register (BCUE)
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Table 5–5 Backup Cache Uncorrectable Error Register Description

Field Description

63:57 EDC SYNDROME 3 [read-only]

Undefined on power-up. EDC SYNDROME 3 is valid when an uncorrectable error has occurred.
This register is updated when the BCUE UNCORRECTABLE and PARITY ERROR H bits are
clear. The syndrome contained in this register is relevant to longword 3 of data.

56:50 EDC SYNDROME 1 [read-only]

This field is undefined on power-up. EDC SYNDROME 1 is valid when a uncorrectable error has
occurred. This register is updated when the BCUE UNCORRECTABLE and PARITY ERROR H
bits are clear. The syndrome contained in this register is relevant to longword 1 of data.

49 BC EDC ERROR [read-only]

This bit is undefined on power-up. It is valid when an uncorrectable error has occurred indicating
that the CPU or the backup cache data was the cause of the error. When set, indicates the
backup cache was the cause of the data error. This register is updated when the BCUE
UNCORRECTABLE and PARITY ERROR H bits are clear.

35 UNCORRECTABLE ERROR H [read/write 1 to clear]

This bit is cleared on power-up. This bit must be cleared when UNCORRECTABLE ERROR is
cleared. Write 1 to clear.

34 MISSED UNCORRECTABLE ERROR H [read/write 1 to clear]

(continued on next page)
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Table 5–5 (Cont.) Backup Cache Uncorrectable Error Register Description

Field Description

This bit is cleared on power-up. It must be cleared when MISSED UNCORRECTABLE ERROR is
cleared. Write 1 to clear.

33 PARITY ERROR H [read/write 1 to clear]

This bit is cleared on power-up. It must be cleared when PAR ERROR is cleared. Write 1 to clear.

31:25 EDC SYNDROME 2 [read-only]

This field is undefined on power-up. It is valid when an uncorrectable error has occurred. This
register is updated when the BCUE UNCORRECTABLE and PARITY ERROR bits are clear. The
syndrome contained in this register is relevant to longword 2 of data.

24:18 EDC SYNDROME 0 [read-only]

This field is undefined on power-up. It is valid when an uncorrectable error has occurred. This
register is updated when the BCUE UNCORRECTABLE and PARITY ERROR bits are clear. The
syndrome contained in this register is relevant to longword 0 of data.

17 BC EDC ERROR [read-only]

This bit is undefined on power-up. It is valid when an uncorrectable error has occurred indicating
that the CPU or the backup cache data was the cause of the error. When set, it indicates that
the backup cache was the cause of the data error. This register is updated when the BCUE
UNCORRECTABLE and PARITY ERROR bits are clear.

11 VALID [read-only]

This bit is cleared on power-up. It contains the value of the VALID bit for the last backup
cache location accessed by the backup cache controller. This register is updated when the BCUE
UNCORRECTABLE and PARITY ERROR bits are clear.

10 DIRTY [read-only]

This bit is cleared on power-up. It contains the value of the dirty bit for the last backup cache
location accessed by the backup cache controller. This register is updated when the BCUE
UNCORRECTABLE and PARITY ERROR bits are clear.

9 SHARED [read-only]

This bit is cleared on power-up. It contains the value of the SHARED bit for the last backup
cache location accessed by the backup cache controller. This register is updated when the BCUE
UNCORRECTABLE and PARITY ERROR bits are clear.

8 CONTROL BIT PARITY [read-only]

This bit is cleared on power-up. It contains the value of control bit parity for the last backup
cache location accessed by the backup cache controller. This register is updated when the BCUE
UNCORRECTABLE and PARITY ERROR bits are clear.

3 UNCORRECTABLE ERROR [read/write 1 to clear]

This bit is cleared on power-up. It is set when an uncorrectable EDC error occurs in the backup
cache which causes the contents of this register’s (non-error bits) and the contents of the backup
cache uncorrectable error address register to freeze. Write 1 to clear. When this bit is set, CSR1
bit 0 is cleared, to stop allocation.

2 MISSED UNCORRECTABLE ERROR [read/write 1 to clear]

This bit is cleared on power-up. It is set when an uncorrectable EDC error occurs in the backup
cache and UNCORRECTABLE ERROR or PAR ERROR bits are set from a previous error. A single
cache block logs only one error even if both octawords of the cache block hexaword are bad. An
error in a single cache block does not cause the MISSED UNCORRECTABLE ERROR bit to be
set. Write 1 to clear.

1 PARITY ERROR [read/write 1 to clear]

(continued on next page)
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Table 5–5 (Cont.) Backup Cache Uncorrectable Error Register Description

Field Description

This bit is cleared on power-up. When set, it indicates that the BCUE register contains
information about a backup cache tag error or control store parity error. Setting this bit causes
the contents of this register’s (non-error bits) and the contents of the backup cache uncorrectable
error address register to freeze. Write 1 to clear. When this bit is set, CSR1 bit 0 is cleared,
stopping allocation and disabling parity checking on the backup cache tag address and control
storage elements during local CPU initiated reads and writes.

0 MISSED PAR ERROR [read/write 1 to clear]

This bit is cleared on power-up. When set, it indicates that a parity error occurred in the tag or
tag control store while the PARITY ERROR or the UNCORRECTABLE ERROR bit was set. Write
1 to clear.

5.4.5 Backup Cache Uncorrectable Error Address Register (CSR4)
This register contains the index of the backup cache location containing the error
when one of the following occur: (1) a backup cache tag store or control store
parity error, or (2) an uncorrectable EDC error has been detected.

The backup cache uncorrectable error address register for CPU0 is located at
address 2.0000.0080 16, and for CPU1 at address 2.0800.0080 16.

Figure 5–6 Backup Cache Uncorrectable Error Address Register (BCUEA)
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Table 5–6 Backup Cache Uncorrectable Error Address Register Description

Field Description

62:51 TAG VALUE H [read-only]

This field is cleared on power-up. It contains the value of the tag for the last backup cache
location accessed by the backup cache controller. This register is updated when the BCUE
UNCORRECTABLE and PARITY ERROR bits are clear. If LW 3 or LW 1 has an uncorrectable
EDC error, this field provides an address pointer into the backup cache.

(continued on next page)
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Table 5–6 (Cont.) Backup Cache Uncorrectable Error Address Register Description

Field Description

50 TAG PARITY H [read-only]

This bit is cleared on power-up. It contains the value of Tag Store Parity for the last backup
cache location accessed by the backup cache controller. This register is updated when the BCUE
UNCORRECTABLE and PARITY ERROR bits are clear.

49 PREDICTED TAG PAR H [read-only]

This bit is cleared on power-up. It contains the value of the last system bus predicted tag parity.
The value of this bit is frozen if any of the following occur:

• A parity error occurs in the tag, control store, or an EDC error is detected

• A victim write

• A masked write to a shared location

• An LDxL or STxC, victimization of a cache location

• A system bus read, write or exchange

This register is updated when the BCUE UNCORRECTABLE and PARITY ERROR bits are clear.

This provides power-up diagnostics with visibility to an internal parity tree. The value of this
location is valid if the register is frozen and the cycle causing the error was a system bus read or
write or if the register is not frozen and the register is read. (The even parity of the address bits
<33:20> during the CSR read access are found in this location.) This bit should be disregarded
during normal system operation.

48:32 BACKUP CACHE MAP OFFSET H [read-only]

This field is cleared on power-up. It contains the last backup cache MAP index (address bits
<21:5> for 1 MB cache bits 19:5 indicate cache block offset). If a parity error occurs in the tag,
or control bits, or an EDC error has been detected, the contents of this register are frozen until
the BCUE UNCORRECTABLE and PARITY ERROR bits are clear. If LW 3 or LW 1 has an
uncorrectable EDC error this field provides an address pointer into the backup cache.

30:19 TAG VALUE [read-only]

This field is cleared on power-up. It contains the value of the Tag for the last backup cache
location accessed by the backup cache controller. This register is updated when the BCUE
UNCORRECTABLE and PARITY ERROR bits are clear. If LW 2 or LW 0 has an uncorrectable
EDC error this field provides an address pointer into the backup cache.

18 TAG PARITY [read-only]

This bit is cleared on power-up. It contains the value of the tag store parity for the last backup
cache location accessed by the backup cache controller. This register is updated when the BCUE
UNCORRECTABLE and PARITY ERROR bits are clear.

17 PREDICTED TAG PAR [read-only]

This bit is cleared on power-up. It contains the value of the last system bus predicted tag parity.
The value of this bit is frozen if a parity error is detected in the tag, tag control store, or an
EDC error is detected, when a system bus read, write or exchange probe occurs. This register is
updated when the BCUE UNCORRECTABLE and PARITY ERROR bits are clear.

This provides power-up diagnostics the visibility to an internal parity tree. The value of this
location is valid if the register is frozen and the cycle causing the error was a system bus read
or write (the EVEN parity of the address bits <30:20> for 1-MB cache). This bit should be
disregarded during normal system operation.

16:0 BACKUP CACHE MAP OFFSET [read-only]

(continued on next page)
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Table 5–6 (Cont.) Backup Cache Uncorrectable Error Address Register Description

Field Description

This field is cleared on power-up. It contains the last backup cache MAP index. If a parity error
occurs in the tag, or control bits, or an EDC error has been detected, the contents of this register
are frozen until the BCUE UNCORRECTABLE and PARITY ERROR bits are clear. If LW 2 or LW
0 has an uncorrectable EDC error, this field provides an address pointer into the backup cache.

5.4.6 System Bus Cycles
The backup cache is single ported, and as such the system bus and the processor
must contend for its ownership. The arbitration algorithm provides top priority
to the system bus. Whenever a system bus transaction is requested by a
commander, every backup cache on the system bus (maximum of 2 in a DEC
4000 dual processor system) is unavailable to its processor for the number
of system bus cycles shown in Table 5–7. The system bus guarantees that a
processor is not held off its own cache for any more than two consecutive system
bus WRITE cycles.

Table 5–7 System Bus Backup Cache Access Time

System Bus Transaction Access Time

(system bus cycles)†

Read Hit Dirty 6

Read Hit Clean 5

Read Miss 3

Write Hit 5

Write Miss 3

Exchange Hit Dirty 6

Exchange Hit Clean 5

Exchange Miss 3

†The cycle time of the system bus is 24 ns.

5.5 Cache Block Merge Buffer
The cache block merge buffer is a CPU- specific buffer used to prevent word
tearing caused by simultaneous writes to different words in the same cache block.
It is also used to form complete cache blocks of masked writes when the backup
cache is disabled.

The merge buffer consists of a 32-byte data buffer, a valid bit associated with
each longword in the buffer, and a complete address tag.

When a masked write miss occurs, the data longwords indicated by the 21064
CPU longword mask are written into the Cache Block Merge Buffer and the
associated valid bits are set. This miss is handled like other misses in that a
system bus read is performed to allocate the cache entry. As the read data is
returned off the system bus, it is merged with the data already in the merge
buffer and written into the backup cache data store.

Backup Cache (B-cache) 5–17
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If an intervening system bus write occurs to that same cache entry (by a different
system bus commander), the valid longwords in the merge buffer are merged with
the new data provided by that system bus write cycle, and subsequent system bus
write (if that datum is now shared) provides the newly merged data to the system
bus.

5.6 Duplicate Primary Data Cache Tag Store
Every DEC 4000 processor module provides a mechanism to perform ‘‘conditional
invalidation’’ of the cache memory subsystems. This is accomplished through
the use of a copy of the primary data cache tag store. As updates to cacheable
locations occur, invalidation of the internal data cache is 100% accurate. The
duplicate tag store also provides a means to ‘‘selectively’’ accept updates to the
backup cache. This allows optimal system performance for accesses to truly
shared locations, however it protects the integrity of the write-back system
by invalidating ‘‘shared cold’’ locations caused by phenomena such as process
migration.

The general Update versus Invalidate algorithm when a system bus write cycle
occurs is shown in Example 5–1
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5.6 Duplicate Primary Data Cache Tag Store

Example 5–1 Update versus Invalidate Algorithm

IF (Waiting in ARB for system bus)
{
IF (HIT backup cache)

{
update_backup cache_entry();
}

IF (HIT primary data cache)
{
invalidate_primary_data_cache_entry();
}

}
ELSE

{
IF (system bus commander is a CPU OR ENB BACKUP CACHE COND I/O UPDATES (BCC Reg)

{
IF (HIT primary data cache)

{
invalidate_primary_data_cache_entry();

IF (HIT backup cache)
{
update_backup cache_entry();
}

}
ELSE

{
IF (HIT backup cache)

{
invalidate_backup cache_entry();
}

}
}

ELSE
{
IF (HIT primary data cache)

{
invalidate_primary_data_cache_entry();
}

IF (HIT backup cache)
{
update_backup cache_entry();
}

}
}
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5.6 Duplicate Primary Data Cache Tag Store

5.6.1 Duplicate Tag Error Register (CSR5)
The duplicate tag error register is updated after each access to the duplicate
tag store RAM in both slices. After a parity error is detected, the contents
of the register are not updated while the error flag is set, the lost error flag
does not inhibit error logging. The missed error bit in this register when set,
suppresses further error interrupts from duplicate tag parity errors. When these
parity errors are detected, invalidation of the primary and/or secondary caches
result. Diagnostic Hint: filling the duplicate tag RAM with bad parity causes the
coherence policy to degenerate from update to invalidate.

Note

The system software performs quadword writes to clear flags. This
ensures that the state of error flags in the low longword is consistent with
the state of control flags in the upper longword.

The duplicate tag error register for CPU0 is located at address 2.0000.00A0 16,
and for CPU1 at address 2.0800.00A0 16.

Figure 5–7 Duplicate Tag Error Register (DTER)
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Table 5–8 Duplicate Tag Error Register Description

Field Description

62 DUP TAG PAR [read-only]

(continued on next page)
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5.6 Duplicate Primary Data Cache Tag Store

Table 5–8 (Cont.) Duplicate Tag Error Register Description

Field Description

This bit is undefined on power-up. It contains the most recent Primary data cache duplicate tag
store parity. There are two cases to consider,

1. probes from the system bus

2. read misses from the processor

If a parity error occurs due to a probe, this bit shows that bad parity as calculated from the DUP
TAG<61:42> bits in this register and is a fatal error. If a parity error occurs due to a processor
read miss which allocates into the duplicate tag, this bit shows the parity of the allocated address
and does not reflect the calculated parity of DUP TAG<61:42>. The contents of this field are frozen
until the ERROR bits have been cleared.

This field is updated only when memory space references occur while the register is not frozen.

61:42 DUP TAG [read-only]

This field is undefined on power-up. It contains the last primary cache duplicate tag. If a parity
error occurs in the primary cache duplicate tag store, the contents of this register are frozen until
the ERROR bits are cleared.

This field is updated only when memory space references occur while the register is not frozen.

41:34 DUP TAG STORE OFFSET [read-only]

This field is undefined on power-up. Contains the last duplicate tag store offset. If a parity error
occurs in the duplicate tag store, the DUP TAG STORE OFFSET will remain for that cycle until
the ERROR bits have been cleared.

This field is updated only when memory space references occur while the register is not frozen.

33 ERROR [read/write 1 to clear]

Cleared on power-up. Set when a primary data cache duplicate tag store parity error has been
detected to hold the contents of this register until this flag is cleared. Write 1 to clear.

32 MISSED ERROR OCCURRED [read/write 1 to clear]

Cleared on power-up. Set when a primary D-cache duplicate tag store parity error bit was set and
another one is detected. When set logging in this CSR is not inhibited and further interrupts from
this error are suppressed. Write 1 to clear.

30 DUP TAG PAR [read-only]

This field is undefined on power-up. Contains the most recent primary D-cache duplicate tag store
parity. There are two cases to consider, probes from the system bus and read misses from the
processor. If a parity error occurs due to a probe, this bit shows that bad parity as calculated from
the DUP TAG<29:10> bits in this register and is a fatal error.

If a parity error occurs due to a processor read miss which allocates into the duplicate tag, this
bit shows the parity of the allocated address and does not reflect the calculated parity of DUP
TAG<29:10>. The contents of this field are frozen until the ERROR bits have been cleared.

This field is updated only when memory space references occur while the register is not frozen.

29:10 DUP TAG [read-only]

This field is undefined on power-up. It contains the last primary cache duplicate tag. If a parity
error occurs in the primary cache duplicate tag store, the contents of this register are frozen until
the ERROR bits have been cleared.

This field is updated only when memory space references occur while the register is not frozen.

9:2 DUP TAG STORE OFFSET [read-only]

(continued on next page)
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5.6 Duplicate Primary Data Cache Tag Store

Table 5–8 (Cont.) Duplicate Tag Error Register Description

Field Description

This field is undefined on power-up. It contains the last duplicate tag store offset. If a parity error
occurs in the duplicate tag store, the DUP TAG STORE OFFSET will remain for that cycle until
the ERROR bits have been cleared.

This field is updated only when memory space references occur while the register is not frozen.

1 ERROR [read/write 1 to clear]

This field is cleared on power-up. It is set when a primary data cache duplicate tag store parity
error is detected, to hold the contents of this register until this flag is cleared. Write 1 to clear.

0 MISSED ERROR OCCURRED [read/write 1 to clear]

This bit is cleared on power-up. It is set when a primary data cache duplicate tag store parity
error bit is set and another one is detected. When set, logging in this CSR is not inhibited and
further interrupts from this error are suppressed. Write 1 to clear.

5.7 Lack of Duplicate Primary Instruction Cache Tag Store
Because the primary instruction cache is a virtual cache, all cache coherence is
managed by the system software. Thus no hardware invalidates of the instruction
cache are performed. Also, because very little writing to shared instruction
stream locations occur, the benefit of ‘‘selective’’ updating is diminished. As such
there is no duplicate primary instruction cache tag store on the DEC 4000 CPU
module.

5.8 Lack of Cache Block Prefetch
Both FETCH and FETCHM instructions are handled in the same manner. When
either instruction is issued, the processor is immediately released to continue
executing.

5.9 Data Integrity
The DEC 4000 CPU module provides error detection mechanisms for its major
data storage elements and buses. Table 5–9 provides an overview of the error
detection mechanisms provided in DEC 4000 subsystems.

Table 5–9 Data Integrity Reference

Element Protection Method Reference

Primary I-cache tag Store Parity Appendix B

Primary I-cache data store LW Parity Appendix B

Primary D-cache tag Store Parity Appendix B

Primary D-cache data store LW Parity Appendix B

Backup cache control store Parity Section 5.1, Section 10.2.1

Backup cache tag store Parity Section 5.2, Section 10.3

Backup cache data store EDC† Section 5.3, Section 10.2.2

Duplicate tag store Parity Section 5.6, Section 10.3

†Single-bit correction, double bit detection

(continued on next page)
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5.9 Data Integrity

Table 5–9 (Cont.) Data Integrity Reference

Element Protection Method Reference

System bus LW Parity Chapter 19, Section 10.4

DEC 4000 processor data bus EDC‡ Section 5.3, Section 10.2.2

‡Single-bit correction, double bit detection, Depending on the source of the data, this could include
errors that occur in the backup cache data store as well as those occurring on the bus.
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6
System Bus Interface

The system bus interface is the DEC 4000 CPU module’s ‘‘window to the world’’.
All standard data processed by a DEC 4000 processor is obtained over the system
bus from either a DEC 4000 memory module, the DEC 4000 I/O module, or
another DEC 4000 CPU module. All system bus registers are visible to all system
bus commanders. See Chapter 19.

6.1 CPU System Bus Register Definitions

6.1.1 System Bus Control Register (CSR6)
The system bus control register provides a means of controlling the system
bus arbitration and interface signals for diagnostic purposes, and contains the
information required to support the WHOAMI requirement specified in the Alpha
Architecture Reference Manual.

This register’s arbitration control bits allow a system bus commander to
selectively disallow other commander’s ownership of the system bus. This
register should be used only during system initialization; however it may also be
useful in guarding the system bus from a failed second CPU module. Because the
register can be accessed only through the system bus, a commander is not allowed
to mask itself off as it would never be able to re-enable access to the system bus.

Note

The CPU ensures that the state of control flags in the low longword
are consistent with control flags in the upper longword by performing
quadword writes.

The system bus control register for CPU0 is located at address 2.0000.00C0 16,
and for CPU1 at address 2.0800.00C0 16.
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6.1 CPU System Bus Register Definitions

Figure 6–1 System Bus Control Register (CBCTL)
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ARB CONTROL MASK (RW)

COMMANDER ID (RO)

FORCE SHARED H (RW)

ENB PARITY CHK H (RW)

C/A WRONG PAR H (RW)

DATA WRONG PAR H (RW)

SELECT DRACK (RW)

2nd QW SELECT (RW)

RESERVED DIAGNOSTIC (RW)

ENB system bus  ERROR INTERRUPT (RW)

ARB CONTROL MASK (RW)

COMMANDER ID (RO)

FORCE SHARED (RW)

ENABLE PAR CHK (RW)

C/A WRONG PAR (RW)

DATA WRONG PAR (RW)

Table 6–1 System Bus Control Register Description

Field Description

46 SELECT DRACK H [read/write]

This field is cleared on power-up. This bit is reserved for timing configuration selection of the
CPU response strobe DRACK<1>. When set, the DRACK<1> strobe timing is shifted by six
nanoseconds. The state of this bit must match bit <14> in this register.

45 2nd QW SELECT H [read/write]

This bit is cleared on power-up. This bit is reserved for timing configuration selection of the second
quadword of returned data to the CPU chip. When set, the data mux control strobe is shifted by
six nanoseconds. The state of this bit must match bit <13> in this register.

44 RESERVED DIAGNOSTIC H [read/write]

This bit is cleared on power-up. It is reserved for diagnostic testing. When set, the behavior of the
system bus arbiter is modified. The state of this bit must match bit <12> in this register.

43 ENB system bus ERROR INTERRUPT H [read/write]

(continued on next page)
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6.1 CPU System Bus Register Definitions

Table 6–1 (Cont.) System Bus Control Register Description

Field Description

This bit is cleared on power-up. The state of this bit must match bit <11> in this register.

42:40 ARB CONTROL MASK [read/write]

Bits 40 and 41 are set on power-up and bit 42 is cleared on power-up. When the bit corresponding
to a particular subsystem is set, that subsystem is granted the bus when requested. A processor
cannot clear its own ARB control mask bit.

• bit 42 set : I/O

• bit 41 set : CPU1

• bit 40 set : CPU0

This field is non-functional in CPU1.

39:37 COMMANDER ID [read-only]

This field identifies the CPU as being CPU0 or CPU1 based on the system bus commander ID.
Writes have no effect. Regardless of being CPU0 or CPU1 performing a read of this CSR, the
contents of this field are returned with the CPU ID of the CPU commanding the CSR read.

010 CPU1
001 CPU0

36 FORCE SHARED H [read/write]

This bit is cleared on power-up. When set, it asserts CSHARED_L on all system bus transactions.

35 ENB PARITY CHK H [read/write]

This field is cleared on power-up. When set, the longword parity checking on the system bus for
both the C/A and data portion of cycle (if responder) is enabled for C/A longwords 3 and 2 and
data longwords 7,5,3 and 1.

34:33 C/A WRONG PAR H [read/write]

This bit is cleared on power-up. When set, it forces wrong parity on longwords 3 and 1 respectively
during the C/A portion of the next C/A cycle from this node to the system bus. Once this cycle has
occurred, the C/A WRONG PAR bits are automatically cleared.

32 DATA WRONG PAR H [read/write]

This bit is cleared on power-up. When set, it forces wrong parity on longwords 7,5,3 and 1 during
both data portions of the next system bus cycle to which this node responds. Once this cycle has
occurred the DATA WRONG PAR bit is automatically cleared. This should not be set when any
of the C/A WRONG PAR bits are set, as a responder is not able to log both wrong C/A parity and
wrong data parity in the same system bus transaction.

14 SELECT DRACK [read/write]

This bit is cleared on power-up. It is reserved for timing configuration selection of the
21064 response strobe DRACK<1>. When set the DRACK<1> strobe timing is shifted by six
nanoseconds.

13 2nd QW SELECT [read/write]

This bit is cleared on power-up. It is reserved for timing configuration selection of the second
quadword of returned data to the 21064 CPU. When set, the data MUX control strobe is shifted by
six nanoseconds.

12 RESERVED DIAGNOSTIC [read/write]

This bit is cleared on power-up. This bit is reserved for diagnostic testing. When set, the behavior
of the system bus arbiter is modified to regulate the flow of back to back transactions.

(continued on next page)
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6.1 CPU System Bus Register Definitions

Table 6–1 (Cont.) System Bus Control Register Description

Field Description

11 ENB system bus ERROR INTERRUPT [read/write]

This field is cleared on power-up to disable the system bus C_ERR_L interrupt signal from being
driven due to errors encountered by this node. This bit does not disable reception of this interrupt
signal.

10:8 ARB CONTROL MASK [read/write]

Bits 8 and 9 set, bit 10 cleared on power-up. When the bit corresponding to a particular subsystem
is set, that subsystem is granted the bus when requested. A processor can not clear its own ARB
Control Mask bit.

• bit 10 set : I/O

• bit 9 set : CPU1

• bit 8 set : CPU0

This field is non-functional in CPU1.

7:5 COMMANDER ID [read-only]

Identifies the CPU as being CPU0 or CPU1 based on the system bus commander ID. Writes have
no effect. Regardless of being CPU0 or CPU1 performing a read of this CSR, the contents of this
field are returned with the CPU ID of the CPU commanding the CSR read.

010 CPU1
001 CPU0

4 FORCE SHARED [read/write]

This field is cleared on power-up. When set, asserts CSHARED_L on all system bus transactions.

3 ENABLE PAR CHK [read/write]

This field is cleared on power-up. When set, longword parity checking on the system bus for both
the C/A and data portion of cycle (if responder) is enabled for C/A longwords 1 and 0 and data
longwords 2 and 0.

2:1 C/A WRONG PAR [read/write]

This bit is cleared on power-up. When set, forces wrong parity on longwords 2 and 0 respectively
during the C/A portion of the next C/A cycle from this node to the system bus. Once this cycle has
occurred the C/A WRONG PAR bits are automatically cleared.

0 DATA WRONG PAR [read/write]

This bit is cleared on power-up. When set, forces wrong parity on longwords 6, 4, 2, and 0 during
both data portions of the next system bus cycle to which this node responds. Once this cycle has
occurred the DATA WRONG PAR bit is automatically cleared. This should not be set when any
of the C/A WRONG PAR bits are set as a responder is not able to log both wrong C/A parity and
wrong data parity in the same system bus transaction.

6.1.2 System Bus Error Register (CSR7)
The system bus error register is updated every system bus cycle. Whenever a
system bus error is detected, the contents of this register are frozen until the
ERROR bits are cleared. The contents of the register are not updated while the
error flags are set. The lost error flags do not inhibit error logging.

Note

Even though the CBE register is updated with the latest cycle on the
system bus, the contents of this register in the non-error case is always
the cycle that was issued to actually read the CBE register. This is

6–4 System Bus Interface



6.1 CPU System Bus Register Definitions

because the register is accessed via a system bus cycle. If a tag control or
tag store parity error is detected then the C/A NOT ACKED and/or the WRITE
DATA NOT ACKED bits are set.

The system bus error register for CPU0 is located at address 2.0000.00E0 16, and
for CPU1 at address 2.0800.00E0 16.
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6.1 CPU System Bus Register Definitions

Figure 6–2 System Bus Error Register (CBE)
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Table 6–2 System Bus Error Register Description

Field Description

63 MADR VALID [read/write 1 to clear]

This field is cleared on power-up. It has the same function as bit <31>, but indicates another valid
sample in MADRL <63:32> that occurs 32 miss counts offset from the sample in the other half of
these registers. Effectively providing two samples every 64 misses. A copy of this bit is readable
from bit 0 of the MADRL register. Write 1 to clear.

62:57 MISS COUNT H [read-only]

This field is set to 000000 on power-up. The six bit miss address counter is readable in this field.

47 UNDEFINED H [read/write 1 to clear]

This field is cleared on power-up. Undefined usage. Write 1 to clear.

46 UNDEFINED H [read/write 1 to clear]

This field is cleared on power-up. Undefined usage. Write 1 to clear.

45 DATA PAR ERR LW7 ERR [read-only]

This field is cleared on power-up. This bit is valid if a parity error is detected by this module,
reading a 1 indicates an error on data longword 7 system bus bits <127:96>, during the second
data cycle portion of a system bus transaction. DATA PAR ERR LW7 ERR remains valid until the
Data ERR bits (<38> and <36>) are cleared.

44 DATA PAR ERR LW5 ERR [read-only]

This field is cleared on power-up. This bit is valid if a parity error is detected by this module,
reading a 1 indicates an error on data longword 5 system bus bits <95:64>, during the second
data cycle portion of a system bus transaction. DATA PAR ERR LW5 ERR remains valid until the
DATA ERR bits <38> and <36> are cleared.

43 DATA PAR ERR LW3 ERR [read-only]

This field is cleared on power-up. This bit is valid if a parity error is detected by this module,
reading a 1 indicates an error on data longword 3 system bus bits <127:96>, during the first data
cycle portion of a system bus transaction. DATA PAR ERR LW3 ERR remains valid until the Data
ERR bits (<38> and <36>) are cleared.

42 DATA PAR ERR LW1 ERR [read-only]

This field is cleared on power-up. This bit is valid if a parity error is detected by this module,
reading a 1 indicates an error on data longword 1 system bus bits <95:64>, during the first data
cycle portion of a system bus transaction. DATA PAR ERR LW1 ERR remains valid until the Data
ERR bits (<38> and <36>) are cleared.

41 C/A PAR ERR LW3 ERR [read-only]

This field is cleared on power-up. This bit is valid if a parity error is detected by this module,
reading a 1 indicates an error on command/address longword 3 system bus bits <127:96>, during
the C/A cycle portion of a system bus transaction. C/A PAR ERR LW3 ERR remains valid until
the Data ERR bit (<34>) is cleared.

40 C/A PAR ERR LW1 ERR [read-only]

This field is cleared on power-up. This bit is valid if a parity error is detected by this module,
reading a 1 indicates an error on command/address longword 1 system bus bits <95:32>, during
the C/A cycle portion of a system bus transaction. C/A PAR ERR LW1 ERR remains valid until
the Data ERR bit<34>is cleared.

39 MISSED PAR ERR ON READ DATA - REQ H [read/write 1 to clear]

This field is cleared on power-up. It is set when a parity error is detected on returned read data
longwords 3 or 1 as a commander and the error command and address cannot be saved in the
CBEAH register. Write "1" to clear.

38 PAR ERR ON READ DATA - REQ H [read/write 1 to clear]

(continued on next page)
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Table 6–2 (Cont.) System Bus Error Register Description

Field Description

This field is cleared on power-up. It is set when a parity error is detected on returned read data
longwords 3 or 1 as a commander. Write 1 to clear.

37 MISSED PAR ERR ON WRITE DATA - RESP H [read/write 1 to clear]

This field is cleared on power-up. It is set when a parity error is detected on longwords 3 or 1
as a responder or bystander the error command and address cannot not be saved in the CBEAH
register. Write 1 to clear.

36 PAR ERR ON WRITE DATA - RESP H [read/write 1 to clear]

This field is cleared on power-up. It is set when a parity error is detected on odd longwords 3 or
1 as a responder or a bystander in the case of accepting write data to update the backup cache.
Write 1 to clear. It detects parity error only on longwords 3 and 1.

35 MISSED C/A PAR ERR [read/write 1 to clear]

This field is cleared on power-up. Set when a parity error was detected on the even C/A longwords
(3,1) and the error command and address could not be saved in the CBEAH register. Write 1 to
clear.

34 C/A PAR ERR [read/write 1 to clear]

This bit is cleared on power-up. It is set when a parity error was detected on the even C/A
longwords (3,1) regardless of the address or which node was the commander. A CPU node checks
its own parity as a commander. Write 1 to clear.

33 RESERVED DIAGNOSTIC H [read/write 1 to clear]

This bit is cleared on power-up. It is set as a result of an error event being communicated between
the even and odd interface chips. This bit is for chip debug and should not be used by system
software. The address is not held in CSR 8 and 9 when this bit is set. Write 1 to clear.

31 MADR VALID [read/write 1 to clear]

This field is cleared on power-up. This bit is set when the miss counter overflows and holds
sampled miss address into the MADRL register. The miss address is sampled every 64th backup
cache miss by a free running miss transaction counter. When this bit is set MADRL <31:0>
contain valid miss contents. Setting this bit inhibits capturing a new sample, but does not inhibit
the counter from incrementing. A copy of this bit is readable from bit 0 of the MADRL register.
Write 1 to clear.

30:25 MISS COUNT [read-only]

This field is set to 111110 on power-up. The six bit miss address counter is readable in this field.

15 WRITE DATA NOT ACKED [read/write 1 to clear]

This field is cleared on power-up. This bit is set if either octaword portion of a system bus write
cycle generated by this commander is not acknowledged. The error address is logged in CBEAL
and CBEAH, hence this error may cause subsequent lost errors. Write 1 to clear. This error can
be flagged if a double bit error occurs in the tag store and the exchange address of the dirty victim
places its address outside the physical address space of the currently configured system.

14 C/A NOT ACKED [read/write 1 to clear]

This field is cleared on power-up. This bit is set if the C/A portion of a system bus cycle generated
by this commander is not acknowledged. The error address is logged in fields associated with the
lower 32 bits of the CBEAL and CBEAH. The upper 32 bits of this register have no meaning when
this error is detected. This error may cause subsequent lost errors. Write 1 to clear.

13 DATA PAR ERR LW6 ERR [read-only]

(continued on next page)
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6.1 CPU System Bus Register Definitions

Table 6–2 (Cont.) System Bus Error Register Description

Field Description

This field is cleared on power-up. This bit is valid if a parity error is detected by this module,
reading a 1 indicates an error on data longword 6 system bus bits <63:32>, during the second data
cycle portion of a system bus transaction. DATA PAR ERR LW6 ERR remains valid until the Data
ERR bits (<6>,<4>) are cleared.

12 DATA PAR ERR LW4 ERR [read-only]

This field is cleared on power-up. This bit is valid if a parity error is detected by this module,
reading a 1 indicates an error on data longword 4 system bus bits <31:0>, during the second data
cycle portion of a system bus transaction. DATA PAR ERR LW4 ERR remains valid until the Data
ERR bits (<6>,<4>) are cleared.

11 DATA PAR ERR LW2 ERR [read-only]

This field is cleared on power-up. This bit is valid if a parity error is detected by this module,
reading a 1 indicates an error on data longword 2 system bus bits <63:32>, during the first data
cycle portion of a system bus transaction. DATA PAR ERR LW2 ERR remains valid until the Data
ERR bits (<6>,<4>) are cleared.

10 DATA PAR ERR LW0 ERR [read-only]

This field is cleared on power-up. This bit is valid if a parity error is detected by this module,
reading a 1 indicates an error on data longword 0 system bus bits <31:0>, during the first data
cycle portion of a system bus transaction. DATA PAR ERR LW0 ERR remains valid until the Data
ERR bits (<6>,<4> ) are cleared.

9 C/A PAR ERR LW2 ERR [read-only]

This field is cleared on power-up. This bit is valid if a parity error is detected by this module,
reading a 1 indicates an error on command/address longword 2 system bus bits <63:32>, during
the C/A cycle portion of a system bus transaction. C/A PAR ERR LW2 ERR remains valid until
the Data ERR bit (<2>) is cleared.

8 C/A PAR ERR LW0 ERR [read-only]

This field is cleared on power-up. This bit is valid if a parity error is detected by this module,
reading a 1 indicates an error on command/address longword 0 system bus bits <31:0>, during the
C/A cycle portion of a system bus transaction. C/A PAR ERR LW0 ERR remains valid until the
Data ERR bit (<2>) is cleared.

7 MISSED PAR ERR ON READ DATA - REQ [read/write 1 to clear]

This field is cleared on power-up. It is set when a parity error is detected on returned read data
longwords 2 or 0 as a commander and the error command and address could not be saved in the
CBEAL register. Write 1 to clear.

6 PAR ERR ON READ DATA - REQ [read/write 1 to clear]

This field is cleared on power-up. It is set when a parity error is detected on returned read data
longwords 2 or 0 as a commander. Write 1 to clear.

5 MISSED ERR ON WRITE DATA- RESP [read/write 1 to clear]

This field is cleared on power-up. It is set when a parity error is detected on longwords 2 or 0 as
a responder or bystander or a write data cycle from this commander is not acknowledged and the
error command and address cannot not be saved in the CBEAL register. Write 1 to clear.

4 PAR ERR ON WRITE DATA - RESP [read/write 1 to clear]

This field is cleared on power-up. It is set when a parity error is detected on even longwords 2 or
0 as a responder or a bystander in the case of accepting write data to update the backup cache.
Write 1 to clear. It detects parity error only on longwords 2 and 0.

3 MISSED C/A ERR [read/write 1 to clear]

(continued on next page)

System Bus Interface 6–9



6.1 CPU System Bus Register Definitions

Table 6–2 (Cont.) System Bus Error Register Description

Field Description

This field is cleared on power-up. It is set when a parity error is detected on the even C/A
longwords (2,0) or the C/A cycle was not acknowledged from this commander and the error
command and address cannot be saved in the CBEAL register. Write 1 to clear.

2 C/A PAR ERR [read/write 1 to clear]

This field is cleared on power-up. It is set when a parity error is detected on the even C/A
longwords (2,0) regardless of the address or which node is the commander. A CPU node checks its
own parity as a commander. Write 1 to clear.

1 RESERVED DIAGNOSTIC [read/write 1 to clear]

This bit is cleared on power-up. It is set as a result of an error event being communicated between
the even and odd interface chips. This bit is for chip debug and should not be used by system
software. The address is not held in CSR 8 and 9 when this bit is set. Write 1 to clear.

6.1.3 System Bus Error Address Low Register (CSR8)
The system bus error address low register is updated by this node’s commander
transactions or by system bus errors. It contains the actual data found on the
system bus <63:0> during the latest C/A cycle. Whenever a system bus error is
detected and logged in the CBE register, the contents of this register are frozen
until all of the error indications, not the missed error indications in the CBE
Register are cleared.

For system bus command/address cycles that are not acknowledged, the failing
address is latched only in the error logging bits <31:0>. Bits <63:34> do not
contain valid information when this type of error is logged.

The system bus error address low register for CPU0 is located at address
2.0000.0100 16, and for CPU1 at address 2.0800.0100 16.

Figure 6–3 System Bus Error Address Low Register (CBEAL)

0123456789
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

ADDRESS (RO)

SBO (RO)

ADDRESS (RO)

SBO (RO)

Table 6–3 System Bus Error Address Low Register Description

Field Description

63:34 ADDRESS [read-only]

This field is undefined on power-up. Address field <33:4>, from CAD<63:34>.

33:32 SBO [read-only]

These bits should be ones.

(continued on next page)
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6.1 CPU System Bus Register Definitions

Table 6–3 (Cont.) System Bus Error Address Low Register Description

Field Description

31:2 ADDRESS [read-only]

This field is undefined on power-up. Address field <33:4>, from CAD<31:2>.

1:0 SBO [read-only]

These bits should be ones.

6.1.4 System Bus Error Address High Register (CSR9)
The system bus error address high register is updated by this node’s commander
transactions or by system bus errors and contains the actual data found on the
system bus <127:64> during the latest C/A cycle. Whenever a system bus error is
detected and logged in the CBE register, the contents of this register are frozen
until all of the errors, not missed error, indications in the CBE register are
cleared.

For system bus command/address cycles that are not acknowledged, the failing
address is latched only in the error logging bits <31:0>. Bits <63:34> do not
contain valid information when this type of error is logged.

The system bus error address high register for CPU0 is located at address
2.0000.0120 16, and for CPU1 at address 2.0800.0120 16.

Figure 6–4 System Bus Error Address High Register (CBEAH)
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Table 6–4 System Bus Error Address High Register Description

Field Description

63:56 SBO [read-only]

(continued on next page)

System Bus Interface 6–11



6.1 CPU System Bus Register Definitions

Table 6–4 (Cont.) System Bus Error Address High Register Description

Field Description

This bit it undefined on power-up. These bits should be ones.

55:53 COMMANDER ID [read-only]

This field is undefined on power-up. Contains the commander identification code. The field is
encoded as:

000 - RESERVED
001 - CPU0
010 - CPU1
011 - RESERVED
100 - I/O
101 - RESERVED
110 - RESERVED
111 - RESERVED

52:50 TRANSACTION TYPE [read-only]

This field is undefined on power-up. The commander transaction request. The field is encoded as
follows:

000 - READ
001 - RESERVED
010 - EXCHANGE
011 - RESERVED
100 - WRITE
101 - RESERVED
110 - RESERVED
111 - NUT

49:34 EXCHANGE ADDRESS [read-only]

This field is undefined on power-up. It contains the tag of the victimized cache location. See
Chapter 19 for details.

33:32 SBO [read-only]

These bits should be ones.

31:24 SBO [read-only]

These bits should be ones.

23:21 COMMANDER ID [read-only]

This field is undefined on power-up. It contains the commander identification code. The field is
encoded as follows:

000 - RESERVED
001 - CPU0
010 - CPU1
011 - RESERVED
100 - I/O
101 - RESERVED
110 - RESERVED
111 - RESERVED

20:18 TRANSACTION TYPE [read-only]

(continued on next page)
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6.1 CPU System Bus Register Definitions

Table 6–4 (Cont.) System Bus Error Address High Register Description

Field Description

This field is undefined on power-up. The commander transaction request. The field is encoded as:

000 - READ
001 - RESERVED
010 - EXCHANGE
011 - RESERVED
100 - WRITE
101 - RESERVED
110 - RESERVED
111 - NUT

17:2 EXCHANGE ADDRESS [read-only]

This field is undefined on power-up. It contains the tag of the victimized cache location. See
Chapter 19 for details.

1:0 SBO [read-only]

These bits should be ones.

6.2 Multiprocessor Configuration CSR Definitions
The following paragraphs describe the registers used in multiprocessor
configurations.

6.2.1 Processor Mailbox Register (CSR10)
The processor mailbox register allows any system bus commander to communicate
with any other system bus commander (implementing the processor mailbox
register) without the need for any memory subsystem. This is primarily intended
to be used during the initialization of the system and system exception processing.

The processor mailbox registers are located at address 2.0000.0140 16 for CPU0
and address 2.0800.0140 16 for CPU1.

Figure 6–5 Processor Mailbox Register (PMBX)
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Table 6–5 Processor Mailbox Register Description

Field Description

63:0 XMIT/RCV [read/write]

This field is cleared on power-up. The protocol used in communication between the two processors
is completely under software control.
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6.2 Multiprocessor Configuration CSR Definitions

6.2.2 Interprocessor Interrupt Request Register (CSR11)
Each CPU has an interprocessor interrupt request register to support the
interprocessor interrupt IPR specified in the Alpha Architecture Reference
Manual. Because these are system bus visible registers, any system bus
commander, including the owner, can post an interprocessor interrupt to any
CPU. The interrupt is driven into the processor signal identified internally as
HIRR(3). Refer to the DECchip 21064 User Guide and Chapter 9.

The interprocessor interrupt request registers are located at address 2.0000.0160
16 for CPU0 and address 2.0800.0160 16 for CPU1.

Figure 6–6 Interprocessor Interrupt Request Register (IPIR)
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Table 6–6 Interprocessor Interrupt Request Register Description

Field Description

32 REQUEST INT CPU [write]

This field is cleared on power-up. Writing a 1 to this bit causes a hardware interrupt to be posted
to the CPU defined by the address of the CSR. Reading this register returns the state of the
interrupt request signal. This field is cleared by writing a ’0’.

0 UNDEFINED [read/write]

Undefined

6.3 System Interrupt Clear Register (CSR12)
The system interrupt clear register provides a path for the CPU to clear the edge
triggered interrupts from the system bus C_ERR_L signal, the SYS_EVENT_L signal,
and the interval timer interrupt, CINT_TIM signal. The C_ERR_Land SYS_EVENT_L
signals are broadcast to both CPU modules. The interval timer clock is received
from the system bus and used to generate an interval timer interrupt to each
processor. The interval timer interrupt is local to each CPU so that this interrupt
occurs 180 degrees out of phase with the other processor node. The system
generic system event interrupt is generated by any of the following:

• I/O halt request

• Operator control panel halt request

• An Enclosure event

• Power supply event

The generic transaction error signal C_ERR_L is generated by soft or hard errors
related to data transactions.
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6.3 System Interrupt Clear Register (CSR12)

The system interrupt clear register for CPU0 is located at addresses 2.0000.0180
16, and CPU1 at address 2.0800.0180 16.

Figure 6–7 System Interrupt Clear Register (SIC)
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Table 6–7 System Interrupt Clear Register Description

Field Description

34 UNDEFINED [read-only]

Undefined

33 SYSTEM EVENT CLEAR [read/write]

This field is cleared on power-up. A read of this register returns the state of the request signal
to the processor. An STQ to this register with a 1 in this bit position clears the latched CSYS_
EVENT_L interrupt signal driven to the local CPU. This interrupt can be masked in the 21064
CPU chip.

32 INTERVAL TIMER INTERRUPT CLEAR [read/write]

This field is cleared on power-up. A read of this register returns the state of the interrupt signal
to the processor. A STQ to this register with a 1 in this bit position clears the latched CINT_TIM
interrupt signal driven to the local CPU. This interrupt can be masked in the EV chip.

2 system bus ERROR INTERRUPT CLEAR [read/write]

This field is cleared on power-up. A read of this register returns the state of the interrupt signal
to the processor. An STQ to this register with a 1 in this bit position clears the latched C_ERR_
L interrupt signal driven to the local CPU. This interrupt can be masked in the 21064 chip.
Interrupts generated by errors detected by this node may be disabled via bit <43,11> in CSR6.

1 UNDEFINED [read-only]

Undefined

0 UNDEFINED [read-only]

Undefined

6.4 Address Lock Register (CSR13)
The address lock register is required by the Alpha architecture to support the
LDxL and STxC instructions. This is supported on DEC 4000 in ‘‘memory-like’’
regions only (Address<33> is 0). This register latches the address and sets the
LOCK ADDRESS VALID bit when an LDxL instruction to memory address space is
executed. The Lock Address Valid bit is cleared when a STxC to any location or a
system bus write to the locked location occurs even if the write is from this node,
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6.4 Address Lock Register (CSR13)

or by explicitly clearing it by writing bit <0>. If the Lock Address Valid bit is set,
and a LDxL to a different location occurs, the contents of the Lock Address field
is updated with the new address.

The resolution of the address lock in the DEC 4000 system is a single aligned 32
byte-block.

Note

The system software ensures that the state of the lock VALID flag in the
low longword is consistent with the lock flag in the upper longword by
performing quadword writes.

The lock flag must always be cleared before returning from PAL mode.

The address lock register for CPU0 is located at address 2.0000.01A016 and for
CPU1 address 2.0800.01A016.

Figure 6–8 Address Lock Register (ADLK)
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Table 6–8 Address Lock Register Description

Field Description

63:35 LOCK ADDRESS [read-only]

This field is set on power-up. An LDxL instruction to memory address space from this nodes
processor causes the contents of this register to be updated with the lock address. The contents
are invalid when the LOCK ADDRESS VALID bit is clear. Bit <63> always reads as 0.

32 LOCK ADDRESS VALID [read/write 1 to clear]

When set, this bit indicates that the LOCK ADDRESS field is valid and a STxC succeeds. This bit
is cleared on power-up, by a write from the system bus to the locked location, by a STxC from the
processor, or by writing a 1 to this bit.

31:3 LOCK ADDRESS [read-only]

Set on power-up. An LDxL instruction to memory address space from this node’s processor causes
the contents of this register to be updated with the lock address. The contents are invalid when
the LOCK ADDRESS VALID bit is clear. Bit <31> always reads as 0.

0 LOCK ADDRESS VALID [read/write 1 to clear]

(continued on next page)
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6.4 Address Lock Register (CSR13)

Table 6–8 (Cont.) Address Lock Register Description

Field Description

When set, this bit indicates that the LOCK ADDRESS field is valid and a STxC succeeds. This
bit is cleared on power-up, by a write from the system bus to the locked location, by a STxC from
the processor to memory address space, or by writing a 1 to this bit.

6.5 Miss Address Register (CSR14)
The miss address register captures the system bus read or exchange address
on every miss, and holds the 64th sample until a sample valid flag is cleared.
The read or exchange may have resulted from a DECchip CPU read or write
transaction. The latching strobe is skewed by 32 counts between the low and
high longwords of CSR14.

The miss address register is located at addresses 2.0000.01C016 for CPU0 and
address 2.0800.01C016 for CPU1.

Figure 6–9 Miss Address Register Low (MADRL)
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Table 6–9 Miss Address Register Low Description

Field Description

63:34 ADDRESS [read-only]

This field is undefined on power-up. Address field <33:4>, from CAD<63:34>.

33 TRANSACTION TYPE [read-only]

This field is undefined on power-up. When set, indicates read cleared indicates exchange.

32 MADR VALID [read-only]

Clear on power-up. When set, this bit indicates that this sample is valid. This bit is a read-only
copy of CSR7 bit 31.

31:2 ADDRESS [read-only]

This field is undefined on power-up. Address field <33:4>, from CAD<31:2>.

1 TRANSACTION TYPE [read-only]

This field is undefined on power-up. When set, indicates read cleared indicates exchange.

0 MADR VALID [read-only]

(continued on next page)
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6.5 Miss Address Register (CSR14)

Table 6–9 (Cont.) Miss Address Register Low Description

Field Description

This field is cleared on power-up. When set, this bit indicates that this sample is valid. This bit is
a read-only copy of CSR7 bit 31.

6.6 C³ Revision Register (CSR15)

Figure 6–10 C³ Revision Register (CRR)
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Table 6–10 C³ Revision Register Description

Field Description

63:34 SBO [read-only]

A read always returns a zero value.

33:32 REVISIONH [read-only]

Indicates the revision level of the bus interface (C³) device that handles longwords
3 and 1.

• 0 - rev 1

• 0 - rev 2 (if the bits 46 and 45 of the CBCTL Register can be set and cleared
and the revision in the CRR field indicate a 0 then the bus interface slice is
rev 2.)

• 3 - rev 3

Note

The revision indicated in bits 33,32 and 1,0 must
agree otherwise the CPU will not function.

31:2 SBO [read-only]

A read always returns a zero value.

1:0 REVISIONL [read-only]

(continued on next page)
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6.6 C³ Revision Register (CSR15)

Table 6–10 (Cont.) C³ Revision Register Description

Field Description

Indicates the revision level of the bus interface (C³) device that handles longwords
2 and 0.

• 0 - rev 1

• 0 - rev 2 (if the bits 14 and 13 of the CBCTL Register can be set and cleared
and the revision in the CRR field indicate a 0 then the bus interface slice is
rev 2.)

• 3 - rev 3

Note

The revision indicated in bits 33,32 and 1,0 must
agree otherwise the CPU will not function.

6.7 D-bus
A 16 KB serial ROM is located on the CPU module and is used to supply the
processor with power-up code. This ROM pattern is loaded into the 21064
processor’s internal instruction cache under the control of the processor after
power-up reset only.

The loaded data consists of:

• Each cache block’s tag

• ASN

• ASM

• Valid

• Branch history

• 8 longwords of data

This data is loaded in sequential order, starting with block 0 and ending with
block 255. The order in which bits within each block are serially loaded is shown
in Figure 6–11.
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Figure 6–11 21064 Serial Load Data Format

BH LW7 LW5 LW3 LW1 V ASM ASN TAG LW6 LW4 LW2 LW0

SHIFT DIRECTION

Bits within each field are arranged with high−order bit on the left.

An extension serial ROM of up to 16 KB is automatically multiplexed on to the
D-bus after the initial 16 KB is read into the processor.

The software system is able to load this ROM into the data cache of the processor
(or the backup cache to execute it) by alternately toggling the TMT bit in the
SL_XMIT register of the processor, and reading the RCV bit of the processors
SL_RCV register.

It is unnecessary to read the unused portion of the initial serial ROM under
program control. The extension serial ROM can be read immediately. The first
extension ROM data bit is present in the SL_RCV register 500 ns after the
completion of the initial serial ROM load and 500 ns after every subsequent 0 to
1 transition of the TMT bit in the SL_XMIT register.

The TMT bit should not be toggled from 1 to 0 nor 0 to 1 with a delay smaller than
500 ns between transitions. This ROM can be read only once, after a hard system
reset.

As initialization proceeds, the D-bus microcontroller (87C652) monitors the
progress of the 21064 processor as it reads each serial ROM by observing the
state of the serial ROM read status signals. When all ROMs are read, or an error
is detected, the micro has the ability to communicate with 21064 over the 21064
Serial Line Interface.

To monitor the bit by bit progress of 21064’s reading the serial ROMs, the D-bus
micro drives a 1 on EV/SERIAL LINE OUTPUT and enables communication with
21064 by clearing the DISABLE COMMUNICATIONS WITH EV bit. By monitoring the
EV/SERIAL LINE input, the D-bus micro detects each clock sent to the serial ROM
devices.

See Table 6–11 for mapping of D-bus microcontroller ports to module functions.

Table 6–11 D-bus Micro Port Mapping

Port Port Type Init State Functional Description

P3.5 I — Interval timer interrupt request

P3.4 I — Regular clock input

EV 6.6 - 4.7344MHz

EV 10.0 - 3.1250MHz

P3.3 I — Interval timer interrupt request

(continued on next page)
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Table 6–11 (Cont.) D-bus Micro Port Mapping

Port Port Type Init State Functional Description

P3.2 I — Serial ROM read status; when set
DECchip’s instruction cache initial serial
ROM load not complete

P3.1 O 1 DECchip/Serial line output - active only
when P2.7 is cleared

P3.0 I — DECchip/Serial line input - active only
when P2.7 is cleared

P2.7 O 1 Disable communication with 21064

P2.6 I — CPU ID - CPU0 = 1, CPU1 = 0

P2.5 I — Serial ROM read status; when set
supplemental serial ROM 3 not read

P2.4 I — Serial ROM read status; when set
supplemental serial ROM 2 not read

P2.3 I — Serial ROM read status; when set
supplemental serial ROM 1 not read;
as the processor never completely reads
this ROM this is never cleared.

P2.2 I — Serial ROM read status. When set, 21064
instruction cache initial serial ROM load
not completed.

P2.1 I — Clock/Voltage detect - When clear,
indicates that oscillator is not running
or 3.3 V power is below regulation.

This is useful only when CPU ID is 0;
if CPU ID is 1 CRESET L would assert
when either condition above occurred,
which in turn would cause the D-bus
micro to reset as well.

P2.0 I — 21064 processor resting due to 3.3V under
voltage or oscillator not running. As
above, useful only if CPU ID is 0.

P1.7 B — Serial command bus data line

P1.6 B — Serial command bus clock line

The D-bus microcontroller’s input oscillator frequency is as follows:

Table 6–12 D-bus Microcontroller Clock Frequency

System Bus
OSC (MHz)

system bus
Period (ns) Micro OSC (MHz)

333 24.0 10.41667

320 25.0 10.00000

303 26.4 9.46970

200 40.0 6.25
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Table 6–13 D-bus Microcontroller System Control Bus Address

Transaction CPU 0 Address 16 CPU1 Address 16

Read B1 B3

Write B0 B2

6.8 System Bus Arbiter
The system bus arbiter supports three arbitrated nodes: two CPU modules, and
one I/O module. The arbiter logic is built into the CPU0 module. Arbitration is
executed in a prioritized round-robin scheme. I/O is the highest priority, and both
CPU’s a lesser but equal priority. This provides the arbitration characteristic of
CPU0, I/O, CPU1, I/O, CPU0, I/O, etc. If the system contains only 1 processor
module, the arbitration algorithm becomes a standard round-robin. These
arbitration characteristics occur only when the system bus is saturated.

When the system bus is saturated with write traffic, a single dead system bus
cycle (nominal 24 ns) is inserted every third write transaction. This is done to
avoid starving the 21064 from its backup cache.

To minimize arbitration overhead, arbitration cycles occur in parallel with data
transfer cycles.

The I/O module requests and is granted the system bus using the IOREQ_L and
IOG_L signals, and CPU module1 using the CPUREQ_L and CPUG_L signals.

6.9 System Bus Clock Generator/Distributor
The system bus clock generator/distributor is located on the CPU0 processor
module. The system bus clock is asynchronous to the CPU clock. However, the
frequency of the system bus clock is not more than the processors clock frequency
(nominally 166.67 MHz) divided by 4 minus 2.4 ns. This clock consists of two
phases where phase 3 is 270 degrees behind phase 1. It is distributed as an
ECL differential pair on tightly controlled/matched 50 
 lines. Each system bus
module receives its own copy of the system bus clock.

If the system bus clock oscillator stops, CRESET L will be asserted.

6.10 System Bus CRESET L Generation
SYSTEM BUS CRESET L is generated on CPU0. This signal asserts on the following
conditions:

• ASYNCHRESET from the power subsystem is asserted.

• The oscillator on the system bus or 21064 on CPU0 stop.

• The 3.3 V supply on CPU0 goes under voltage.

The clock detect circuits on the CPU module guarantee that the oscillator
generating the clocks for the module have been running for at least 20 ms. This
is to allow enough time for the oscillators to stabilize.

System bus CRESET L deassertion is synchronous with the system bus PHI1 H
clock.

ASYNCHRESET from the power subsystem must remain asserted for at least 40 ms.
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6.11 OCP Halt Request Buffer
The halt request line from the operator control panel is driven to CPU0 module
and buffered there, and re-driven out the SYSTEM EVENT INTERRUPT LINE.

6.12 Nonvolatile EEPROM
The EEPROM is a nonvolatile 256 x 8 byte RAM that resides on the serial control
bus. This RAM is used to store the CPU module’s serial number as well as
maintain error logging information. The last four bytes of this RAM also contain
the following information:

RAM Address 16 Description

FC First nibble contains the values to program SELECT DRACK, and
2nd QW SELECT in the CBCTL register. Refer to Section 6.1 for the
definitions and expected values for these bits.

The second nibble contains the cache size of the module as programmed
in the BIU_CTL register. Refer to Table 4–16 for the definition of the
actual values.

FD This byte contains a number indicating how many serial ROM’s are
used in this module’s implementation. Nominally this value is 2.
(Format is binary.)

FE Bits <7:1> are reserved, bit <0> indicates that the DEC 4000-xx
Console should be unloaded automatically.

FF This location contains the byte checksum of the last four bytes of the
RAM. Thus by adding locations FC through FF ignoring overflows, a 0
sum indicates clean data.

The serial control bus addresses for these RAMs are shown below:

Table 6–14 Nonvolatile EEPROM System Control Bus Address

Transaction CPU 0 Address 16 CPU1 Address 16

Read A9 AB

Write A8 AA

System Bus Interface 6–23



7
CPU Module Transactions

The CPU module has two transaction initiators: the processor and the system
bus interface controller.

The processor initiates a transaction as a result of a program operation that
requires access to memory or I/O devices. When a local resource can not service
the processor request (as a result of a cache miss or I/O space access), a request
is made to the system bus interface controller to obtain the information from the
system bus.

System bus transactions occur as a result of system bus resource requests from
any of the possible system bus Commanders. Transactions are monitored by
every member of the bus for the following reasons:

• Any module on the system bus could be a responder to a specific system bus
transaction.

• The system bus implements a ‘‘snooping’’ protocol to guarantee cache
coherence.

See Chapter 19 for details.

7.1 Processor Transactions
The DECchip CPU requests an external cycle when it determines that the cycle it
wants to perform requires module level action.

The cycle types are as follows:

• A BARRIER cycle is generated by the MB instruction. As no external write
buffer exists between the processor and an error detection point in the system
the DEC 4000 CPU module acknowledges the cycle.

• The FETCH and FETCHM cycles are generated by the FETCH and FETCHM
instructions respectively. The backup cache controller acknowledges the
instruction and no other action takes place.

• The READ_BLOCK cycle is generated on read misses. The backup cache
controller reads the addressed block from memory and supplies it, 128 bits at
a time, to 21064 via the data bus. The backup cache location that missed is
victimized and updated with the new cache entry.

• The WRITE_BLOCK cycle is generated on write misses, and on writes to
shared blocks. The backup cache controller pulls the write data, 128 bits at a
time, from 21064 via the data bus, and writes the valid longwords to memory.
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• The LDxL cycle is generated by the LDLL and LDQL instructions. The cycle
works just like a READ_BLOCK, although the backup cache is not probed by
the processor. The backup cache controller performs the backup cache probe
and if the reference is to cacheable address space, the address is latched into
the Address Lock Register.

• The STxC cycle is generated by the STLC and STQC instructions. The cycle
works just like a WRITE_BLOCK, although the backup cache is not probed
by the processor. The backup cache controller performs the backup cache
probe and the cycle is acknowledged with the completion status.

Table 7–1 Processor Initiated Transactions

TRANSACTION Activity

P-Cache Read Not visible outside processor

P-Cache Write Backup cache written if hit
Write Block Generated if Miss

P-Cache Masked Write Backup cache written if hit
Write Block Generated if Miss

Fast backup cache Read Hit Backup cache data read

Fast backup cache Write Hit Data written to backup cache data store, DIRTY bit set

Fast backup cache Masked Write
Hit

Data written to backup cache data store, DIRTY bit set

Read Block1 System bus read or exchange cycle generated

Write Block2 System bus read or exchange and possibly write or nut cycles generated

LDxL - Load Lock System bus read, exchange, or nut cycle generated,
IF (cacheable address space reference) address latched and Lock bit set

IF (non-cacheable address space) no change to address lock or LOCK
bit.

STxC - Store Conditional System bus read, exchange and possibly nut or write cycles generated,
IF (cacheable address space reference) LOCK bit cleared (it was set)
store completes

IF (non-cacheable address space) no change to LOCK bit, store failed if
responder asserts UC_ERR L during cycle.

Barrier3 All data buffers flushed to system coherence point.

FETCH/FETCHM4 Acknowledge request, no other module level activity.

1Generated as a result of a Fast backup cache Read Miss.
2Generated as a result of a Fast backup cache Write Miss.
3Generated as a result of the execution of a Memory Barrier Instruction.
4Generated as a result of the execution of a FETCH or FETCHM Instruction.

7.1.1 21064 CPU Chip Transactions
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7.1.1.1 Fast External Cache Read Hit
A fast external cache read consists of a probe read overlapped with the first data
read, followed by the second data read if the probe hits. The following diagram
illustrates the DEC 4000 CPU fast external cache read which selects 4 CPU cycle
reads (BC_RD_SPD = 3), 4 CPU cycle writes (BC_WR_SPD = 3), chip enable
control (OE = L).

If the probe misses, the cycle aborts at the end of clock cycle 3. If the probe hits
and the miss address had bit 4 set the two data reads would have been swapped
(dataA_h[4] would have been true in cycles 0, 1, 2, 3, and would have been false
in cycles 4, 5, 6, 7).

21064 CPU
Internal Clock |0 |1 |2 |3 |4 |5 |6 |7 |

adr_h |-------------------------------|
tagCEOE_h |---------------|
tagCtlWE_h
tagAdr_h -ram-|
tagCtl_h -ram-|
iMapWE_h, dMapWE_h |-------|
dataCEOE_h |-------------------------------|
dataWE_h
dataA_h[4] |---------------|
data_h -ram-0-| -ram-1-|
check_h -ram-0-| -ram-1-|

7.1.1.2 Fast External Cache Write Hit
A fast external cache write consists of a probe read, followed by 1 or 2 data writes.
The following diagram shows that the DEC 4000 CPU external cache transaction
is using 4 CPU cycle reads (BC_RD_SPD = 3), 4 CPU cycle writes (BC_WR_SPD
= 3), chip enable control (OE = L), and a 2 cycle write pulse centered in the 4
cycle write (BC_WE_CTL[15..1] = LLLLLLLLLLLLLHH).

Note that the 21064 CPU drives the TAGCTL_H pins one CPU cycle later than it
drives the data_h and check_h pins relative to the start of the write cycle. This is
because, unlike DATA_H and CHECK_H, the TAGCTL_H field must be read during the
tag probe which precedes the write cycle.

Because the 21064 can switch its pins to a low impedance state much more
quickly than most RAMs can switch their pins to a high impedance state, the
21064 CPU waits one CPU cycle before driving the TAGCTL_H pins in order to
minimize tristate driver overlap. If the probe misses, the cycle aborts at the end
of clock cycle 3.

21064 CPU
Internal Clock |0 |1 |2 |3 |4 |5 |6 |7 |8 |9 |10 |11 |

adr_h |-----------------------------------------------|
tagCEOE_h |---------------| |-------|
tagCtlWE_h |-------|
tagAdr_h -ram-|
tagCtl_h -ram-| |-cpu-------|
dataCEOE_h |-------| |-------|
dataWE_h |-------| |-------|
dataA_h[4] |---------------|
data_h |-cpu-0---------|-cpu-1---------|
check_h |-cpu-0---------|-cpu-1---------|
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7.1.1.3 READ_BLOCK
A READ_BLOCK transaction appears at the external interface on external cache
read misses, either because it really was a miss, or because the external cache
has not been enabled.

sysClkOut Cycle | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
sysClkOut1_h |---| |---| |---| |---| |---| |---| |---| |
adr_h |-------------------------------------------|
RAM Ctl ------------|
data_h |-0-----| |-1-----|
check_h |-0-----| |-1-----|
cReq_h |---------------------------------------|
cWMask_h |-------------------------------|
dRAck_h |-------| |-------|
cAck_h |-------|

1. The CREQ_H pins are always idle in the system clock cycle immediately before
the beginning of an external transaction. The ADR_H pins always change to
their final value (with respect to a particular external transaction) at least
one CPU cycle before the start of the transaction.

2. The READ_BLOCK transaction begins. The 21064 CPU has already placed
the address of the block containing the miss on adr_h. The 21064 CPU places
the quadword-within-block and the I/D indication on cWMask_h. The 21064
CPU places a READ_BLOCK command code on CREQ_H. The 21064 CPU
clears the RAM control pins DATAA_H[4..3], DATACEOE_H[3..0] and TAGCEOE_H
no later than one CPU cycle after the system clock edge where the transaction
begins.

3. The external logic obtains the first 16 bytes of data. Although a single stall
cycle has been shown here, there could be no stall cycles, or many stall cycles.

4. The external logic has the first 16 bytes of data. It places it on the DATA_H
and CHECK_H buses. It asserts DRACK_H to tell the 21064 that the data and
check bit buses are valid. The 21064 detects DRACK_H at the end of this cycle,
and reads in the first 16 bytes of data at the same time.

5. The external logic obtains the second 16 bytes of data. Although a single stall
cycle has been shown here, there could be no stall cycles, or many stall cycles.

6. The external logic has the second 16 bytes of data. It places it on the DATA_H
and CHECK_H buses. It asserts DRACK_H to tell the 21064 CPU that the data
and check bit buses are valid. The 21064 CPU detects DRACK_H at the end
of this cycle, and reads in the second 16 bytes of data at the same time. In
addition, the external logic places an acknowledge code on CACK_H to tell
the 21064 that the READ_BLOCK cycle is completed. The 21064 detects the
acknowledge at the end of this cycle, and may change the address.

7. Everything is idle. The 21064 can start a new external cache cycle at this
time.

Because external logic owns the RAMs by virtue of 21064 having deasserted its
RAM control signals at the beginning of the transaction, external logic may cache
the data by asserting its write pulses on the external cache during cycles 3 and 5.

The 21064 CPU performs EDC checking on the data supplied to it through the
data and check buses if so requested by the acknowledge code. It is not necessary
to place data in the external cache to get checking.
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7.1.1.4 Write_block
A WRITE_BLOCK transaction appears at the external interface on external cache
write misses (either because it really was a miss, or because the external cache
has not been enabled), or on external cache write hits to shared blocks.

sysClkOut Cycle | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
sysClkOut1_h |---| |---| |---| |---| |---| |---| |---| |-
adr_h |-------------------------------------------|
RAM ctl ------------|
data_h |-0-----| |-1-----|
check_h |-0-----| |-1-----|
cReq_h |---------------------------------------|
cWMask_h |---------------------------------------|
dOE_l |-------| |-------|
dWSel_h |-------|
cAck_h |-------|

1. The CREQ_H pins are always idle in the system clock cycle immediately before
the beginning of an external transaction. The ADR_H pins always change to
their final value (with respect to a particular external transaction) at least
one CPU cycle before the start of the transaction.

2. The WRITE_BLOCK cycle begins. The 21064 has placed the address of the
block on ADR_H. The 21064 places the longword valid masks on CWMASK_H and
a WRITE_BLOCK command code on CREQ_H. The 21064 clears DATAA_H[4..3]
and TAGCEOE_H no later than one CPU cycle after the system clock edge at
which the transaction begins. The 21064 clears DATACEOE_H[3..0] at least one
CPU cycle before the system clock edge where the transaction begins.

3. The external logic detects the command, and asserts DOE_L to tell the 21064
to drive the first 16 bytes of the block onto the data bus.

4. The 21064 drives the first 16 bytes of write data on to the DATA_H and CHECK_
H buses, and the external logic writes it into the destination. Although a
single stall cycle has been shown here, there could be no stall cycles, or many
stall cycles.

5. The external logic asserts DOE_L and DWSEL_H to tell the 21064 to drive the
second 16 bytes of data onto the data bus.

6. The 21064 drives the second 16 bytes of write data onto the DATA_H and
CHECK_H buses, and the external logic writes it into the destination. Although
a single stall cycle has been shown here, there could be no stall cycles, or
many stall cycles. In addition, the external logic places an acknowledge code
on CACK_H to tell the 21064 that the WRITE_BLOCK cycle is completed.
The 21064 detects the acknowledge at the end of this cycle, and changes the
address and command to the next values.

7. Everything is idle. Because external logic owns the RAMs by virtue of 21064
having deasserted its RAM control signals at the beginning of the transaction,
external logic may cache the data by asserting its write pulses on the external
cache during cycles 3 and 5.

The 21064 CPU performs EDC generation on data it drives onto the data bus.
DEC 4000’s 21064 CPU interface performs EDC checking and correction on this
data.
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Although in the above diagram external logic cycles through both 128-bit chunks
of potential write data, this need not always be the case. External logic must
pull from the 21064 chip only those 128-bit chunks of data that contain valid
longwords as specified by the CWMASK_H signals. The only requirement is that if
both halves are pulled from the 21064, the lower half must be pulled before the
upper half.

7.1.1.5 LDxL
An LDxL transaction appears at the external interface as a result of an LDQL
or LDLL instruction being executed. The external cache is not probed. With the
exception of the command code output on the CREQ pins, the LDxL transaction is
exactly the same as a READ_BLOCK transaction. (See Section 7.1.1.3.)

7.1.1.6 STxC
An STxC transaction appears at the external interface as a result of STLC and
STQC instructions. The external cache is not probed.

The STxC transaction is the same as the WRITE_BLOCK transaction, with the
following exceptions:

1. The code placed on the CREQ pins is different.

2. The CWMASK field never validates more than a single longword or quadword
of data.

3. External logic has the option of making the transaction fail by using the cAck
code of STxC_FAIL. It may do so without asserting either DOE_L or DWSEL_H.

See Section 7.1.1.4.

7.1.1.7 BARRIER
The BARRIER transaction appears on the external interface as a result of an MB
instruction. The acknowledgment of the BARRIER transaction tells the 21064
CPU that all invalidates have been supplied to it, and that any external write
buffers have been pushed out to the coherence point. Any errors detected during
these operations can be reported to the 21064 when the BARRIER transaction is
acknowledged. The DEC 4000 CPU immediately acknowledges this transaction
because it does not buffer block_write transactions.

sysClkOut Cycle | 0 | 1 | 2 |
sysClkOut_h |---| |---| |---| |
cReq_h |---------------|
cAck_h |-------|

1. The BARRIER transaction begins. The 21064 places the command code for
BARRIER onto the CREQ_H outputs.

2. The external logic notices the BARRIER command, and because it has
completed processing the command (it is not going to do anything), it places
an acknowledge code on the CACK_H inputs.

3. The 21064 detects the acknowledge on CACK_H, and removes the command.
The external logic removes the acknowledge code from CACK_H. The cycle is
finished.
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7.1.1.8 FETCH
A FETCH transaction appears on the external interface as a result of a FETCH
instruction. The transaction supplies an address to the external logic that DEC
4000 chooses to ignore and responds with an immediate acknowledge.

sysClkOut Cycle | 0 | 1 | 2 | 3 |
sysClkOut_h |---| |---| |---| |
adr_h |-------------------|
RAM ctl ------------|
cReq_h |---------------|
cAck_h |-------|

1. The CREQ_H pins are always idle in the system clock cycle immediately before
the beginning of an external transaction. The ADR_H pins always change to
their final value (with respect to a particular external transaction) at least
one CPU cycle before the start of the transaction.

2. The FETCH transaction begins. The 21064 has placed the effective address
of the FETCH on the address outputs. The 21064 places the command code
for FETCH on the CREQ_H outputs. The 21064 clears the RAM control pins
(DATAA_H[4..3], DATACEOE_H[3..0] and TAGCEOE_H) no later than one CPU cycle
after the system clock edge begins the transaction.

3. The external logic notices the FETCH command, and because it has completed
processing the command (it is not going to do anything), it places an
acknowledge code on the CACK_H inputs.

4. The 21064 detects the acknowledge on CACK_H, and removes the address and
the command. The external logic removes the acknowledge code from CACK_H.
The cycle is finished.

7.1.1.9 FETCHM
A FETCHM transaction appears on the external interface as a result of a
FETCHM instruction. The transaction supplies an address to the external logic,
which DEC 4000 chooses to ignore and responds with an immediate acknowledge.
With the exception of the command code placed on CREQ_H, the FETCHM
transaction is the same as the FETCH transaction. Refer to Section 7.1.1.8.

7.1.2 Cacheable versus Non-Cacheable, and Allocate-Invalid

Cacheable
Only memory-like locations are cached. Memory-like locations are defined as
locations where address bit <33> is equal to 0. These locations are placed in
the backup cache when it is enabled as a side effect of the processor issuing a
READ_BLOCK. They are also placed in the primary cache as the read data is
acknowledged with OK.

Non-Cacheable
Non-memory-like locations are not cached. These are defined as locations where
address bit <33> is equal to 1. These locations are not placed in the backup
cache, and the read data is acknowledged with OK_NCACHE, or OK_NCACHE_
NCHCK. Writes to non-cacheable space are restricted to aligned quadword accesses
only. The quadword write data is presented to the system bus in the proper
quadword associated with the address of the access. The data presented in the
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other quadwords of the cache block (during that system bus cycle) is undefined.
However the correct system bus parity is driven. No read merge occurs. All I/O
locations are non-cacheable locations.

Allocate-Invalid
When the ENB BACKUP CACHE INIT bit in the BCC register is clear, memory-like
locations with address bit <33> equal to 0 and address bit <32> equal to 1, are
treated as cacheable locations to be allocated in the backup cache as invalid.
Read references to locations in this address space are intercepted by the C³ and
cause either an EXCHANGE, or a READ request on the system bus (depending
on the state of the DIRTY bit of the cache block in question). Address bit <32> is
masked off before the address is presented on the system bus to provide a legal
DEC 4000 system bus address.

When the read data is returned, the cache block in the backup cache is marked
invalid.

When the ENB BACKUP CACHE INIT bit in the BCC register is set, memory-like
locations with address bit <33> equal to 0 and address bit <32> equal to 1,
is treated as Cacheable locations to be allocated in the backup cache. Read
references to locations in this address space are intercepted by the C³ and cause
the data found in the local CPU modules CSR’s to be returned as the read
data and subsequently filled into the backup cache. Address bit <32> is passed
through the C³ and presented to the system bus. The C³ acknowledges the
transaction and the other CPU module will not probe its backup cache. See the
definition of the backup cache control and status register, and Section 11.2 for
details.

This feature can be used to flush dirty entries from the cache, and/or to guarantee
that all cache entries are marked invalid. Simple flushing of dirty entries is
accomplished by setting the FORCE SHARED bit in the CBCTL register, and
walking the Allocate-Invalid address space to flush the cache (a process at low
IPL). When the full cache address space (nominally 1-4 MB) has been accessed,
the cache is guaranteed to be clean; however not necessarily invalid. If the
routine that flushes the cache operates at an IPL higher than any other processes
can execute, when complete, the cache is clean and marked completely invalid.

Note

As the bus interface re-maps all references through allocate-invalid space
by clearing address bit <32> and presenting the resulting address to the
memory subsystem. Only privileged processes should be allowed to map
Allocate-invalid space into their virtual address space.

Figure 7–1 shows the address map.
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Figure 7–1 Address Space Map
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7.2 System Bus Transactions
There are four system bus transaction types: READ, WRITE, EXCHANGE,
and NUT. READ and WRITE transactions consist of a command/address cycle
followed by two data cycles. The EXCHANGE transaction is used for dirty victim
processing and consists of a command/address cycle followed by four data cycles,
two write and two read. The NUT transaction consists of a command/address
cycle only.

Because the system bus is based on a ‘‘snooping’’ protocol, every system bus
transaction is monitored by all system bus participants. The memory modules
can act only as responders or bystanders, and as such respond only to requests
from bus commanders. The processor and I/O modules can act as either
commanders, responders, or bystanders.

Table 7–2 System Bus Initiated Transactions

Transaction Abbrv

System
Bus
Cycles Activity

Write WR 7 backup cache probe

IF HIT update/invalidate
IF update pull system bus SHARED, cache block SHARED =
prev SHARED

Read RD 7 Backup cache probe; Provide data if HIT dirty

Exchange XD 7 Backup cache probe (READ); Provide data if HIT dirty

No-op
Transaction

NUT 7 No operation

See Table 7–4 for a detailed description of the control flows for system bus
initiated cycles.
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7.2.1 CPU as Commander
When one of the CPU module’s processors requests data that does not reside on
the CPU module, a request is passed to the system bus interface controller, and a
system bus transaction is initiated.

7.2.2 CPU as Bystander
The CPU module is a bystander when some other system bus commander has
requested data from a resource on the system bus that does not reside exclusively
on the CPU module.

As a bystander, each backup cache controller may have to update or invalidate
a stale datum, or provide dirty data to the system bus thereby preempting a
memory module from returning stale data (for that transaction only).

7.2.3 CPU as Responder
The CPU module is a responder when some other system bus commander
requests data from a system bus visible CPU module register.

7.3 Control Flow of CPU Module Transactions
The following sections detail the flow of the processor module transactions.

7.3.1 Processor Initiated Transactions
The CPU module backup cache controller provides backup cache control under
the following circumstances:

• A backup cache miss occurs

• A LDxC execution

• A STxC execution

• A FETCH/FETCHM execution

• MB execution

• When a write to a shared cache block is detected

The behavior of the backup cache controller is based on the current processor
cycle type, the state of the backup cache control bits, and the state of the system
bus. The Table 7–3 illustrates the control flows for these cycles.
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7.3 Control Flow of CPU Module Transactions

Table 7–3 Processor Initiated Transactions Control Flow

Datum/Cache

Cycle Status Size Activity

Read HIT† X‡ X

• Block read - Processor managed3,2

• Update duplicate tag store

Write HIT NOT Shared† X

• Block written (DIRTY = TRUE) -
processor managed3

Shared 32 bytes

• Request system bus3,4,5

• system bus WRITE cycle1,5

• Update Cache block (DIRTY = FALSE,
SHARED = system bus shared during
write)

• Relinquish system bus

• Acknowledge write

Shared < 32
bytes

• Request system bus3,4,5

• System bus WRITE cycle1,5 with merge

• Update cache block (DIRTY = FALSE,
SHARED = system bus shared during
write)

• Relinquish system bus

• Acknowledge write

1See Section 5.5 for details.
2Processor checks data EDC.
3Processor checks tag store and control store parity.
4backup cache controller checks tag store and control store parity.
5backup cache controller checks data EDC.

†‘‘Fast Cache’’ cycles, external logic does not intervene

‡X - Don’t care

(continued on next page)
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7.3 Control Flow of CPU Module Transactions

Table 7–3 (Cont.) Processor Initiated Transactions Control Flow

Datum/Cache

Cycle Status Size Activity

Read MISS No victim /
Clean victim

X

• Request system bus3,4

• System bus READ cycle6

• Cache block allocated2 (SHARED =
system bus share during read, DIRTY =
FALSE)

• Relinquish system bus

• Acknowledge read

Dirty Victim X

• Request system bus3,4

• System bus EXCHANGE cycle5,6

• Cache block allocated2 (SHARED =
system bus share during read, DIRTY =
FALSE)

• Relinquish system bus

• Acknowledge read

Enable
allocate
disabled (BCC
bit 0 clear)

X

• Request system bus

• If backup cache probe dirty system bus
EXCHANGE cycle6

• If backup cache probe not dirty system
bus READ cycle6

• Update cache block (VALID = NOT
VALID)

• Relinquish system bus

• Acknowledge Read no cache

2Processor checks data EDC.
3Processor checks tag store and control store parity.
4backup cache controller checks tag store and control store parity.
5backup cache controller checks data EDC.
6system bus interface controller checks system bus parity.

(continued on next page)
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7.3 Control Flow of CPU Module Transactions

Table 7–3 (Cont.) Processor Initiated Transactions Control Flow

Datum/Cache

Cycle Status Size Activity

Write MISS No victim /
Clean victim

< 32
bytes

‘‘Multiple-Arb operation’’

• Request system bus3,4

• System bus READ cycle6

• Cache block allocated (SHARED = system
bus share during read, DIRTY = FALSE)

• Continue to request system bus

• Write data merged with cache block
(SHARED = SHARED, DIRTY = FALSE)

• System bus WRITE cycle1,5

• Update backup cache

• Relinquish system bus

• Acknowledge write

Dirty victim < 32
bytes

‘‘Multiple-Arb Operation’’

• Request system bus3,4

• System bus EXCHANGE cycle5,6

• Cache block allocated (SHARED = system
bus share during read, DIRTY = FALSE)

• Continue to request system bus

• Write data merged with cache block
(SHARED = SHARED, DIRTY = FALSE)

• System bus WRITE cycle1,5

• Update backup cache

• Relinquish system bus

• Acknowledge write

1See Section 5.5 for details.
3Processor checks tag store and control store parity.
4backup cache controller checks tag store and control store parity.
5backup cache controller checks data EDC.
6system bus interface controller checks system bus parity.

(continued on next page)
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7.3 Control Flow of CPU Module Transactions

Table 7–3 (Cont.) Processor Initiated Transactions Control Flow

Datum/Cache

Cycle Status Size Activity

Enable
Allocate
Disabled (BCC
bit 0 clear)

< 32
bytes

‘‘Multiple-Arb operation’’

• Request system bus

• If backup cache probe dirty system bus
EXCHANGE cycle6

• If backup cache probe not dirty system
bus READ cycle6

• Update Cache block (VALID = NOT
VALID)

• Continue to request system bus

• System bus WRITE cycle from merge
buffer

• Relinquish system bus

• Acknowledge write

X 32 bytes

• Request system bus3,4

• System bus WRITE cycle5

• Relinquish system bus

• Acknowledge write

LOAD LOCK X X

• Request system bus

• Probe backup cache4

• Same as generic read except if reference
to cacheable address space lock bit set
after arbitrating for the system bus;
otherwise no change to lock bit.6 (lock bit
VALID = TRUE, lock address = access
address) (IF (backup cache hit) change
system bus read to NUT.)2

• Relinquish system bus

• Acknowledge read

2Processor checks data EDC.
3Processor checks tag store and control store parity.
4backup cache controller checks tag store and control store parity.
5backup cache controller checks data EDC.
6system bus interface controller checks system bus parity.

(continued on next page)
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7.3 Control Flow of CPU Module Transactions

Table 7–3 (Cont.) Processor Initiated Transactions Control Flow

Datum/Cache

Cycle Status Size Activity

STORE
COND -
Cacheable

X X

• Request system bus

• Probe backup cache 4

• Same as generic write to except fails IF
(Lock bit VALID = FALSE). (IF (write
failed due to lock bit not set) change
system bus write to NUT.)

• Relinquish system bus

• Acknowledge write (conditionally)

STORE
COND. I/O

X X

• Request system bus

• If the CUCERR_L signal is asserted by
the responder module during the first
cycle 4 of a system bus transaction when
the DECchip CPU is performing a store
conditional to non-cacheable address
space, the write does not complete, and
the store conditional failed indicators are
signaled to the processor.

• Relinquish system bus

• Acknowledge write (conditionally)

4backup cache controller checks tag store and control store parity.

7.3.2 System Bus Initiated Transactions
The CPU module system bus interface controller provides backup cache control
when the system bus is active.

The behavior of the system bus interface controller is determined by the system
bus transaction, and the state of the backup cache control bits. Table 7–4
illustrates the control flows for these cycles. The activity column shows the
activity that occurs after the processor has relinquished its ownership of the
backup cache and the backup cache TAG probe results are available.
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7.3 Control Flow of CPU Module Transactions

Table 7–4 System Bus Initiated Transactions Control Flow

Probe Result

Cycle Status Activity

Read HIT
backup cache

Dirty Assert system bus DIRTY and SHARED set SHARED
bit in tag control store if not already set, cache block
remains DIRTY.
Provide Data to system bus1,2

Clean Assert system bus SHARED1.
Set SHARED bit in tag control store if not already set.

Read HIT
duplicate tag
store, or lock
address (if
valid)

Clean Assert system bus SHARED.

Write HIT X‡ IF (location found in P-Cache or Commander ID is I/O
module or in ARB) Update backup cache (Clean, shared
= no change) and assert system bus SHARED
ELSE Invalidate backup cache location (clean, not
shared)1,3,4.
IF (HIT address lock register) clear address lock.

or

IF (I/O conditional update set)
IF (location found in P-Cache) Update backup

cache (Clean, shared = no change) and assert system bus
SHARED

ELSE Invalidate backup cache location (clean, not
shared)1,3,4.
IF (HIT address lock register) clear address lock.

Exchange HIT Dirty Assert system bus DIRTY and SHARED. Address Lock
not changed.
Provide Read data to system bus123.

Clean Assert system bus SHARED13. Address Lock not
changed.

Read MISS NA† NOP13.
IF (HIT Address Lock register) assert system bus
SHARED.

Write MISS NA NOP134

IF (WRITE address hits the address lock) clear address
lock.

1Backup cache controller checks tag store and control store parity.
2Backup cache controller checks data EDC.
3System bus interface controller checks system bus parity.
4System bus interface controller checks duplicate tag store parity.

†Not applicable

‡ Don’t care

(continued on next page)
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7.3 Control Flow of CPU Module Transactions

Table 7–4 (Cont.) System Bus Initiated Transactions Control Flow

Probe Result

Cycle Status Activity

Exchange
MISS

NA NOP13.
IF (READ address HIT Address Lock register ) assert
system bus SHARED.
IF (EXCHANGE write address hits the address lock)
clear address lock.

NUT X NOP3

1Backup cache controller checks tag store and control store parity.
3System bus interface controller checks system bus parity.

Note

The backup cache TAG probe during an exchange cycle is for the Read
data ONLY.
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8
Cache Invalidate Management

As memory locations in the system are updated, it may become necessary to
invalidate cached copies of these locations to maintain cache coherence. The
reasons for invalidation are divided into two major categories. Those due to
processor, and those due to system bus activity.

The primary instruction stream cache is a virtual cache and as such all invalidate
activity are completely under software control.

8.1 Processor Caused Invalidates
The primary instruction stream cache is a virtual cache and its coherence is
managed by the system software.

The primary data stream cache is a physical cache and is managed as a subset
of the backup cache. The backup cache controller may victimize a location in
the backup cache as a result of an instruction stream read miss, or a masked
write read-merge operation. Thus to maintain the subset rule, the primary data
cache is invalidated whenever an instruction stream (read allocate) or read-merge
victim address hits the duplicate tag store.

System software should disable the primary data stream cache while flushing the
backup cache. When flushing is complete, the primary instruction stream cache
should also be flushed. This is done to guarantee that the primary caches remain
a strict subset of the backup cache.

8.2 System Bus Caused Invalidates
Table 8–1 indicates the cache invalidate policies for system bus generated cycles.
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8.2 System Bus Caused Invalidates

Table 8–1 Invalidate Management System Bus Caused

Cycle Backup Cache P-cache

Read NOP NOP

Write If (found in backup cache and (location
NOT found in P-Cache and commander
ID is not I/O subsystem )) invalidate
backup cache location. †

IF (found in primary D-cache)
invalidate D-cache.

IF (conditional invalidates for I/O
enabled) IF (found in backup cache
and location NOT found in P-Cache)
invalidate backup cache location.†

IF (found in Primary D-cache)
invalidate D-cache.

IF (ENB COND INVALIDATE cleared)
Invalidate backup cache location.†

IF (found in Primary D-cache)
invalidate D-cache.

Exchange NOP NOP

†See Section 5.6 which discusses the P-Cache duplicate tag store.
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9
Exceptions and Interrupts

When an interrupt or exception occurs, the processor drains the pipeline, loads
the PC into the EXC_ADDR IPR, and dispatches to one of the PAL exception
routines. If multiple exceptions occur, the 21064 CPU dispatches to the highest
priority PAL entry point. Refer to The Alpha Architecture Reference Manual for
details.

9.1 Processor-Generated Interrupts
There are two types of processor geneterated interrupts: general exceptions and
machine check exceptions.

General Exceptions
General exceptions are caused by user malfeasance (that is, arithmetic traps or
attempted illegal opcode execution), or by normal system operation (for example,
translation buffer miss). The list of general exceptions is given in Table 9–1.

Table 9–1 General Exception Isolation Matrix

PAL entry Cause Cause isolation

External Signal RESET
L asserted

RESET NR†

ARITH Arithmetic exception (divide by 0 etc.) EXC_SUM IPR

DTB_MISS Data translation buffer miss NR†

UNALIGN D-Stream unaligned reference NR†

DTB_FAULT Remaining D-Stream memory
management errors.

NR†

ITB_MISS Instruction translation buffer miss NR†

ITB_ACV Instruction stream access violation NR†

CALLPAL CALLPAL instruction executed Entry based on
EXC_ADDR-
>instruction[7..0]

OPDEC Attempted execution of a reserved or
privileged opcode

NR† EXC_
ADDR points
to instruction

FEN Floating-point operation attempted with
floating point unit disabled, under or
overflows, inexact errors, div 0, invalid
ops

IPR EXC_SUM

†Isolation not required as PALcode entry identifies cause.
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9.1 Processor-Generated Interrupts

Machine Check Exceptions
Machine-check exceptions are special exceptions that are caused by errors in
the hardware system. They all dispatch to the general MCHK entry. Refer to
Table 9–2 for the machine check isolation matrix.

Table 9–2 Machine Check Isolation Matrix

PAL entry Cause Cause Isolation

MCHK BIU detects backup cache tag store parity
error

BIU_STAT IPR

MCHK BIU detects backup cache tag control store
parity error

BIU_STAT IPR

MCHK BIU detects backup cache EDC data store
error

BIU_STAT IPR

MCHK System external transaction terminated
with CACK_HERR (Hard Error)

BIU_STAT IPR

Note

When a system error occurs, all caches in the system should be examined
to make sure that a location has not been purposely marked with a ‘‘bad’’
EDC code.

9.1.1 Exception Handling
Most exceptions have unique entries through which control flows. This allows
easy identification, and fast dispatch to the appropriate system code. Exceptions
that fall into this category are listed below:

• Reset

• Arithmetic

• DTB Miss

• Unaligned Reference

• Data Access Fault

• ITB Miss

• ITB Access Violation

• Reserved Opcode Fault

• Floating Point Operation

They can occur relatively frequently as part of normal system operation.

The class of exceptions that occur as a result of hardware system errors are called
machine checks. These result when an uncorrectable system error is detected
during the processing of a data request.

Generally, exceptions are handled as follows by PALcode. First the PALcode
determines the cause of the exception. If possible, it corrects the problem and
returns the system to normal operation. If a problem is not correctable, or
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9.1 Processor-Generated Interrupts

error logging is required, control is passed through the SCB to the appropriate
exception handler.

9.1.1.1 PAL Priority Level
Table 9–3 is the prioritized list of the exceptions that can occur on a DEC 4000
system. This list goes from the highest to the lowest priority.

Table 9–3 Exception Priority/PAL Offset/SCB Offset/IPL

Priority Description
PAL Offset
(h)

SCB Offset
(h) IPL (h)

1 HALT 0000 NA NA

2 Machine Check 0020 0660 31

3 0020 0670 31

4 DTB Miss PAL 09E0 NA NA

5 DTB Miss NATIVE 08E0 NA NA

6 ITB Miss 03E0 NA NA

7 ITB Access Violate 07E0 0080-00C0 X

8 Data Access Fault 01E0 0080-00C0 X

9 Unaligned Data 11E0 0300-03F0 X

10 Arithmetic NFPU 17E0 0010 X

11 Arithmetic ARTH 17E0 0200 X

12 Reserve Opcode Fault 13E0 0420 X

9.1.1.2 PALcode 0020 Entry Characteristics
Exceptions occur as a direct † result of the detection of errors during the execution
of the current instruction.

The PALcode found at the PALentry 002016 must sift through the system error
information and determine the severity of the error. In some cases the PALcode
at this entry may correct the error and allow the machine to continue execution
without any higher level software intervention.

9.1.1.3 Parse Tree PALcode Entry 0020 16
Due to the nature of backup cache errors, the PALcode executed upon entry
is restricted to ‘‘read-only’’ behavior shown as broken lines in Figure 9–1. The
following procedure should be followed. Once it has been determined that a
backup cache error has not occurred, the restrictions are lifted.

Whenever a backup cache error occurs, the state of the backup cache is effectively
frozen. However memory system coherence is still maintained. This is done
by having cache allocation suspended whenever an error is detected. See
Section 5.4.1. Backup cache probing by the processor should also be disabled
by PAL code by writing a 0 to the BC_ENA bit of the BIU_CTL register.

† Except during ‘‘disconnected’’ write operations which occur as a result of masked
write operations causing two consecutive system bus transactions. If an error is
detected between the completion of the first and second system bus transactions, (due
to an unrelated intervening system bus transaction) a machine check occurs and the
information relating to the actual error is logged in the C³-CSRs. Software can determine
when this occurs by comparing the address in the 21064-EXC_ADDR register to the
address locked in the C³-CSRs.
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9.1 Processor-Generated Interrupts

Note

Reading of modifiable memory like data areas should be avoided as
these locations could be dirty in the disabled cache and thus produce an
incoherent access.
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9.1 Processor-Generated Interrupts

Figure 9–1 Machine-check Exception Parse Tree

( select one )

BIU_STAT  <8>

BIU_STAT <2>

EV-FILL_SYNDROME

valid syndrome

invalid syndrome

BIU_STAT <0>

C3-CSR3<49 | 17, 35 | 3>

C3-CSR3<33 | 1> 

MEM-CSR0<48 | 16>

BIU_STAT <3>

Bcache data store single-bit
 EDC error

Bcache data store 
uncorrectable EDC error

Bcache uncorrectable
error

Bcache tag or tag control
parity error

Main memory

Look for cause of this error in 
C  - CSR3<35 | 3>. It could be caused    by victimization of a line with an 
uncorrectable error. 

If the missed error bit is set, then use the info logged in the DECchip 20164 to
pinpoint  the address causing the second error and refer to the info logged 
in the C    for a possible pointer to data previuosly written bad to main memory
due to the victimization of a dirty line with an EDC error.

NOTE:

Bcache tag parity error

Bcache tag control parity
 error

Resulting Error

(select one)

(select one)

(select one)

(select one)

 uncorrectable error

( other CPU )

( other CPU )

 3

3

mce_tree

(continued on next page)
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9.1 Processor-Generated Interrupts

Figure 9–1 (Cont.) Machine-check Exception Parse Tree

( select one )

BIU_STAT  <0>

[if (C3-CSR0<39,7=1) C3-CSR1<49|17, 35|3>]    Bcache single bit error 

DECchip data bus single 

Bcache uncorrectable   EDC
error

Resulting Error

[if (C3-CSR0 <39, 7> =1) C3-CSR1 <35|3>]

(C3-CSR3 <49 | 7, 35 | 3>

bit  error 

DECchip data bus

Bcache  tag or tag control
parity error

C3-CSR3 <33 | 3> 
uncorrectable  error 

C3-CSR3 <33 | 1> 

IO-CERR1<34|2>
MEM-CSR0 <34|2>

C3-CSR7 <14>

C3-CSR7 <38|6>

C3-CSR7 <15>

[if(C3-CSR0 <39,7>=0 C3-CSR1<49|17, 35|3>] (other CPU)

C3-CSR3<49|17, 35|3> (other CPU)

C3-CSR3<33|1> (other CPU)

MEM-CSR0<48|16>

C3-CSR7 <34|2> (other)
C3-CSR7<34|2> (self) System bus parity error 

during C/A . Disregard C/A
 not ack’ed error

Invalid system bus address
error

System bus read data 
parity error

System bus write data
parity error

Bcache single bit error

Bcache uncorrectable
error

Bcache tag or tag control
parity error

Main memory uncorrectable
error

NOTE:
Look for cause of this error in 
C3-CSR3<35|3>. It could be caused by
victimization of a line with an uncorrectable error. mce2_tree
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9.1 Processor-Generated Interrupts

9.1.1.4 PAL Routine Behavior

9.1.1.4.1 Backup Cache Tag Parity Error

Current CPU Backup Cache Tag Parity Error Processor Detected
This error is restricted to reads only. PAL must scrub the parity error from the
tag store using the standard backup cache initialization procedure, and if the
DIRTY bit on the cache block in question is set, a SYSTEM FATAL Error should be
signaled to the system software. Otherwise, only error logging is required.

See Chapter 10, Section 10.2.1 for details.

9.1.1.4.2 Backup Cache Tag Control Parity Error

Current CPU Backup Cache Tag Control Parity Error Processor Detected
This error is restricted to reads. PAL must scrub the parity error from the Tag
Control store using the standard backup cache initialization procedure. This
error is FATAL to the referenced cached location context.

See Chapter 10, Section 10.2.1 for details.

9.1.1.4.3 Backup Cache Data Single Bit EDC Error

Current CPU Backup Cache EDC Error Processor Detected
This error is restricted to reads. PAL must scrub the EDC error from the
data store using the 21064 backup cache force hit mode. The instruction that
encounters the error should be restarted. A CRD interrupt should be dispatched.

There is no way to determine if the failure was due to a backup cache SRAM
fault or a fault on the bus between the C3 and the DECchip CPU chip. If the
location found in the backup cache does not have the same address as the address
found in the CPU chip’s FILL_ADDR register, then the error occurred on the
data bus between the CPU chip and the C³ chip. Generally, this type of error
indicates a hard fault. However if a simple test of the interface passes, the error
may be recoverable after scrubbing affected locations and restarting the failing
instruction.

See Chapter 10, Section 10.2.2 for details.

9.1.1.4.4 Backup Cache Data Uncorrectable EDC Error

Current CPU Backup Cache EDC Error Processor Detected
This error occurs on reads only. PALcode must scrub the EDC error from the
Data store using the 21064 backup cache force Hit mode. If the DIRTY bit on
the cache block is set, the error is FATAL to the context the cached location is
referenced in. Otherwise the error should be scrubbed from the cache and the
failing instruction restarted.

If the location found in the backup cache does not have the same address as the
address found in the EV-FILL_ADDR register, this indicates the error occurred
on the data bus between 21064 CPU chip and the C³ chip. Generally, this type
of error is indicative of a hard fault. However, if a simple test of the interface
passes, the error may be recoverable after scrubbing affected locations and
restarting the failing instruction.
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9.1 Processor-Generated Interrupts

Note

If the EDC error has a syndrome of 1F indicating an uncorrectable error it
means that the data store of the cache was written with an intentionally
bad EDC pattern as a result of the CUCERR L signal being asserted
during a backup cache read fill or write update.

See Chapter 10 and Section 10.2.2 for details.

9.1.1.4.5 Backup Cache Data Single Bit EDC Error

Current CPU Backup Cache Edc Error C³ Detected
See Section 9.1.1.4.3.

9.1.1.4.6 Backup Cache Data Uncorrectable EDC Error

Current CPU backup cache EDC Error C³ Detected
See Section 9.1.1.4.4.

9.1.1.4.7 21064 Data Bus Single-bit EDC Error EDC error occurred on the bus
as the data was being driven from the DECchip 21064 CPU chip to the C³ chip.
Generally this type of error is indicative of a hard fault. However if a simple test
of the interface passes, this indicates the error may be recoverable after scrubbing
affected locations and restarting the failing instruction.

See Section 9.1.1.4.3.

9.1.1.4.8 21064 Data Bus Uncorrectable EDC Error EDC error occurred on
the bus as the data was being driven from the 21064 CPU chip to the C³ chip.
Generally this type of error is indicative of a hard fault. However, if a simple
test of the interface passes, the error may be recoverable after scrubbing affected
locations and restarting the failing instruction.

See Section 9.1.1.4.4.

9.1.1.4.9 Backup Cache Tag or Tag Control Parity Error

Current CPU Backup Cache Parity Error C³ Detected
First, the actual cause of the error should be determined. This is done by
calculating the expected Tag Control and Tag parity based on the data latched
in the backup cache Uncorrectable Error Register, and the backup cache
Uncorrectable Error Address Register. The result indicates whether the error
was a Tag Control Store Error, a Tag Store error, or both.

Tag Control Store Errors
Restricted to reads only, PALcode must scrub the parity error from the tag control
store using the standard backup cache initialization procedure. This error is
FATAL to the context the cached location is referenced in.

Tag Store Errors
Restricted to reads only, PAL must scrub the parity error from the Tag store using
the standard backup cache initialization procedure, and if the DIRTY bit on the
cache block in question was set, a SYSTEM FATAL error should be signaled to
the system software. Otherwise only error logging is required.

See Chapter 10 and Section 10.2.1 for details.
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If a tag parity error occurs where an even number of tag bits change state, during
victimization of a dirty cache block, it is possible to generate a WRITE DATA not
acknowledged error (causing a machine check). When this occurs, a SYSTEM
FATAL error should be signaled to the system software. See Section 10.4.3 for
details.

9.1.1.4.10 System Bus Parity Error This error is based on logged information
and simple R/W to devices on system bus determine nature of failure. Disable
failing module if possible and restart execution otherwise system FATAL.

See Table 10–6 for details.

9.1.1.4.11 Invalid System Bus Address This error occurs when a process has
mapped physical addresses that do not exist in the system , or if an error on an
address bus or a ‘‘double’’ bit error has occurred in a backup cache Tag Store.
PALcode should verify the error was a legitimately invalid address as a result
of incorrect mapping and pass control to the access violation exception handler.
If the address logged is a legitimate physical address, and no system bus parity
errors have been logged, it is SYSTEM FATAL. (Unprotected address bus or
double bit parity protected address bus error)

A C/A Parity Error may result in the C/A NOT ACK’ED bit being set in one of the
commander CSR’s. This is because a responder does not acknowledge a C/A that
has bad parity.

See Table 10–6 for details.

9.1.1.4.12 Other CPU Errors When a Machine Check is initiated as a result
of errors on the other CPU module, that module must correct the error(s).
Backup cache locations can be scrubbed only by using standard backup cache
initialization mechanisms, and these require residence on the CPU local to
the failing backup cache. The other CPU is notified in the case of these errors
automatically via the HARDWARE ERROR INTERRUPT. Refer to Section 9.2.1
for details.

9.1.1.4.13 Main Memory Uncorrectable EDC Errors Main memory
uncorrectable EDC errors are detected only when a memory module responds
to a system bus read. The severity of this error depends on the context of the
processes that reference it. In USER space it’s PROCESS FATAL, in SYSTEM
space it’s SYSTEM FATAL.

9.2 Non-processor Generated Interrupts
Hardware interrupts are caused by hardware activity that requests the attention
of the processor. Every processor in the DEC 4000 system is configured as shown
in Table 9–4.

Table 9–4 Hardware Interrupt Configuration

HIR† Vector Description

5 None System Event Interrupt

4 None Interval Timer Interrupt - 976.5625
microseconds

†Hardware interrupt request - found in the 21064 HIRR IPR

(continued on next page)
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Table 9–4 (Cont.) Hardware Interrupt Configuration

HIR† Vector Description

3 None Inter-processor Interrupt

2 Fbus+ interrupt
register‡

Futurebus+ interrupt

1 Local interrupt register‡ Local I/O interrupt

0 None Hardware error

†Hardware interrupt request - found in the 21064 HIRR IPR

‡Both the Fbus+ and local interrupt request registers are accessed over the system bus and reside on
the I/O module. Refer to the I/O Module Chapter for further details.

9.2.1 Interrupt Handling
All system interrupts are funneled through the ‘‘Interrupt’’ PAL entry defined as
21064 IPR PAL_BASE + ‘‘00E016’’. From there the appropriate IPL is set and the
system is interrogated to determine the cause of the interrupt. When the cause
has been determined, the associated SCB offset is added to the SCB base address,
and control is passed to that Interrupt Service Routine.

9.2.1.1 PAL Priority Level
Table 9–5 shows the prioritized list of the interrupts that can occur on a DEC
4000 System. This list goes from the highest to the lowest priority interrupts.

Table 9–5 Interrupt Priority/SCB Offset/IPL

PAL
Priority Description SCB Offset (h)

SRM IPL
(h) PAL IPL (d)

1 Hardware 5 -HLT 0000 31 20

2 Hardware 5 -PWF 0640 30 20

3 Hardware 0 -HRD 0660-0670 31 20

4 Hardware 0 -CRD 0620-0630 20 20

5 Hardware 4 0600 22 20

6 Hardware 3 0610 22 20

7 Hardware 1 800-1FF0 14 20

8 Hardware 2 800-1FF0 14 20

9 Serial Line 800-1FF0 14 20

10 Performance Counter 0 0650 14 20

11 Performance Counter 1 0650 14 20

12 Software 1-15 0500-05F0 1-0F 20

13 Asynchronous System Trap 0240-0270 2 20

9.2.1.2 PALcode 00E0 Entry Characteristics
Various system status and error conditions are reported using one of the many
interrupts that cause entry into the PAL interrupt entry point. Due to the nature
of backup cache errors, the PALcode executed upon entry is restricted to read-only
behavior.

Once it is determined that a backup cache error has not occurred, the restrictions
are lifted.
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Whenever a backup cache error occurs, the state of the backup cache is effectively
frozen. However, memory system coherence is still maintained. This is done
by having cache allocation suspended whenever an error is detected. See
Section 5.4.1. PALcode should also disable the backup cache probing by the
processor by writing a "0" to BC_ENA bit of the BIU_CTL register.

Note

Reading of modifiable memory like data areas should be avoided because
these locations could be dirty in the disabled cache and produce an
incoherent access.

9.2.1.3 Parse Tree PALcode Entry 00E0 16

Parse Diagram Note

Flow identified with broken line indicates ‘‘Read-Only’’ behavior
restriction.

C3 CSR accesses are local except where specified, MEM CSR accesses are to all
memory modules in the system. Figure 9–2 shows the interrupt parse tree.
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Figure 9–2 Interrupt Parse Tree
EV-HIRR<10>        ( HARDWARE 0)

C3-CSR3<49|17, 35|:32, 3|:0>
[&  if (C3-CSR0<39,7>=1) C3-CSR3<49|17, 35|34, 3|2>]

Resulting  error

Bcache  tag parity error or
uncorrectable EDC error

[if  (C3-CSR0<39, 7>=1 C3-CSR1<49|17, 35|34, 3|2>] Bcache correctable error

C3-CSR7<45|:34,13|:2>
IO-CERR1<48|16, 45|:34, 13|:2>
MEM-CSR0<45|:40, 32|0, 13|:8> System bus parity error

NOTE: If the missed error bit is set, then use the info logged in 

the DECchip 21064  to pinpoint the address that is causing the

second error.  Refer to the info logged in the C3 for a possible

 pointer to data previously written bad to main memory due to

the victimization of a dirty line with an EDC error.

C3-CSR7<14> (other CPU-C3) Invalid system bus address as a 
bystander 
(allow commander to handle)

IO-CERR1<33|1>

IO-CERR1<15>
Invalid system bus address I/O 
commander Fbus+ access,

Fbus+ device busy  or

Fbus+ parity error

IO-CERR1<47> Invalid system bus address I/O 
commander Lbus mailbox access

Otherwise Invalid system bus address I/O 
commander DMA  access

MEM-CSR0<49|48|17|16,32|0> & IO-CERR1<0> Memory uncorrectable EDC error
I/O commander

[if (MEM-CSR6<61,29>=1) MEM-CSR0<51|50|19|18,32|0>] Memory correctable EDC error

IO-CERR1<15>

IO-FERR1 Parity error during Fbus+ mailbox
access

int_tree

(continued on next page)
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Figure 9–2 (Cont.) Interrupt Parse Tree

IO-FERR1

Parity error during Fbus+ DMA
access

IO-LERR1

IO-CERR1<47>

Otherwise

Parity error on Lbus during mailbox
access

Parity error on  Lbus during DMA 
access

C3-CSR5 Duplicate tag store parity 
error

Otherwise
Dismiss 

 EV-HIRR<11>      (HARDWARE 1)

IO-LINT
Lbus I/O interrupt
(post all pending)

 EV-HIRR<12>      (HARDWARE 2)

IO-FIVECT
Fbus+ I/O interrupt

EV-HIRR<5>  (HARDWARE 3)
Interprocessor  Interrupt

EV-HIRR<6>  (HARDWARE 4)
Interval timer   interrupt

int1_tree

(continued on next page)
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Figure 9–2 (Cont.) Interrupt Parse Tree

EV-HIRR<7>  (HARDWARE 5)

IO-IOCSR<5>
Fbus+ halt

IO-IOCSR<1>
Lbus halt

Power system register 
Power system event 

Operator control panel  register 
Operator control panel   halt

EV-HIRR<13>  (SERIAL LINE )
Serial line interrupt 
(DECchip 21064 serial port 

EV-HIRR<9>  (PERFORMANCE COUNTER) 
Performance counter 0

EV-HIRR<8> (PERFORMANCE COUNTER)

EV-HIRR<28|:14,2> (SOFTWARE)
Software interrupt N

EV-HIRR<32|:29,3>  (AST)
Asynchronous system trap 

interrupt 

Performance counter 1
interrupt 

int2_tree
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9.2.1.4 Hardware 0 Hardware Error
Interrupts generating a Hardware Interrupt 0 are caused by the detection of
hardware errors on the CPU, I/O, Memory modules, and/or the system bus.
These errors consist of RAM array correctable and uncorrectable errors as well as
bus transport and protocol errors. Correctable error interrupts are individually
maskable at each module’s detection point. Before servicing the hardware error
interrupt, it should be cleared in the local System Interrupt Clear register.

Backup Cache Tag Parity or Uncorrectable EDC Error
A given CPU module must scrub its own backup cache Tag Parity and
Uncorrectable EDC errors. If the error causing this interrupt is a result of this
module initiating a transaction, it also causes a machine check exception and the
processing of the error is left up to the machine check handler. If however this
node was not the transaction initiator (system bus probe), the interrupt should
initiate the scrubbing/logging process.

Parity errors in the tag or tag control stores of a backup cache can be scrubbed
only by using the FORCE EDC/CONTROL and SDV bits of the BCC CSR.

If a tag, or tag control parity error is detected while scrubbing dirty entries from
the backup cache using the Allocate Invalid Address Space, the expected location
is not scrubbed. If an uncorrectable data error is encountered, the data is written
to the system bus coincident with the assertion of the CUCERR L signal. This
causes the location to be written into Main Memory with a bad EDC code. The
tag control store of the backup cache location in question is not updated.

Backup Cache Single Bit EDC Error
A given CPU module must scrub its own backup cache single bit EDC errors. If
the error causing this interrupt is a result of this module initiating a transaction,
and if EDC correction is disabled in the backup cache control register, it causes
a machine check exception and the processing of the error is left to the machine
check handler. If however this node was not the transaction initiator, (system
bus probe) and EDC correction was disabled, the interrupt should initiate the
scrubbing/logging process.

When scrubbing dirty entries from the backup cache using the allocate invalid
address space, if a tag, or tag control parity error is detected, the expected
location is not scrubbed. If an uncorrectable data error is encountered, the data
is written to the system bus coincident with the assertion of the CUCERR L signal.
This causes the location to be written into main memory with a bad EDC code.
The tag control store of the backup cache location in question is not updated.

When EDC correction is enabled, no machine checks occur for this error, so the
interrupt handler is responsible for scrubbing/logging errors that occur in its own
cache.

As compared with hardware error correction, this approach is vulnerable to
single-bit errors that may occur during Instruction stream reads of the PALcode
machine check handler, to single-bit errors that occur in multiple quadwords of a
cache fill block, and to single-bit errors that occur as a result of multiple silo’ed
load misses.
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System Bus Parity Error
System bus parity errors indicate that a node on the system bus has a bad driver
or receiver, or a problem exists in the physical interconnect. It is unlikely that
this is a correctable error so the handler should attempt to discover which node is
bad, and if possible disable it so it won’t interfere with normal bus operation.

If no Uncorrectable error can be detected, retrying the operation causing the error
maybe help to isolate it.

Generally when an uncorrectable error of this type is detected it is system fatal.

A C/A Parity Error may result in the C/A NOT ACK’ED bit being set in one of the
commander CSR’s. This is because responders do not acknowledge a C/A that has
bad parity. See Section 9.1.1.4.10 for details.

Invalid System Bus Address Bystander
When an invalid system bus address is broadcast by a CPU node, and not
acknowledged, the system bus C_ERR L signal is asserted. The CPU that initiated
the transaction reports a machine check and receives a Hardware Error Interrupt.
The bystander CPU receives only the Interrupt. The transaction initiator should
handle the error logging and recovery for this error. This results in an access
violation. See Section 9.1.1.4.11.

Invalid System Bus Address I/O Commander Futurebus+/Local MBX, DMA
When an invalid system bus address is broadcast by the I/O node and not
acknowledged, the system bus C_ERR L signal is asserted. Both CPU’s receive
a hardware error interrupt and one should be designated to handle the error
logging and recovery.

Information found in the IO-CERR1 register indicates whether this error occurred
as a result of mailbox operations or DMA assesses and the logging and recovery
can be handled differently for each.

Memory Uncorrectable EDC Error I/O Commander
When an uncorrectable EDC error is detected while the I/O module is the system
bus commander, the I/O module asserts the C_ERR L signal causing the CPU
modules to receive a hardware error interrupt. When this occurs, one CPU
should be designated to handle the error logging and recovery. This may or may
not be SYSTEM FATAL.

Memory Correctable EDC Error
When a correctable EDC error is detected, the memory module asserts the C_ERR
L signal if the ENABLE CRD reporting bit is set in memory module CSR6. This,
in turn causes the CPU module(s) to receive a hardware error interrupt. When
this occurs, one CPU should be designated to handle the scrubbing and logging
activity.

Parity Errors Futurebus+ (Fbus+)
Read IO-FERR2 for address, IO-FMBPR for mailbox address, read contents at
mailbox address for error status if the IO-CERR1 bit 15 is set, otherwise read
FERR2 for failing DMA address.

A parity error on the Fbus+ most likely indicates a hard failure of either an
Fbus+ adapter or the I/O module’s Futurebus+ transceivers. When this error
occurs, the system software should attempt to determine which adapter is failing
and disable it from interfering with normal bus operation. Both CPU modules
receive a hardware error interrupt, so one should be designated to handle the
logging/recovery activity.
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Parity Errors on Local I/O bus (L-bus)
A parity error on the L-bus most likely indicates a hard failure of either an L-bus
device or the I/O module’s L-bus buffers. When this error occurs, the system
software should attempt to determine which device is failing and disable it from
interfering with normal bus operation. Both CPU modules receive a hardware
error interrupt, so one should be designated to handle the logging/recovery
activity.

Duplicate Tag Store Parity Error
Duplicate tag store parity errors are treated in hardware as uncorrectable errors.
However the system always recovers from a parity error of this sort without any
loss of data and/or memory coherence.

9.2.1.5 Hardware 1 Local I/O
Hardware 1 interrupts are generated as a result of ‘‘Local I/O’’ device interrupt
requests. They occur as a result of normal device operation, and when device
errors are detected. For a complete description of the unique device interrupt
request characteristics, refer to the component specifications for the device in
question.

When a local I/O interrupt is posted, the PALcode entered reads the local
interrupt register located on the I/O module. This register contains a bit field
indicating which local I/O device posted the interrupt. (Several device interrupts
could be pending.) PALcode dispatches to the appropriate interrupt service
routine based on a priority scheme resident in the PALcode environment.

Local I/O interrupts are restricted to being serviced only by a dedicated processor
(identified as the primary processor). The primary processor designation can be
made at system power-up, or moved from one processor to the other over time.
This requires that at any time, the processor not designated the primary must
mask off the local I/O INTERRUPT REQUEST line bit <1> in the 21064 CPU HIER
internal processor register.
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Figure 9–3 Local I/O Interrupt Flow

L−bus I/O Interrupt

If current IPL < pending interrupt
A else B

B

current IPL = pending
interrupt IPL.

Post Interrupt for
processing when IPL drops

write back Return from Pal environment

If vector 0 restore C

IPL

A

Read

original IPL and C
else D

D

Local Interrupt Register
(LINT) 2.1000.0160h

Mask off lower IPL interrupts (Internal processor register
16 (HIER).  Schedule the servicing of all I/O interrupts
whose bits are set.  They should be processed in the order
of TGEC, SCSI, Serial Line, System Control Bus.
Exit PAL environment to process posted interrupts.

9.2.1.6 Hardware 2 Futurebus+
Hardware 2 interrupts are generated as a result of Futurebus+ adapter interrupt
requests. These occur as a result of normal adapter operation, and when adapter
errors are detected.

When an Futurebus+ interrupt is posted, the PALcode invoked reads the
Futurebus+ interrupt register located on the I/O module. This register contains
a vector offset which allows the PALcode to dispatch to the appropriate interrupt
service routine. If all pending vectors have been read from the Futurebus+
interrupt register, a value of 0 is returned to indicate ‘‘passive release’’ of the
interrupt.
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Figure 9–4 Futurebus+ Interrupt Flow

F−bus I/O Interrupt

If current IPL < pending interrupt
A else B

B

current IPL = pending
interrupt IPL.

Post Interrupt for
processing when IPL drops

Return from Pal environment

If vector 0 restore C

IPL

A

Read Futurebus Interrupt
Vector Register (FIVECT)
2.1000.00E0h

original IPL and C
(passive release) else D

D

Mask off lower IPL interrupts (Internal processor register
16 (HIER).  Add vector to Futurebus interrupt vector table
base address.  Exit pal environment to process the
ISR for the Futurebus interrupt in question.

9.2.1.7 Hardware 3 Interprocessor
Hardware 3 interrupts are requested when a CPU requires the attention of itself
or another CPU.

The interprocessor interrupt request register is used to post an interrupt request
to a specific processor. Note that, like software interrupts, no indication is given
as to whether there is already an interprocessor interrupt pending when one
is requested. Therefore, the interprocessor interrupt service routine must not
assume there is a one-to-one correspondence between interrupts requested and
interrupts generated. See the Alpha Architecture Reference Manual for the proper
usage and definition of interprocessor interrupts.

9.2.1.8 Hardware 4 Interval Timer
The interval timer interrupt occurs at a regular interval allowing the processor to
effectively schedule processing time to each process requiring attention.

The interval timer interrupt regularly interrupts the processor every 976.5625
microseconds. The PALcode handling this interrupt must update its copy of
the absolute time, copy it to register R4, clear the interrupt in the local system
interrupt clear register, and pass control to the interval timer interrupt routine.
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9.2.1.9 Hardware 5 System Events
System events such as power system status changes, halt requests from the
operator control panel, Futurebus+ adapter, or an SGEC on the I/O module are
signaled via the Hardware 5 interrupt.

Actual power system status, and operator control panel halt request status must
be requested from each subsystem over the serial control bus. Halt requests from
network interfaces and Futurebus+ adapters are identified in the I/O module’s
IOCSR.

There is no passive-release mechanism associated with this interrupt so software
must make sure that only one processor services the interrupt.

The pending interrupt must be cleared by explicitly writing 1 to the SYSTEM
EVENT CLEAR bit in the system interrupt clear register (CSR12). This bit must
be cleared in both CPU’s registers regardless of which processor services this
interrupt.

9.2.1.10 Software X Interrupt
Software interrupts provide a mechanism to allow a process to force the flow of
control back into the system domain. Their use is determined by the software
environment.

9.2.1.11 Serial Line Interrupt
The Serial Line Interrupt occurs when a change in state on the 21064 CPU serial
data receive line changes. See Section 6.7 for details on the use of the 21064
serial line.

This interrupt should be masked off under normal operation.

9.2.1.12 Asynchronous System Trap Interrupt
Asynchronous system traps provide a way of notifying a process of events that are
not synchronized with its execution, but which must be dealt with in the context
of the process.
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Fault Management and Error Recovery

The following sections decsribe how the DEC 4000 system handles system faults.

10.1 Processor Errors
The general error handling mechanisms send an interrupt to the processor for
uncorrectable and correctable errors. Uncorrectable errors detected on data
accesses force machine check exceptions to occur as the data is being returned to
the processor. Correctable errors and latent hardware errors are signaled using
the HARDWARE ERROR INTERRUPT.

See Section 10.2, Section 10.3, and Section 10.4 for the complete DEC 4000 CPU
module error matrix, and Chapter 9 for the error parse trees.

10.2 Backup Cache Errors

10.2.1 Tag and Tag Control Store Parity Errors
Backup cache tag and tag control parity errors are detected only when the tag
and tag control stores of the backup cache are read (probed). The error handling
mechanism used when an error is encounter is based not only on whether the
backup cache controller or 21064 detected the error, but also on what cycle was
being performed.

Parity Errors in the Tag and Tag Control Stores may or may not be fatal errors
to the system, or for that matter to non-system processes. See Table 10–1 for the
complete error severity matrix.

Table 10–1 Tag/Tag Control Error Severity Matrix

Error
Address
Context Dirty Severity

Tag Parity Unknown Yes System Fatal

Unknown No Scrub location - recoverable

Tag Control Parity User† Unknown Process Fatal - Scrub location

System Unknown System Fatal

†Virtual page mapping could have been changed between the time the error occurred and the time
it was examined, therefore a deterministic address context can not be established. In lieu of a
deterministic means for identifying address context, system software should consider any tag control
parity error, SYSTEM FATAL.

The 21064 processor probes the backup cache tag and tag control stores whenever
a load, load lock, store, or store conditional cycle is requested to a cacheable
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location. If the 21064 processor discovers a parity error during this probe the
following sequence of events occurs:

1. The transaction is forced to miss the external cache.

2. The BC_TAG (processor register) holds the results of the external cache tag
probe.

3. The machine check PALcode is invoked.

4. BIU_STAT: BIU_TCPERR (if tag control parity error) and/or BIU_TPERR (if
tag parity error) are set

5. The BIU_ADDR register holds the physical address of the probe where the
parity error was detected.

the backup cache controller detects tag and tag control parity errors under several
different circumstances. These include the origin of the cycle as well as the cycle
type. Table 10–2 shows the complete error handling matrix for backup cache tag
and tag control store parity errors.

Cycle requests
A cycle can originate from either the system bus or the 21064 CPU.

when a tag or tag control store parity error is detected during a backup cache
probe due to the system bus initiated transaction, the probe results in a fail
condition. When this occurs, the backup cache controller logs the error in the
BCUE register, and the corresponding address in the BCUEA register, and
asserts the C_ERR L signal during the next t0 or idle system bus cycle. Refer to
the Chapter 19 for the details of the C_ERR L signal. The backup cache controller
does not do the following:

• Accept data from the system bus if the system bus transaction is a write

• Supply data to the system bus even if the address probes HIT, DIRTY

• Modify the contents of the backup cache, Tag, or Tag Control Stores

Once this error is detected, and the BCUE error bits are set, the allocation of the
backup cache is disabled and remains disabled until all of the BCUE error bits
have been cleared, and the BCC ENB_ALLOCATE bit set.

When a tag or tag control store parity error is detected during a transaction
requested by the 21064, such as read block, load lock, write block, or store
conditional, the resultant system bus transaction is converted to a NUT
transaction. The BCUE and BCUEA registers log the error, and allocation in
the backup cache is disabled. Data is neither read from the system bus (for read
type transactions) or written on the system bus (for write type transactions). The
state of the backup cache remains unchanged.

The cycle requested by the 21064 CPU is acknowledged with the HARD_ERROR
response invoking the Machine Check PALcode, and the C_ERR L signal is
asserted during the next t0 or idle system bus cycle.

Table 10–2 shows the backup cache tag control or tag store errors, the transaction
that caused them, and the recovery procedure.
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Table 10–2 Backup Cache Tag Control or Tag Store Errors

Transaction Causing Probe Error Recovery Activity

System Bus Address Probe

• Set PAR ERROR BIT in backup cache
uncorrectable error (BCUE).

• Latch system bus address in backup cache
uncorrectable error address (BCUEA) register.

• Disable the allocation of the cache.

• Log subsequent address probe related errors as
missed errors only, until the BCUE error bits have
been cleared.

• If the system bus address probe was due to a
read or exchange cycle the CUCERR_L is asserted
as the read data is returned to the transaction
commander. This is done even if the module
discovering the error was a bystander in the
system bus transaction.

21064 read block, write
block,load lock, store conditional

• Force a NUT transaction on the system bus.

• Assert system bus C_ERR L signal

• Log the error in BCUE and BCUEA registers and
freeze them

• Return cycle acknowledgment to 21064 of HARD_
ERROR

• Disable the allocation of the cache.

• Log subsequent address probe related errors as
missed errors only, until the BCUE error bits have
been cleared.

10.2.2 Data Store EDC Errors
This section describes the error detection and correction errors.

10.2.2.1 Correctable
Correctable data store errors can be detected only on the following conditions:

• The backup cache controller or the 21064 processor read the backup cache
data store.

• When an EDC error occurs on the bus between the C³ chip and the 21064
processor.

The mechanism used to report the error is different depending on which
subsystem detected it. All correctable errors are fully recoverable. Those detected
by the backup cache controller are corrected ‘‘on the fly’’ and the normal flow of
the transaction requested completes. Those detected by the 21064 processor cause
a machine check to allow software to correct the corrupted data.
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The 21064 detects correctable EDC errors only when executing a Load, or Load
Lock instruction. When the error is detected, the following sequence of events
occurs:

1. Data put into the instruction or data cache (appropriately) unchanged, block
gets validated.

2. Machine check

3. BIU_STAT: FILL_EDC set, and FILL_IRD set for instruction stream reference
cleared for D-Stream. (FILL_SEQ set if multiple errors occur.)

4. FILL_ADDR<33:5> & BIU_STAT[FILL_QW] gives bad quadword’s address

5. If data astream FILL_ADDR<4:2> contain PA bits <4:2> of location which the
failing load instruction attempted to read.

6. FILL_SYNDROME contains syndrome bits associated with the failing
quadword.

7. BIU_ADDR,BIU_STAT<6:0> locked and the contents are UNPREDICTABLE

8. If instruction stream DC_STAT locked and the contents are
UNPREDICTABLE, If data stream DC_STAT locked, RA identifies register
which holds the bad data, LW,LOCK,INT,VAX_FP identify type of load
instruction

9. BC_TAG holds the results of the external cache tag probe if the external
cache was enabled for this transaction.

If the physical address of the location with the correctable error is not resident
in the backup cache, the error was a bus error and the transaction should be
replayed. Otherwise, the backup cache location should be scrubbed and the
transaction replayed.

The backup cache controller can detect the error under several different
circumstances, and the way it is handled depends on how it was discovered.
Table 10–3 shows the complete error handling matrix for backup cache data
correctable errors detected by the backup cache controller. Correctable errors are
detected and reported when a system bus reads HIT dirty Locations, a backup
cache entry is victimized, or a masked write to a shared location.

All correctable errors detected by the backup cache controller are corrected to
allow the normal operation to proceed as if no error occurred. If the physical
address of the location with the correctable error is not resident in the backup
cache the error was bus error and no scrubbing is required, otherwise the backup
cache location should be scrubbed.
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Table 10–3 Backup Cache Data Correctable Errors

Transaction Causing
Probe Access Reason Error Recovery Activity

System Bus READ
(Dirty) or Exchange
(Read Dirty)

System bus READ/
EXCHANGE Dirty

The backup cache Correctable
Error (BCCE) and backup cache
Correctable Error Address
Registers (BCCEA) are frozen
and the CORRECTABLE ERROR
bit set,

if the BCC ENB BACKUP CACHE
COR ERR INTERRUPT bit is set,
the system bus C_ERR L signal is
asserted.

System bus Write — —

21064 Read Block Victim processing The BCCE and BCCEA
registers are frozen and the
CORRECTABLEERROR bit set

if the BCC ENB BACKUP CACHE
COR ERR INTERRUPT bit is set,
the system bus C_ERR L signal is
asserted.

21064 write block Victim processing /
Shared masked write /
Unmasked Write read
allocate

The BCCE and BCCEA registers
are frozen and the CORRECTABLE
ERROR bit set.

If the BCC ENB BACKUP CACHE
COR ERR INTERRUPT bit is set,
the system bus C_ERR L signal is
asserted.

21064 load lock Victim processing The BCCE and BCCEA registers
are frozen and the CORRECTABLE
ERROR bit set.

If the BCC ENB BACKUP CACHE
COR ERR INTERRUPT bit is set,
the system bus C_ERR L signal is
asserted.

21064 store conditional Victim processing /
Shared masked write

The BCCE and BCCEA registers
are frozen and the CORRECTABLE
ERROR bit set.

If the BCC ENB BACKUP CACHE
COR ERR INTERRUPT bit is set,
the system bus C_ERR L signal is
asserted.
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10.2.2.2 Uncorrectable Errors
Uncorrectable data store errors can be detected only when either the backup
cache controller or the 21064 processor read the backup cache data store. Or
when an EDC error occurs on the bus between the C³ chip and the 21064
processor. The mechanism used to report the error is different depending on
which subsystem detected it.

The severity of the error to the system’s integrity depends on the address space
the error occurred in as well as the state of the location in the backup cache.

Table 10–4 Uncorrectable Data Store Error Severity Matrix

Address Context Dirty Severity

User Yes Process Fatal if corrupted data used - Scrub

No Scrub location - recoverable

System Yes System Fatal if corrupted data used

No Scrub location - recoverable

The 21064 CPU detects uncorrectable EDC errors only while executing a load, or
load lock instruction. When the error is detected the following sequence of events
occurs:

1. Data put into instruction or data cache (appropriately) unchanged, block gets
validated.

2. Machine check.

3. BIU_STAT: FILL_EDC set, and FILL_IRD set for instruction stream reference
cleared for data stream. (FILL_SEQ set if multiple errors occur.)

4. FILL_ADDR<33:5> & BIU_STAT[FILL_QW] gives bad quadword’s address.

5. If data-stream FILL_ADDR<4:2> contain PA bits <4:2> of location which the
failing load instruction attempted to read.

6. FILL_SYNDROME contains syndrome bits associated with the failing
quadword.

7. BIU_ADDR,BIU_STAT<6:0>locked, contents are UNPREDICTABLE.

8. If instruction stream DC_STAT locked, contents are UNPREDICTABLE. If
data stream DC_STAT locked, RA identifies register holding the bad data,
LW,LOCK,INT,VAX_FP identify type of load instruction.

9. BC_TAG holds the results of the external cache tag probe if the external
cache was enabled for this transaction.

When detected by the 21064 (as part of the machine check handler), if the
physical address of the location with the uncorrectable error is not resident in the
backup cache, the error was a bus error and should be re-tried.

The backup cache controller can detect the error under several different
circumstances, and the way it is handled depends on how it was discovered.
Table 10–5 shows the complete error handling matrix for backup cache data
uncorrectable errors detected by the backup cache controller. uncorrectable errors
are detected/reported when a system bus reads HIT Dirty Locations, a backup
cache entry is victimized, or a masked write to a shared location occurs.
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10.2 Backup Cache Errors

When detected by the backup cache controller, if the physical address of the
location with the uncorrectable error is not resident in the backup cache the error
was a bus error and severity of the error is the same as if a DIRTY backup cache
location was found with an uncorrectable error - this location should be flushed to
main memory where it is written with bad EDC.

Table 10–5 Backup Cache Uncorrectable Errors

Transaction Causing
Probe Access Reason Error Recovery Activity

System bus read (dirty)
or exchange (read dirty)

System bus READ
/EXCHANGE dirty

Assert system bus CUCERR L with
the data returned to the system
bus.

The backup cache uncorrectable
error (BCUE) and backup cache
uncorrectable error address
registers (BCUEA) are frozen and
the UNCORRECTABLE ERROR
bit set.

System bus write probe If hit, system bus write
data has either bad
parity or has CUCERR
L

The backup cache is written with
bad EDC.

21064 read block Victim Processing The system bus C_ERR L signal
is asserted, the victim written
to memory coincident with the
assertion of CUCERR L, and the
read data is returned from the
system bus to the processor.

The backup cache is not updated,
and backup cache allocation is
disabled.

The BCUE and BCUEA
registers are frozen and the
UNCORRECTABLE ERROR bit
set.

System bus returned
data with bad system
bus parity or

CUCERR L asserted
with read data

The system bus C_ERR L signal is
asserted, bad "second" read data
from the system bus is returned
to the processor, bad "second" data
from the system bus is written
with "bad EDC" in the backup
cache.

The BCUE and BCUEA
registers are frozen and the
UNCORRECTABLE ERROR bit
set, processor is acknowledged with
HARD_ERROR.

(continued on next page)
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10.2 Backup Cache Errors

Table 10–5 (Cont.) Backup Cache Uncorrectable Errors

Transaction Causing
Probe Access Reason Error Recovery Activity

21064 Write Block Victim processing /
Shared masked write

The system bus C_ERR L signal is
asserted.

The victim/shared write is written
to memory coincident with the
assertion of CUCERR L, and the
backup cache is updated with the
new data.

In the case of a shared masked
write, the backup cache longwords
with failing EDC that are not
updated by the processor write, are
not rewritten.

The BCUE and BCUEA
registers are frozen and the
UNCORRECTABLE ERROR bit
set.

21064 load lock Victim processing The system bus C_ERR L signal is
asserted,

The victim is written to memory
coincident with the assertion of
CUCERR L, and the read data is
returned from the system bus to
the processor.

The BCUE and BCUEA
registers are frozen and the
UNCORRECTABLE ERROR bit
set.

21064 store conditional Victim processing The system bus C_ERR L signal is
asserted.

The victim is written to memory
coincident with the assertion of
CUCERR L, and the backup cache
is updated with the new data.

The BCUE and BCUEA
registers are frozen and the
UNCORRECTABLE ERROR bit
set.

If store fails no data cycles occur;
however C_ERR L will still be
asserted.

10.3 Duplicate Primary Cache Tag Store Parity Errors
Duplicate P-Cache Tag Store Parity Errors can be detected only by the backup
cache controller when a system bus write occurs.

When an error is detected, the DEC 4000 system bus C_ERR L signal is asserted,
and the backup cache Duplicate Tag Store Error Register (DTSER) frozen,
and the Error bit set. Detection of the parity error forces the invalidation of
the associated Primary data cache location, and if HIT, the invalidation of the
associated backup cache location regardless of system bus transaction commander
ID.
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10.3 Duplicate Primary Cache Tag Store Parity Errors

Thus single bit errors in the Duplicate Tag Store are not system fatal; however a
HARDWARE ERROR INTERRUPT occurs every time one is encountered.

10.4 System Bus Errors
System bus errors may not be reportable as the error handling routines are most
likely located in main memory. Only when the system bus is still operable, and
main memory has not been corrupted, are system bus errors reportable.

10.4.1 C/A Parity Error
When a system bus node detects a C/A parity error, it logs the error, signals the
system by asserting the C_ERR L signal, and ignores the rest of the system bus
transaction. Table 10–6 shows the C/A parity errors.

Table 10–6 C/A Parity Errors

Commander Responder Bystander

• C/A cycle not acknowledged

• Reply with a HARD_ERROR
failure status to the processor

• Freeze system bus Error
Address Registers,

• set the appropriate bits in the
system bus Error Register, and

• assert the system bus C_ERR L
signal

• N/A (No
responder)

• Data cache
must be
flushed as
duplicate
tag store is
incoherent.

• Freeze system bus error
address registers

• Set the appropriate bits
in the system bus error
register

• Assert the system bus C_
ERR L signal

10.4.2 Data Parity Error
A system bus data parity error is detected under two circumstances: as a
responder and as a bystander.

A responder does not acknowledge the data transfer indicating to the commander
that the transaction failed because a parity error. The commander asserts the
C_ERR L signal to notify the system of the error.

A bystander checks system bus data parity when a system bus write probe
indicates a backup cache hit, and the system bus write data is used to update the
backup cache. If this bystander detects bad parity, the cache location in question
is marked invalid and the C_ERR L signal is asserted to notify the system of the
error.
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10.4 System Bus Errors

Table 10–7 Data Parity Errors

Commander Responder Bystander

• Read data, respond with
HARD_ERROR to the
processor.

• Write data , not acknowledged
by responder, respond with
HARD_ERROR to the
processor, assert C_ERR
L.

• Write data, do not
acknowledge the
data

• Freeze system
bus error address
registers

• Set the appropriate
bits in the system
bus error register.

• If accepting data
on a system bus
write update, mark
the backup cache
location invalid.

• Freeze system
bus error address
registers.

• Set the appropriate
bits in the system
bus error register.

• Assert the system
bus C_ERR L signal.

10.4.3 Invalid Address - Bus Time-out
An invalid address is identified as an address that is not acknowledged by any
responder. See Chapter 19.

When a commander detects an invalid address on the system bus, does the
following:

• It freezes the system bus error address registers.

• It sets the appropriate bits in the system bus error register.

• It asserts the system bus C_ERR L SIGNAL.

• It responds to the processor with HARD_ERROR which initiates a machine
check.

An invalid address is detected when a C/A is not acknowledged and no system bus
node indicates that a parity error has occurred or when a dirty victim with a bad
tag value (possible double-bit error) is written to memory with an EXCHANGE
address that is outside currently configured memory space. This has occurred
when the WRITE DATA NOT ACK’ED bit is asserted, and the EXHANGE field logged
in the CBEAH register indicates an invalid address. .

10.5 I/O Subsystem Errors
All errors occurring in the I/O subsystem are signaled using the Futurebus+ and
Local I/O interrupts and all system bus errors detected by the I/O subsystem are
signaled using the C_ERR L signal. See the I/O Module Chapter.

10.6 C_ERR L Assertion
When the backup cache controller detects the assertion of the C_ERR L system bus
signal it asserts the CPU module HARDWARE ERROR INTERRUPT.

10–10 Fault Management and Error Recovery



11
CPU Power-Up and Initialization

This section describes the behavior of the CPU module when system bus RESET_L
deasserts. The initial states of the processor and module registers are described
in Chapter 21.

11.1 Internal Processor Registers and the Internal JSR Stack
See Appendix A for a description of the processors internal registers power-up
state and a discussion regarding the initialization of the JSR stack via PAL code.

11.2 Backup Cache Initialization
Backup cache initialization is performed by the 21064 processor. This is
accomplished as follows:

1. The cache size set to the appropriate value in BCC.

2. Guarantee that other system bus commanders do not drive ‘‘Cacheable
address space’’ addresses.

3. Clear BC_EN in the 21064 BIU_CTL Register.

4. Clear FILL WRONG PARITY and disable tag and tag control store parity checking
by clearing the ENB TAG & DUP TAG PAR CHK bits in the BCC register.

5. Set SELECT DRACK, 2ND QW SELECT in BCBTL to desired values.

6. Set EDC H, EDC L, and SHARED, DIRTY, VALID (BCC) to desired values.

7. Set FORCE EDC/CONTROL H in the BCC Register

8. Set ENABLE BACKUP CACHE INIT H in the BCC Register

9. Set ENABLE FILL BACKUP CACHE H in the BCC Register

10. Perform LDQ from memory locations starting at the appropriate address
range.

• CPU0 = 1.0000.0000 - 1.7FFF.FFFF

• CPU1 = 1.8000.0000 - 1.FFFF.FFFF and continue up in 32-byte
increments until an address range equal to the size of the cache in the
system has been exhausted.

The backup cache control store contains the values for shared, dirty, and valid
provided in the BCC register before initialization. The backup cache tag store
contains a tag equivalent to the high-order address bits specified in the 9th step
above. Each quadword in the backup cache data store of a particular cache block
contains data identical to the data returned during the read (format indicated in
Section 11.2.1) and the EDC store contains the values indicated in step 4 above.
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11.2 Backup Cache Initialization

Once the backup cache RAMS are initialized, the backup cache control and status
register should be set as follows:

FORCE EDC/CONTROL Cleared

ENB BACKUP CACHE INIT Cleared

FILL WRONG DUP TAG STORE PAR Cleared

ENB DUP TAG STORE PAR CHK Set

ENB BACKUP CACHE COND I/O UPDATES Cleared

ENB BACKUP CACHE EDC CHK Set

ENB BACKUP CACHE CORRECTION Set

ENB BACKUP CACHE COR ERR INTERRUPT Set

FILL WRONG CONTROL PAR Cleared

ENB CONTROL BIT PAR CHK Set

FILL WRONG TAG PAR Cleared

ENB TAG PAR CHK Set

FORCE FILL SHARED Cleared

ENB FILL BACKUP CACHE Set

All error bits in the backup cache correctable, uncorrectable, and duplicate tag
store error registers should be cleared.

11.2.1 LDQ Data Format, BCC ENABLE BACKUP CACHE INIT Set
The LDC data format is described below.

Figure 11–1 LDQ Data Format (LDF)
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Table 11–1 LDQ Data Format Description

Field Description

63:34 ADDRESS FIELD H [read-only]

It contains the C/A address field for this cycle. Which is equal to the address of the data reference
of the LDQ.

33:32 SBO [read-only]

These bits should be 0.

31:2 ADDRESS FIELD L [read-only]

(continued on next page)
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11.2 Backup Cache Initialization

Table 11–1 (Cont.) LDQ Data Format Description

Field Description

It contains the C/A address field for this cycle. Which is equal to the address of the data reference
of the LDQ.

1:0 SBO [read-only]

These bits should be 0.

11.3 Duplicate Tag Store Initialization
The Duplicate Tag Store is reset to all 0’s and correct parity on power-up. No
user intervention is required.

11.4 System Bus Interface Initialization
Several things should be done on a system bus initialization as listed below.

1. The system bus control register should be initialized so that system bus
parity checking is enabled and all other writeable bits cleared. and SELECT
DRACK and 2ND QW SELECT bits are set to the appropriate values.

2. All error bits in the system bus error register should be cleared.

3. All functioning system bus commanders should be enabled for system bus
ARB in the system bus Control Register.

11.5 CPU Clocks and Reset
System bus reset asserts asynchronously with respect to the system bus clocks,
and deasserts synchronously with PHI1. The CPU module is designed to expect
the clocks to be free running during reset. See Chapter 19 and Section 6.10 for
details.

11.6 Power-Up Sequence
The system power supply is required to bring 3.3V up before 5V. If 3.3V goes below
regulation, the DCOK signal to 21064 is deasserted.

11.7 Powering Up with Bad Main Memory
Because the processor’s backup cache update policy is designed to accept the data
of an I/O module write (when the location is in the backup cache), it is possible to
simultaneously load the backup cache with the console image as it is written to a
broken memory module.

This is done by initializing the backup cache tag store with the tag values of the
memory region being written, and the tag control store valid, not shared, not
dirty and by creating a mailbox structure in the backup cache and initializing
its tag control store to valid, not shared, dirty the processor responds with the
mailbox data when the I/O module requests it. The only function required by
the memory module is to acknowledge the system bus transactions as they occur.
This means the memory module should be initialized as though it is functioning
normally.

The console image can be started as if it was located on a memory module, and
just moved into the backup cache via the normal cache allocation processes
handled in hardware.
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Part III
The I/O Module

This part contains a detailed functional description of the DEC 4000 I/O module.
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The KFA40 I/O Module
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The KFA40 I/O module contains the complete I/O subsystem for a DEC 4000 AXP system
including the following:

• A Futurebus+ Profile B interface allowing 32- and 64-bit data transfers

• Two Ethernet interfaces

• Five SCSI/DSSI channels

• A time-of-year (TOY) clock

• 8 Kilobytes of EEROM for console use

• Two serial line units

• 512 Kilobytes of flash erasable PROM (FEPROM) for console code

• A serial control bus controller (based on I2C)
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13
Address Mapping

The 34-bit physical address space of the system bus is split equally between
memory space and I/O space as shown in Figure 13–1.

Figure 13–1 System Bus Address Map
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SPACE
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MEMORY
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A33 = "1"

A33 = "0"

C P U  1 ALOC INVAL

C P U  0 ALOC INVAL
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2 GB
SECONDARY

NONCACHE

2 GB
PRIMARY
NONCACHE

NONCACHE

256 MB

256 MB

256 MB

256 MB

CMM(4)
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CMM(1)

CMM(2)

512 MB
−−

RESERVED
MODULE
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MODULE
C P U & I O

NONCACHE

NONCACHE

NONCACHE

NONCACHE

NONCACHE

NONCACHE

ADDMAP

0 00000000

2 00000000
1 FFFFFFFF

1 80000000
1 7FFFFFFF

1 00000000
0 FFFFFFFF

3 FFFFFFFF

2 00000000

2 7FFFFFFF
2 80000000

2 FFFFFFFF
3 00000000

3 FFFFFFFF

2 00000000

2 7FFFFFFF

2 70000000
2 6FFFFFFF

2 60000000
2 5FFFFFFF

2 50000000
2 4FFFFFFF

2 40000000

2 20000000

2 0FFFFFFF
2 10000000

2 1FFFFFFF

2 3FFFFFFF

NOTES: 1. ALL ADDRESSES ARE PHYSICAL (PA<33:0>).

13.1 System Memory Space
The first 8-Gbyte region ( 233) of address space is defined as system memory
space. Two Gbytes of this region are used for the maximum physical memory
of the DEC 4000 AXP platform (up to four 512 Mbyte memory modules).
Memory modules are configured by the console software at power-up to provide
a contiguous physical memory range within this space. The remainder of system
memory space is reserved for future use. The I/O module does not respond to any
addresses in system memory space.
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13.2 Primary I/O Space

13.2 Primary I/O Space
The second 8 Gbyte region is defined as I/O space. Two Gbytes are set aside for
the DEC 4000 AXP platform’s primary I/O space (registers existing directly on
the system bus). The remaining 6 Gbytes are reserved for future use.

The I/O module is allocated 256 Mbyte ( 228) of primary I/O space. The CPU
modules share a 256 Mbyte ( 228) region while each of four memory module slots
is assigned a 256 Mbyte ( 228) region. Modules are free to decode their regions as
needed. While the size of these address ranges may seem excessive, they allow
the hardware to implement very simple and fast address decoders.

The I/O module decodes its 256 Mbyte space as shown in Figure 13–2. Accesses
to undefined regions of the I/O module’s address space result in either a machine
check or the access of a mirrored register location.

Registers are accessible as quadword registers aligned on hexaword boundaries.
Access to other quadwords within the aligned hexaword results not in a machine
check, but in unpredictable I/O module operation.

Because of hardware partitioning, the individual longwords of a quadword
register are divided between two gate array devices. Therefore, many control and
status bits are duplicated in the register descriptions to eliminate communication
paths between the devices.

Figure 13–2 I/O Module Register Map
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13.2 Primary I/O Space

Figure 13–3 Lbus Diagnostic Mode Register Map
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13.2 Primary I/O Space

Figure 13–4 Futurebus+ Diagnostic Mode Register Map
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The diagnostic mode data registers allow direct write and read control of the
cache line buffers for the Futurebus+ and Local I/O bus interfaces during power-
up diagnostics. When bits <0> and <32> in the DIAGCSR register are set,
the diagnostic mode data registers are enabled. When bits <0> and <32> are
cleared the registers still respond to system bus transactions, but the data
returned is unpredictable. The diagnostic mode registers are used with the
MERGE SELECT bits in the DIAGCSR register to steer the data through the
internal data paths. This provides complete diagnostic coverage of the cache
buffer data paths. Switching from normal mode to diagnostic mode may destroy
data currently in the cache line buffers. Diagnostic mode must be restricted to
power-up diagnostics and cannot be used on an active system.

The registers are named to specify their function as follows:

Dwxyn

Where:

w F = Futurebus+, L = Local I/O bus
x C = Cache line data location, M = mailbox data location
y A = first cache line buffer, B = second cache line buffer
n Quadword within cache line

1. QW0, bytes [7..0]

2. QW1, bytes [15..8]

3. QW2, bytes [23..16]
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13.2 Primary I/O Space

4. QW3, bytes [32..24]

Each of the diagnostic mode data registers writes or reads a quadword of data
from its respective cache line buffer. When the Merge Select bits in the DIAGCSR
are cleared, the DLCyn, and DFCyn registers can be written and read to check
the operation of the cache line read buffers and mailbox data structure buffers.
When the DwCxy (cache line buffer) or DwMyn (mailbox buffer) is written, the
storage location used for DMA write operations (merge buffer) is also written.
With the MERGE SELECT bits in the DIAGCSR set, this merge buffer is read when
either the DwCyn or DwMyn register is accessed. The data returned during a
read from the DwCyn or DwMyn register with the Merge Select bit set are the
last data value written to either the DwCyn or DwMyn register.

13.3 Diagnostic Mode Address Registers
The diagnostic mode address registers allow access to the address pointers used
by the Futurebus+ and Local I/O bus interfaces. Figure 13–5 shows a map of
these registers.

Figure 13–5 Diagnostic Address Register Map
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When bits <0> and <32> in the DIAGCSR register are set, the diagnostic mode
address registers are enabled. When bits <0>and <32> are cleared, the registers
still respond to system bus transactions, but the data returned is unpredictable.
These registers are for diagnostic testing of the address pointers and should not
be accessed when Futurebus+ or Local I/O bus DMA activity is present.

The diagnostic mode address registers are written as a side effect of writing
selected diagnostic mode data registers. Therefore, these registers are read-only
registers. Direct writes to the DLAA, DLAB, DFAA or DFAB registers have no
effect. These registers can be updated by accessing the diagnostic mode data
registers as described in Table 13–1.

Data read from the diagnostic mode address registers is not read back as written
but reflects the normal processing of an address for use on the Cobra bus. The
following algorithm is used to determine the read data:

Write_Data, Read_Data: quadword;
Read_Data := (((Write_Data DIV 4) OR 000000030000000316)

AND 1FFFFFFF1FFFFFFF16);
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13.3 Diagnostic Mode Address Registers

Table 13–1 Diagnostic Mode Address Register Access

Write Register Read Register

DLCA0 (2 1000 0200) DLAA (2 1000 0600)

DLMA0 (2 1000 0300) DLAA (2 1000 0600)

DLCB0 (2 1000 0280) DLAB (2 1000 0680)

DLMB0 (2 1000 0380) DLAB (2 1000 0680)

DFCA0 (2 1000 0400) DFAA (2 1000 0700)

DFMA0 (2 1000 0500) DFAA (2 1000 0700)

DFCB0 (2 1000 0480) DFAB (2 1000 0780)

DFMB0 (2 1000 0580) DFAB (2 1000 0780)

13.4 I/O Control/Status Register (IOCSR)
This register stores information related to the I/O operations.
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13.4 I/O Control/Status Register (IOCSR)

Figure 13–6 I/O Control/Status Register (IOCSR)
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LBUS COMPLEMENT PARITY ODD (RW)
FUTUREBUS+ COMPLEMENT PARTITY ODD (RW)
LBUS RESET ODD (RW)
LMBPR RESET ODD (RW)

FMBPR RESET ODD (RW)
DATA WRITE WRONG PARITY ODD (RW)

COMMAND/ADDRESS WRITE WRONG PARITY 3 (RW)

COMMAND/ADDRESS WRITE WRONG PARITY  1 (RW)

LBUS DMA ENABLE ODD (RW)

FUTUREBUS+ DMA ENABLE ODD (RW)

MAILBOX ENABLE ODD (RW)

FUTUREBUS+ RESET ODD (RW)

LBUS COMPLEMENT PARTITY EVEN (RW)

FUTUREBUS+ COMPLEMENT PARITY EVEN (RW)

LBUS RESET EVEN (RW)

LMBPR RESET EVEN (RW)

FMBPR RESET EVEN (RW)

DATA WRITE WRONG PARITY EVEN (RW)

COMMAND/ADDRESS WRITE WRONG PARITY 2 (RW)

COMMAND/ADDRESS WRITE WRONG PARITY 0 (RW)

LBUS DMA ENABLE EVEN (RW)

FUTUREBUS+ DMA ENABLE EVEN (RW)

MAILBOX ENABLE EVEN (RW)

FUTUREBUS+ POWER FAIL (RW)

FUTUREBUS+ RESET EVEN (RW)

FUTUREBUS+ INTERRUPT STATUS (RW)

FUTUREBUS+ HALT (RW)

FUTUREBUS HALT ENABLE (RW)

ETHERNET HALT (WC)

ETHERNET HALT ENABLE (RW)
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13.4 I/O Control/Status Register (IOCSR)

Table 13–2 I/O Control and Status Register Descrition

Field Description

51 LBUS COMPLEMENT PARITY ODD [read/write]

Setting this bit causes the Lbus parity generation and check logic to complement its
outputs. This causes errors on data parity generation and checking for diagnostic
purposes.

50 FUTUREBUS+ COMPLEMENT PARITY ODD[read/write]

Setting this bit causes the Futurebus+ parity generation and check logic to
complement its outputs. This causes errors on both address and data parity
generation and checking for diagnostic purposes.

49 LBUS RESET ODD [read/write]

Setting this bit causes the assertion of the Lbus reset signal and resets the Lbus
logic in the odd interface gate array. This causes all local I/O devices and controllers
to their reset state. The processor must assert this signal for a minimum of 200
ms to guarantee a complete reset of all the local I/O devices. The Lbus Reset even
bit must be set in conjunction with this bit to completely reset the Lbus interface.
Failure to do so produces unpredictable results.

48 LMBPR RESET ODD [read/write]

Setting this bit clears the full status of the Lbus mailbox pointer register in the odd
interface gate array and allows a subsequent STQ_C to the FMPR to complete with
the low bit set. The Lbus reset odd and even and LMBPR reset even bits must also
be set in order to clear out any mailbox operation that is in progress or hung because
of an error.

47 FMBPR RESET ODD [read/write]

Setting this bit clears the full status of the Futurebus+ mailbox pointer register in
the odd interface gate array device and allows a subsequent STQ_C to the FMPR to
complete with the low bit set.

The Futurebus+ reset odd and even (bits 39 and 7 of this register) must be set
and cleared after any error on Futurebus+ MBX (8000 in CERR1) to clear out any
mailbox operation in progress or hung due to an error.

46 DATA WRITE WRONG PARITY ODD [read/write]

When this bit is set, the I/O module generates wrong data parity for (1) all odd
longwords during the next read of an I/O module primary register or (2) during the
next DMA write cycle when the I/O module is the commander, whichever occurs first.
This bit remains asserted for only one data transfer. This bit is cleared on power-up,
after a system bus reset, or after the data cycle for which its action is taken.

45 COMMAND/ADDRESS WRITE WRONG PARITY 3[read/write]

When a 1 is written to this bit field, wrong parity is generated for longword 3 during
the next system bus command/address transfer phase when the I/O module is the
commander. This bit is active for only one system bus command/address transfer.
This bit is cleared on power-up or after a system bus reset.

44 COMMAND/ADDRESS WRITE WRONG PARITY 1[read/write]

When a 1 is written to this bit field, wrong parity is generated for longword 1 during
the next system bus command/address transfer phase when the I/O module is the
commander. This bit is active for only one system bus command/address transfer.
This bit is cleared on power-up or after a system bus reset.

43 LBUS DMA ENABLE ODD [read/write]

(continued on next page)
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13.4 I/O Control/Status Register (IOCSR)

Table 13–2 (Cont.) I/O Control and Status Register Descrition

Field Description

When a 1 is written to this bit field, DMA read and write operations from local I/O
devices are enabled. Both LBUS DMA ENABLE EVEN and LBUS DMA ENABLE
ODD must be set to the same value. This bit is cleared on power-up or after a
system bus reset.

42 FUTUREBUS+ DMA ENABLE ODD [read/write]

When a 1 is written to this bit field, DMA read and write operations from
Futurebus+ devices are enabled. Both FUTUREBUS+ DMA ENABLE EVEN and
FUTUREBUS+ DMA ENABLE ODD must be set to the same value. This bit is
cleared on power-up or after a system bus reset.

41 MAILBOX ENABLE ODD [read/write]

When a 1 is written to this bit field, mailbox operations to remote buses are enabled.
If this bit is cleared writes to the LMBPR or FMBPR complete without error, but
the registers are not updated and no fetch of a mailbox data structure from memory
takes place. Both MAILBOX ENABLE EVEN and MAILBOX ENABLE ODD must
be set to the same value. This bit is cleared on power-up or after a system bus reset.

39 FUTUREBUS+ RESET ODD [read/write]

Setting this bit resets the Futurebus+ interface logic in the odd interface gate array.
The Futurebus+ reset signal is not asserted when this bit is set. This bit must be
asserted in conjunction with the FUTUREBUS+ RESET EVEN bit to correctly reset
the Futurebus+ interface. Failure to do so produces unpredictable results.

19 LBUS COMPLEMENT PARITY EVEN [read/write]

Setting this bit causes the Lbus parity generation and check logic to complement its
outputs. This causes errors on data parity generation and checking for diagnostic
purposes.

18 FUTUREBUS+ COMPLEMENT PARITY EVEN[read/write]

Setting this bit causes the Futurebus+ parity generation and check logic to
complement its outputs. This causes errors on both address and data parity
generation and checking for diagnostic purposes.

17 LBUS RESET EVEN [read/write]

Setting this bit resets the Lbus interface logic in the even interface gate array. The
Lbus reset signal is not asserted when this bit is set. This bit must be asserted in
conjunction with the LBUS RESET ODD bit to correctly reset the Lbus interface.
Failure to do so produces unpredictable results.

16 LMBPR RESET EVEN [read/write]

Setting this bit clears the full status of the Lbus mailbox pointer register in the even
interface gate array and allows a subsequent STQ_C to the FMPR to complete with
the low bit set. The LBUS RESET ODD AND EVEN and LMBPR ODD bits must
also be set to clear out any mailbox operation that is in progress or hung due to an
error.

15 FMBPR RESET EVEN [read/write]

Setting this bit clears the full status of the Futurebus+ mailbox pointer register
in the even interface gate array and allows a subsequent STQ_C to the FMPR to
complete with the low bit set.

The FUTUREBUS+ RESET ODD AND EVEN (bits <39> and <7> of this register)
must be set and cleared after any error on Futurebus+ MBX (8000 in CERR1) to
clear out any mailbox operation that is in progress or hung due to an error.

14 DATA WRITE WRONG PARITY EVEN [read/write]

(continued on next page)
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13.4 I/O Control/Status Register (IOCSR)

Table 13–2 (Cont.) I/O Control and Status Register Descrition

Field Description

When this bit is set, wrong data parity is generated by the I/O module for (1) all
even longwords during the next read of an I/O module primary register or (2) during
the next DMA write cycle when the I/O module is the commander, whichever occurs
first. This bit remains asserted for only one data transfer. This bit is cleared on
power-up, after a system bus reset, or after the data cycle for which its action is
taken.

13 COMMAND/ADDRESS WRITE WRONG PARITY 2[read/write]

When a 1 is written to this bit field, wrong parity is generated for longword 2 during
the next system bus command/address transfer phase when the I/O module is the
commander. This bit is active for only one system bus command/address transfer.
This bit is cleared on power-up or after a system bus reset.

12 COMMAND/ADDRESS WRITE WRONG PARITY 0[read/write]

When a 1 is written to this bit field, wrong parity is generated for longword 0 during
the next system bus command/address transfer phase when the I/O module is the
commander. This bit is active for only one system bus command/address transfer.
This bit is cleared on power-up or after a system bus reset.

11 LBUS DMA ENABLE EVEN [read/write]

When a 1 is written to this bit field, DMA read and write operations from local I/O
devices are enabled. Both LBUS DMA ENABLE EVEN and LBUS DMA ENABLE
ODD must be set to the same value. This bit is cleared on power-up or after a
system bus reset.

10 FUTUREBUS+ DMA ENABLE EVEN [read/write]

When a 1 is written to this bit field, DMA read and write operations from
Futurebus+ devices are enabled. Both FUTUREBUS+ DMA ENABLE EVEN and
FUTUREBUS+ DMA ENABLE ODD must be set to the same value. This bit is
cleared on power-up or after a system bus reset.

9 MAILBOX ENABLE EVEN [read/write]

When a 1 is written to this bit field, mailbox operations to remote buses are enabled.
If this bit is cleared, writes to the LMBPR or FMBPR complete without error, but
the registers are not updated and no fetch of a mailbox data structure from memory
takes place. Both the MAILBOX ENABLE EVEN and MAILBOX ENABLE ODD
must be set to the same value. This bit is cleared on power-up or after a system bus
reset.

8 FUTUREBUS+ POWER FAIL [read/write]

Setting this bit causes a Futurebus+ power fail message to be sent.

7 FUTUREBUS+ RESET EVEN [read/write]

Setting this bit causes the Futurebus+ reset signal (RE_L) to assert. The processor
must time the assertion of this bit to cause the correct operation on the Futurebus+.
The processor is required to assert this bit for a minimum of 100 ms, and a
maximum of 200 ms. For a full reset, this bit must be set for a minimum of 4
ms and a maximum of 12 ms for BUS_INIT.

6 FUTUREBUS+ INTERRUPT STATUS [read/write]

This bit is asserted if the Futurebus+ interrupt queue is not empty. It is cleared on
power-up or after a system bus reset or Futurebus+ reset.

5 FUTUREBUS+ HALT [read/write]

(continued on next page)
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13.4 I/O Control/Status Register (IOCSR)

Table 13–2 (Cont.) I/O Control and Status Register Descrition

Field Description

This bit is asserted if a Futurebus+ device is requesting a CPU halt. Reading the
Futurebus halt vector provides the vector for the requesting device and clears this
bit.

4 FUTUREBUS HALT ENABLE [read/write]

When set, this bit allows writes by a Futurebus+ I/O device to the Futurebus+ halt
request register to assert the system event interrupt on the system bus. This bit is
cleared on power-up or after a system bus reset.

1 ETHERNET HALT [read/write 1 to clear]

This bit is asserted if either local Ethernet controllers is requesting a CPU halt. The
port requesting the halt can be determined by examining the TGEC device registers.
Write one to clear.

0 ETHERNET HALT ENABLE [read/write]

When set, this bit allows remote trigger messages from the local Ethernet interfaces
to assert the system event interrupt on the system bus. The halt for an individual
TGEC device can be enabled or disabled through the TGEC device registers. This
bit is cleared on power-up or after a system bus reset.

13.5 System Bus Error Register 1 (CERR1)
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13.5 System Bus Error Register 1 (CERR1)

Figure 13–7 System Bus Error Register 1 (CERR1)
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13.5 System Bus Error Register 1 (CERR1)

Table 13–3 System Bus Error Register 1 Description

Field Description

48 CMDR WRITE DATA PARITY ERROR ODD [read/write 1 to clear]

This bit is set if an odd longword write data parity error is detected while the I/O
module is acting as the system bus commander. When this bit is set, the failing
command/address is saved in CERR2 and CERR3. Write one to clear. This bit is
cleared on power-up or after a system bus reset.

47 LBUS MAILBOX ERROR [read/write 1 to clear]

This bit is asserted when an error is detected during the processing of a mailbox
operation directed to the Lbus. The contents of the LMBPR is frozen until this
bit is cleared. Write one to clear. Cleared on power-up or after a system bus
reset. (Note: this error condition is not currently generated by the I/O module
and all Lbus mailbox errors are indicated within the status field of the mailbox
data structure.)

46 CSTALL SYNC ERROR EVEN [read/write 1 to clear]

This bit is set if a CSTALL out of sync error is detected by the even slice of the
system bus interface. Write one to clear. Cleared on power-up or after a system
bus reset.

45 DATA PARITY ERROR LW 7 [read/write 1 to clear]

This bit is set when a parity error is detected on longword 7 during the data
portion of a system bus transaction. This longword corresponds to bytes 31..28 of
the hexaword transferred.

Write one to clear. Undefined on power-up.

44 DATA PARITY ERROR LW 5 [read/write 1 to clear]

This bit is set when a parity error is detected on longword 5 during the data
portion of a system bus transaction. This longword corresponds to bytes 23..20 of
the hexaword transferred.

Write one to clear. Undefined on power-up.

43 DATA PARITY ERROR LW 3 [read/write 1 to clear]

This bit is set when a parity error is detected on longword 3 during the data
portion of a system bus transaction. This longword corresponds to bytes 15..12 of
the hexaword transferred.

Write one to clear. Undefined on power-up.

42 DATA PARITY ERROR LW 1 [read/write 1 to clear]

This bit is set when a parity error is detected on longword 1 during the data
portion of a system bus transaction. This longword corresponds to bytes 7..4 of
the hexaword transferred.

Write one to clear. Undefined on power-up.

41 CA PARITY ERROR LW 3 [read/write 1 to clear]

This bit is set when a parity error on longword 3 of a system bus command
/address transfer is detected. Please reference the Chapter 19 for the mapping of
the command/address field to the system bus longwords.

Write one to clear. Undefined on power-up.

40 CA PARITY ERROR LW 1 [read/write 1 to clear]

This bit is set when a parity error on longword 1 of a system bus command
/address transfer is detected. Please reference the Chapter 19 for the mapping of
the command/address field to the system bus longwords.

Write one to clear. Undefined on power-up.

(continued on next page)
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13.5 System Bus Error Register 1 (CERR1)

Table 13–3 (Cont.) System Bus Error Register 1 Description

Field Description

39 MISSED READ DATA PARITY ERROR ODD [read/write 1 to clear]

This bit is set when an odd longword parity error is detected during the transfer
of read data from a responder node when the I/O module is the commander, after
some other error has been detected by the error logic. This indicates that the
full error status (for example, the FAILING COMMAND/ADDRESS , and DATA
PARITY ERROR bits) is not available for this error (and therefore, the error has
been "missed").

Write one to clear. Cleared on power-up.

38 READ DATA PARITY ERROR ODD [read/write 1 to clear]

This bit is set when an odd longword parity error is detected during the transfer
of read data from a responder node when the I/O module is the commander.
If this indicator is set, the full error status (including the Failing Command
/Address, and Data Parity Error bits) is available to help identify the source of
this error.

Write one to clear. Cleared on power-up.

37 MISSED WRITE DATA PARITY ERROR ODD [read/write 1 to clear]

This bit is set when an odd longword parity error is detected during the transfer
of write data from a commander node to an I/O module primary I/O space
register, after some other error has been detected by the error logic. This
indicates that the full error status (for example, the Failing Command/Address,
and Data Parity Error bits) is not available for this error (and therefore, the error
has been "missed").

Write one to clear. Cleared on power-up.

36 WRITE DATA PARITY ERROR ODD [read/write 1 to clear]

This bit is set when an odd longword parity error is detected during the transfer
of write data from a commander node on the system bus to an I/O module
primary I/O space register. If this indicator is set, the full error status (including
the Failing Command/Address, and Data Parity Error bits) is available to help
identify the source of this error.

Write one to clear. Cleared on power-up.

35 MISSED COMMAND ADDRESS PARITY ERROR ODD [read/write 1 to
clear]

This bit is set when an odd longword parity error is detected during the transfer
of Command/Address from a commander node to a selected responder node, after
some other error has been detected by the error logic. This indicates that the full
error status (for example, the Failing Command/Address, and Data Parity Error
bits) is not available for this error and therefore, the error has been "missed".

This bit is set by the I/O module when a parity error on any odd Longword of
the Command/Address transfer occurs, regardless of whether this module is the
intended responder.

Write one to clear. Cleared on power-up.

34 COMMAND ADDRESS PARITY ERROR ODD [read/write 1 to clear]

This bit is set when a parity error is detected on the odd longwords of a system
bus Command/Address transfer regardless of whether the transfer is directed
to this module or not. When this bit is set, the error status in the CERR2 and
CERR3 registers and in CERR1 [41:40] is available to help locate the source of
the error.

Write one to clear. Cleared on power-up.

(continued on next page)
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13.5 System Bus Error Register 1 (CERR1)

Table 13–3 (Cont.) System Bus Error Register 1 Description

Field Description

33 NO ACKNOWLEDGE ERROR ODD [read/write 1 to clear]

This bit is set when, while acting as the system bus master, the I/O module fails
to receive an acknowledge for the command/address that it has placed on the
bus. This error indicates that the selected device does not exist, the selected
device is broken, the I/O module is broken, or a command/address parity error
has occurred during the cycle. The failing command/address is saved in CERR2
and CERR3. Write one to clear. Cleared at power up or after a system bus reset.

32 UNCORRECTABLE READ ERROR ODD [read/write 1 to clear]

This bit is set when, while acting as the system bus master, the I/O module
receives an uncorrectable read data error from the selected device. The failing
command/address is saved in CERR2 and CERR3. Write one to clear. Cleared at
power up or after a system bus reset.

17 BUS SYNCHRONIZATION ERROR [read/write 1 to clear]

The bit is set when the I/O module detects command fields on the upper and
lower quadwords of the system bus that do not match. This error is an indication
that the gate array devices that make up the interface for the current bus master
are out of sync. This error condition is checked for all system bus transactions
whether or not the I/O module is the system bus master. When this bit is set,
the failing command/address is saved in CERR2 and CERR3. Write one to clear.
Cleared on power-up or after a system bus reset.

16 CMDR WRITE DATA PARITY ERROR EVEN [read/write 1 to clear]

This bit is set if an even longword write data parity error is detected while the
I/O module is acting as the system bus commander. When this bit is set, the
failing command/address is saved in CERR2 and CERR3. Write one to clear.
Cleared on power-up or after a system bus reset.

15 FUTUREBUS+ MAILBOX ERROR [read/write 1 to clear]

This bit is asserted when an error is detected during the processing of a mailbox
operation directed to the Futurebus+. The contents of the FMBPR are frozen
until this bit is cleared. Write one to clear. Cleared on power up or after a
system bus reset.

14 CSTALL SYNC ERROR ODD [read/write 1 to clear]

This bit is set if a CSTALL out of sync error is detected by the odd slice of the
system bus interface. Write one to clear. Cleared on power-up or after a system
bus reset.

13 DATA PARITY ERROR LW 6 [read/write 1 to clear]

This bit is set when a parity error is detected on longword 6 during the data
portion of a system bus transaction. This longword corresponds to bytes 27..24 of
the hexaword transferred.

Write one to clear. Undefined on power-up.

12 DATA PARITY ERROR LW 4 [read/write 1 to clear]

This bit is set when a parity error is detected on longword 4 during the data
portion of a system bus transaction. This longword corresponds to bytes 19..16 of
the hexaword transferred.

Write one to clear. Undefined on power-up.

11 DATA PARITY ERROR LW 2 [read/write 1 to clear]

(continued on next page)
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13.5 System Bus Error Register 1 (CERR1)

Table 13–3 (Cont.) System Bus Error Register 1 Description

Field Description

This bit is set when a parity error is detected on longword 2 during the data
portion of a system bus transaction. This longword corresponds to bytes 11..8 of
the hexaword transferred.

Write one to clear. Undefined on power-up.

10 DATA PARITY ERROR LW 0 [read/write 1 to clear]

This bit is set when a parity error is detected on longword 0 during the data
portion of a system bus transaction. This longword corresponds to bytes 3..0 of
the hexaword transferred.

Write one to clear. Undefined on power-up.

9 CA PARITY ERROR LW 2 [read/write 1 to clear]

This bit is set when a parity error on longword 2 of a system bus command
/address transfer is detected. Please reference the Please reference the
Chapter 19 for the mapping of the command/address field to the system bus
longwords.

Write one to clear. Undefined on power-up.

8 CA PARITY ERROR LW 0 [read/write 1 to clear]

This bit is set when a parity error on longword 0 of a system bus command
/address transfer is detected. Please reference the C- bus specification for the
mapping of the command/address field to the system bus longwords.

Write one to clear. Undefined on power-up.

7 MISSED READ DATA PARITY ERROR EVEN [read/write 1 to clear]

This bit is set when an even longword parity error is detected during the transfer
of read data from a responder node when the I/O module is the commander, after
some other error has been detected by the error logic. This indicates that the
full error status (for example, the FAILING COMMAND/ADDRESS , and DATA
PARITY ERROR bits) is not available for this error (and therefore, the error has
been "missed").

Write one to clear. Cleared on power-up.

6 READ DATA PARITY ERROR EVEN [read/write 1 to clear]

This bit is set when an even longword parity error is detected during the transfer
of read data from a responder node when the I/O module is the commander.
If this indicator is set, the full error status (including the Failing Command
/Address, and Data Parity Error bits) is available to help identify the source of
this error.

Write one to clear. Cleared on power-up.

5 MISSED RSP WRITE DATA PARITY ERROR EVEN [read/write 1 to clear]

This bit is set when an even longword parity error is detected during the transfer
of write data from a commander node to an I/O module primary I/O space
register (I/O module is the system bus responder), after some other error has
been detected by the error logic. This indicates that the full error status (for
example, the Failing Command/Address, and Data Parity Error bits) is not
available for this error (and therefore, the error has been "missed").

Write one to clear. Cleared on power-up.

4 RESPONDER WRITE DATA PARITY ERROR EVEN [read/write 1 to clear]

(continued on next page)
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13.5 System Bus Error Register 1 (CERR1)

Table 13–3 (Cont.) System Bus Error Register 1 Description

Field Description

This bit is set when an even longword parity error is detected during the transfer
of write data from a commander node on the system bus to an I/O module
primary I/O space register (I/O module is the system bus responder). If this
indicator is set, the full error status (including the Failing Command/Address,
and Data Parity Error bits) is available to help identify the source of this error.

Write one to clear. Cleared on power-up.

3 MISSED COMMAND ADDRESS PARITY ERROR EVEN [read/write 1 to
clear]

This bit is set when an even longword parity error is detected during the transfer
of Command/Address from a commander node to a selected responder node, after
some other error has been detected by the error logic. This indicates that the full
error status (for example, the Failing Command/Address, and Data Parity Error
bits) is not available for this error and therefore, the error has been "missed".

This bit is set by the I/O module when a parity error on any even Longword of
the Command/Address transfer occurs, regardless of whether this module is the
intended responder.

Write one to clear. Cleared on power-up.

2 COMMAND ADDRESS PARITY ERROR EVEN [read/write 1 to clear]

This bit is set when a parity error is detected on the even longwords of a system
bus Command/Address transfer regardless of whether the transfer is directed
to this module or not. When this bit is set, the error status in the CERR2 and
CERR3 registers and in CERR1 [9:8] is available to help locate the source of the
error.

Write one to clear. Cleared on power-up.

1 NO ACKNOWLEDGE ERROR EVEN [read/write 1 to clear]

This bit is set when, while acting as the system bus master, the I/O module fails
to receive an acknowledge for the command/address that it has placed on the
bus. This error indicates that the selected device does not exist, the selected
device is broken, the I/O module is broken, or a command/address parity error
has occurred during the cycle. The failing command/address is saved in CERR2
and CERR3. Write one to clear. Cleared at power up or after a system bus reset.

0 UNCORRECTABLE READ ERROR EVEN [read/write 1 to clear]

This bit is set when, while acting as the system bus master, the I/O module
receives an uncorrectable read data error from the selected device. The failing
command/address is saved in CERR2 and CERR3. Write one to clear. Cleared at
power up or after a system bus reset.

13.6 System Bus Error Register 2 (CERR2)
This register stores information related to a system bus errors.

Address Mapping 13–17



13.6 System Bus Error Register 2 (CERR2)

Figure 13–8 System Bus Error Register 2 (CERR2)
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COMMAND/ADDRESS[63:00] (RO)

Table 13–4 System Bus Error Register 2 Description

Field Description

63:0 COMMAND/ADDRESS[63:00] [read-only]

These bits correspond to system bus CAD [63:00] during the command/address
transfer of the failing cycle.

13.7 System Bus Error Register 3 (CERR3)
This register stores information related to a system bus errors.

Figure 13–9 System Bus Error Register 3 (CERR3)
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COMMAND/ADDRESS[127:64] (RO)

Table 13–5 System Bus Error Register 3 Description

Field Description

63:0 COMMAND/ADDRESS[127:64] [read-only]

These bits correspond to system bus CAD [127:64] during the command/address
transfer of the failing cycle.

13.8 Lbus Mailbox Pointer Register (LMBPR)
This register is written with the address of the mailbox data structure in order
to perform a read or write operation to the secondary I/O space of the Lbus. A
STQ_C instruction must be used to write this register. The STQ_C fails (low bit
clear) if the Lbus mailbox mechanism is currently in use. Writing this register
causes the I/O module to fetch the mailbox data structure in memory and perform
the requested operation. If an error occurs during an Lbus mailbox operation, the
contents of the LMBPR are frozen until the LBUS MAILBOX ERROR bit in CERR1
is cleared. This allows the failing mailbox data structure to be located for error
recovery purposes.

The MAILBOX ENABLE bits in the IOCSR must be set in order to write this
register and have the mailbox data structure fetched from memory. The LBUS
DMA ENABLE bits in the IOCSR must be set to allow the mailbox response and
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13.8 Lbus Mailbox Pointer Register (LMBPR)

any read data returned to the mailbox data structure in memory to free up this
register for further writes.

The assertion of the LBUS RESET bits in the IO_CSR or a system bus reset causes
any mailbox operation in progress to be aborted. The LMBPR is freed. That is,
the STQ_C no longer fails. The contents of the mailbox data structure in memory
is not updated to reflect the aborted operation.

Figure 13–10 Lbus Mailbox Pointer Register (LMBPR)
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Table 13–6 Lbus Mailbox Pointer Register Description

Field Description

31:6 MAILBOX ADDRESS [read/write]

This field contains the Lbus mailbox address.

13.9 Futurebus+ Mailbox Pointer Register (FMBPR)
This register is written with the address of the mailbox data structure in order to
perform a read or write operation to the secondary I/O space of the Futurebus+.
A STQ_C instruction must be used to write this register. The STQ_C fails (low
bit clear) if the Futurebus+ mailbox mechanism is currently in use. Writing this
register causes the I/O module to fetch the mailbox data structure in memory
and perform the requested operation. If an error occurs during an Futurebus+
mailbox operation, the contents of the FMBPR are frozen until the FUTUREBUS+
MAILBOX ERROR bit in CERR1 is cleared. This allows the failing mailbox data
structure to be located for error recovery purposes.

The MAILBOX ENABLE bits in the IOCSR must be set in order to write this register
and have the mailbox data structure fetched from memory. The FUTUREBUS+ DMA
ENABLE bits in the IOCSR must be set in order to allow the mailbox response and
any read data returned to the mailbox data structure in memory and to free up
this register for further writes.

The assertion of the FUTUREBUS+ RESET bit in the IO_CSR or a system bus
reset causes any mailbox operation in progress to be aborted. The FMBPR
becomes free, that is, the STQ_C no longer fails. The contents of the mailbox
data structure in memory is not updated to reflect the aborted operation.
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13.9 Futurebus+ Mailbox Pointer Register (FMBPR)

Figure 13–11 Futurebus+ Mailbox Pointer Register (FMBPR)
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Table 13–7 Futurebus+ Mailbox Pointer Register Description

Field Description

31:6 MAILBOX ADDRESS [read/write]

This field holds the address of the Futurebus+ mailbox.

13.10 Diagnostic Control/Status Register (DIAGCSR)

Figure 13–12 Diagnostic Control/Status Register (DIAGCSR)
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Table 13–8 Diagnostic Control/Status Register Description

Field Description

47:34 DIAGNOSTIC READ-WRITE BITS ODD [read/write]

These are general-purpose data bits that can be used by diagnostic routines
to test read and write operations to the primary register space. Cleared on
power-up.

33 MERGE SELECT ODD [read/write]

(continued on next page)
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13.10 Diagnostic Control/Status Register (DIAGCSR)

Table 13–8 (Cont.) Diagnostic Control/Status Register Description

Field Description

This bit controls the read data path of the diagnostic registers. When clear, the
diagnostic registers DLCxy, DLMxy, DFCxy, and DFMxy in the odd interface gate
array are read back from the cache line or mailbox buffers that are used during
Cobra Bus read operations. When set, the registers are read back from the write
buffer used during DMA write operations and mailbox status writes. Cleared on
power-up.

32 DIAGNOSTIC MODE ODD [read/write]

This bit places the data path in the odd longword slice gate array into diagnostic
mode. DMA operation from the local I/O devices and the Futurebus+ is disabled.
This bit enables the remaining DIAGCSR register bits for control of the gate
array data paths. This bit also enables the diagnostic data path registers (DFxxx
and DLxxx registers) for direct read and write of the storage elements in the gate
array cache line buffers.

15:2 DIAGNOSTIC READ-WRITE BITS EVEN [read/write]

These are general-purpose data bits that can be used by diagnostic routines
to test read and write operations to the primary register space. Cleared on
power-up.

1 MERGE SELECT EVEN [read/write]

This bit controls the read data path of the diagnostic registers. When clear, the
diagnostic registers DLCxy, DLMxy, DFCxy, and DFMxy in the even interface
gate array are read back from the cache line or mailbox buffers that are used
during system bus read operations. When set, the registers are read back from
the write buffer used during DMA write operations and mailbox status writes.
Cleared on power-up.

0 DIAGNOSTIC MODE EVEN [read/write]

This bit places the data path in the even longword slice gate array in diagnostic
mode. DMA operation from the local I/O devices and the Futurebus+ is disabled.
This bit enables the remaining DIAGCSR register bits for control of the gate
array data paths. This bit also enables the diagnostic data path registers (DFxxx
and DLxxx registers) for direct reading and writing of the storage elements in the
gate array cache line buffers. Cleared on power-up.

13.11 Futurebus+ Interrupt Vector Register (FIVECT)
This register stores vector information related to Futurebus+ interrupts.

Figure 13–13 Futurebus Interrupt Vector Register (FIVECT)
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13.11 Futurebus+ Interrupt Vector Register (FIVECT)

Table 13–9 Futurebus Interrupt Vector Register Description

Field Description

15:0 VECTOR [read-only]

This field contains the vector for the interrupting Futurebus+ device. This
register is the head of a FIFO queue for Futurebus+ interrupts. Reading this
register removes one entry from the queue. If the queue is empty, reading
this field returns zeros. These bits are cleared on power-up or by setting the
FUTUREBUS+ RESET EVEN and FUTUREBUS+ RESET ODD (bits 39 and 7
respectively) bits in the IOCSR.

13.12 Futurebus Halt Vector Register (FHVECT)

Figure 13–14 Futurebus Halt Vector Register (FHVECT)
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Table 13–10 Futurebus Halt Vector Register Description

Field Description

15:0 VECTOR [read/write]

This field contains the vector for the Futurebus+ device that has requested
a CPU halt by writing a vector to the Futurebus+ adapter Futurebus+ Halt
Request register. Reading this register removes the vector value and allows
Futurebus+ Halt Request register to be written again by a Futurebus+ device.
Subsequent reads of the register return zeros until a new halt vector is written
by a Futurebus+ device. Cleared at power-up or by setting the FUTUREBUS+
RESET EVEN and FUTUREBUS+ RESET ODD bits in the IOCSR.

13.13 Futurebus Error Register 1 (FERR1)
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13.13 Futurebus Error Register 1 (FERR1)

Figure 13–15 Futurebus Error Register 1 (FERR1)
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Table 13–11 Futurebus Error Register 1 Description

Field Description

33 ADDRESS PARITY ERROR ODD [read/write]

This bit is set when an address parity error is detected by the even gate array
slice during the connection phase of a Futurebus+ transaction. The I/O module
operates as the potential Futurebus+ slave during this operation. When this
bit is set, the C_ERR hardware error interrupt is asserted on the system bus.
Because the address is latched in both the even and odd gate array slices, either
one or both slices may detect the parity error. Write one to clear, cleared by the
Futurebus+ Reset bit in the IO_CSR register or by a system bus reset.

32 DATA PARITY ERROR ODD [read/write 1 to clear]

This bit is set when (1) a parity error in an odd longword is detected during
a Futurebus+ write transaction when the I/O module is operating as the
Futurebus+ slave or (2) on a mailbox read operation. When this bit is set,
the C_ERR hardware error interrupt is asserted on the system bus. Write one to
clear, cleared by the Futurebus+ Reset bit in the IO_CSR register or by a system
bus reset.

1 ADDRESS PARITY ERROR EVEN [read/write 1 to clear]

This bit is set when an address parity error is detected by the even gate array
slice during the connection phase of a Futurebus+ transaction. The I/O module
operates as the potential Futurebus+ slave during this operation. When this
bit is set, the C_ERR hardware error interrupt is asserted on the system bus.
Because the address is latched in both the even and odd gate array slices, either
one or both slices may detect the parity error. Write one to clear, cleared by the
FUTUREBUS+ RESET bit in the IO_CSR register or by a system bus reset.

0 DATA PARITY ERROR EVEN [read/write 1 to clear]

This bit is set when a parity error in an even longword is detected during
a Futurebus+ write transaction when the I/O module is operating as the
Futurebus+ slave or on a mailbox read operation. When this bit is set, the
C_ERR hardware error interrupt is asserted on the system bus. Write one to
clear. Cleared by the FUTUREBUS+ RESET bit in the IO_CSR register or by a
system bus reset.

13.14 Futurebus Error Register 2 (FERR2)
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13.14 Futurebus Error Register 2 (FERR2)

Figure 13–16 Futurebus Error Register 2 (FERR2)
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Table 13–12 Futurebus Error Register 2 Description

Field Description

63:32 ERROR ADDRESS ODD [read-only]

When the Address Parity Error odd bit in FERR1 is set, this field contains
the failing address. If the bit is not set, the contents of this register are
unpredictable. This register is not cleared by any reset or power-up condition
but is constantly loaded with the address on the Futurebus+. The contents of the
register are frozen by an address parity error. The loading of addresses resumes
when the Address Parity Error odd bit in FERR1 is cleared.

31:0 ERROR ADDRESS EVEN [read-only]

When the ADDRESS PARITY ERROR EVEN bit in FERR1 is set, this field
contains the failing address. If the bit is not set, the contents of this register are
unpredictable. This register is not cleared by any reset or power-up condition
but is constantly loaded with the address on the Futurebus+. The contents of the
register are frozen by an address parity error. The loading of addresses resumes
when the ADDRESS PARITY ERROR EVEN bit in FERR1 is cleared.

13.15 Local Interrupt Register (LINT)
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13.15 Local Interrupt Register (LINT)

Figure 13–17 Local Interrupt Register (LINT)
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Table 13–13 Local Interrupt Register Description

Field Description

35 SERIAL BUS IRQ [read/write 1 to clear]

This bit is asserted if the I
2
C-bus controller is requesting an interrupt. Write

one to clear, cleared on power-up or after an Lbus Reset.

34 NI1 IRQ [read/write 1 to clear]

This bit is asserted if local Ethernet controller 1 is requesting and interrupt.
Write one to clear, cleared on power up or after an Lbus reset.

33 NI0 IRQ [read/write 1 to clear]

This bit is asserted if local Ethernet controller 0 is requesting and interrupt.
Write one to clear, cleared on power up or after an Lbus reset.

32 SLU IRQ [read/write 1 to clear]

This bit is asserted when the controller for the serial lines is requesting an
interrupt. Write one to clear, cleared on power up or after an Lbus reset.

4 SCSI4 IRQ [read/write 1 to clear]

This bit is asserted if SCSI/DSSI controller 4 is requesting an interrupt. Write
one to clear, cleared on power-up or after an Lbus reset.

3 SCSI3 IRQ [read/write 1 to clear]

This bit is asserted if SCSI/DSSI controller 3 is requesting an interrupt. Write
one to clear, cleared on power-up or after an Lbus reset.

2 SCSI2 IRQ [read/write 1 to clear]

This bit is asserted if SCSI/DSSI controller 2 is requesting an interrupt. Write
one to clear, cleared on power-up or after an Lbus reset.

1 SCSI1 IRQ [read/write 1 to clear]

This bit is asserted if SCSI/DSSI controller 1 is requesting an interrupt. Write
one to clear, cleared on power-up or after an Lbus reset.

0 SCSI0 IRQ [read/write 1 to clear]

(continued on next page)
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13.15 Local Interrupt Register (LINT)

Table 13–13 (Cont.) Local Interrupt Register Description

Field Description

This bit is asserted if SCSI/DSSI controller 0 is requesting an interrupt. Write
one to clear, cleared on power-up or after an Lbus reset.

13.16 Lbus Error Register 1 (LERR1)

Figure 13–18 Lbus Error Register 1 (LERR1)
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Table 13–14 Lbus Error Register 1 Description

Field Description

32 DATA PARITY ERROR ODD [read/write 1 to clear]

This bit indicates that there was a data parity error on the local I/O bus detected
by the odd gate array. Data parity errors are detected during the following
transactions:

• TGEC DMA write cycle

• SCSI controller DMA write cycle

Note

Data parity errors during a mailbox read of the
SCSI Script RAM or TGEC CSR are reported in
the status field of the mailbox data structure.
Parity errors during a TGEC or SCSI controller
DMA read cycle are reported by the specific device.

When this bit is set, the C_ERR hardware error interrupt is asserted on the
system bus. Write one to clear, cleared on power-up or by setting the Lbus Reset
bits in the IOCSR register.

0 DATA PARITY ERROR EVEN [read/write 1 to clear]

(continued on next page)
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13.16 Lbus Error Register 1 (LERR1)

Table 13–14 (Cont.) Lbus Error Register 1 Description

Field Description

This bit indicates that there was a data parity error on the local I/O bus detected
by the even gate array. Data parity errors are indicated with this register during
the following transactions:

• TGEC DMA write cycle

• SCSI controller DMA write cycle

Note

Data parity errors during a mailbox read of the
SCSI Script RAM or TGEC CSR are reported in
the status field of the mailbox data structure.
Parity errors during a TGEC or SCSI controller
DMA read cycle are reported by the specific device.

When this bit is set, the C_ERR hardware error interrupt is asserted on the
system bus. Write one to clear, cleared on power-up or by setting the Lbus Reset
bits in the IOCSR register.

13.17 Lbus Error Register 2 (LERR2)

Figure 13–19 Lbus Error Register 2 (LERR2)
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Table 13–15 Lbus Error Register 2 Description

Field Description

31:0 ERROR ADDRESS ODD [read-only]

(continued on next page)
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13.17 Lbus Error Register 2 (LERR2)

Table 13–15 (Cont.) Lbus Error Register 2 Description

Field Description

When the DATA Parity Error odd bit in LERR1 is set this register contains the
failing address. If the error occurred during a mailbox read of the SCSI Script
RAM this register contains the address of the mailbox data structure in memory.
If the error occurred during a TGEC or SCSI controller DMA write cycle this
register contains the memory address of the DMA write operation.

This register is not cleared by any reset or power-up condition but is constantly
loaded with a new address at the beginning of every Lbus cycle. The contents of
the register are frozen by a detected data parity error. The loading of addresses
resumes when the Data Parity Error odd bit in LERR1 is cleared.

63:32 ERROR ADDRESS EVEN [read-only]

When the DATA Parity Error even bit in LERR1 is set this register contains the
failing address. If the error occurred during a mailbox read of the SCSI Script
RAM this register contains the address of the mailbox data structure in memory.
If the error occurred during a TGEC or SCSI controller DMA write cycle this
register contains the memory address of the DMA write operation.

This register is not cleared by any reset or power-up condition but is constantly
loaded with a new address at the beginning of every Lbus cycle. The contents of
the register are frozen by a detected data parity error. The loading of addresses
resumes when the Data Parity Error even bit in LERR1 is cleared.

13.18 Secondary I/O Space
The main function of the I/O module’s interface to the system bus is to provide an
adapter between the system bus and two secondary buses. These secondary buses
are:

• The Futurebus+ which is the open bus available for the user

• The Local I/O bus which is a 32-bit bus connecting the local I/O devices
contained on the KFA40 I/O module.

Read operations directed at a secondary bus are very slow relative to CPU clock
speed. A CSR read may take 1 to 10 µs or even longer, while a processor clock
cycle is under 10 ns.

Because the 21064 processor pin bus and the DEC 4000 AXP system bus are
nonpended, a read operation that is allowed to address a node on a secondary
bus can cause the system bus to stall while data is accessed. If the system bus
is allowed to stall, multiprocessors stall and I/O devices can not access main
memory. This can cause data to back up and potentially overflow, producing a
deadlock situation if the system bus is stalled for a CSR read and the secondary
bus is stalled trying to access the system bus. Because it is unacceptable for the
entire system to stall for an indeterminate amount of time, (1) the system bus
must be complicated by adding pended operations, or (2) device drivers must be
complicated by "pending" CSR reads.

13.18.1 Mailbox Data Structure
In order to decouple the comparatively long access latencies of these buses from
the system bus (which the CPU uses for access to main memory) these buses are
not directly accessible by the processor. A mechanism called a mailbox has been
provided for access to devices on either of the secondary buses. The processor
builds a structure in main memory called the mailbox data structure that
describes the operation to be performed. The processor then writes a pointer to
this structure into a mailbox pointer register. The I/O module reads the mailbox
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13.18 Secondary I/O Space

data structure, performs the operation specified (read or write) and returns status
and any data to the structure in memory.

An additional problem that must be handled is that I/O space typically has
restrictions on the size of transaction that is allowed. Sometimes byte operations
are required. Often, longword operations are required. The 21064 processor does
not provide byte address information. To get longword or byte addresses the
mailbox data structure contains a byte mask field.

13.18.2 Software-visible Control Flow
To provide software-visible control flow, a store quad conditional (STQ_C)
instruction is used to access the mailbox pointer register. The STQ_C to I/O
space does not require a preceding load lock (LDx/L) instruction as with normal
lock operations in memory space. The STQ_C failure (low bit clear) indicates that
the register being accessed is busy. The processor code can then reschedule the
register write operation.

The atomic STQ_C to the mailbox pointer registers alerts the I/O module to read
the mailbox data structure. Ownership of the mailbox data structure passes
between the CPU and I/O module so that at any given time only one is writing
and the other is reading. Because the memory locations that contain the mailbox
data structure are cached by the CPU module, bus traffic is minimized.

13.18.3 Mailbox Pointer Registers
There are two mailbox pointer registers, the Lbus mailbox pointer register
(LMBPR) for operations to the local I/O devices and the Futurebus+ mailbox
pointer register (FMBPR) for devices on the Futurebus. The DEC 4000 AXP I/O
module implements only one pointer behind each mailbox pointer register (a one
deep queue). If this pointer is in use, additional writes to the mailbox pointer
register result in STQ_C failures.

Software must manage the allocation of mailbox data structures. Subsequent
operations must not overwrite data which is still in use.

New drivers and applications should use this mailbox mechanism directly. To
allow existing drivers and some applications that touch I/O space to run without
modification, operating systems could map secondary I/O locations to some virtual
address region. An access to this virtual address range could then trap to a PAL
routine or exception handler which is capable of using the mailbox mechanism.
However, performance is not as good as a driver that uses the mailbox mechanism
directly.

Figure 13–20 shows the format of the memory resident mailbox data structure.
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Figure 13–20 Mailbox Mechanism
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Table 13–16 describes the fields in the mailbox data structure.

Table 13–16 Mailbox Data Structure

Field Description

Control[31:0] Command[31:0]: Bus specific command; the intention of this
field is that these bits map exactly to command lines on the
bus.

Control[39:32] Mask[7:0]: Byte mask within the given naturally-aligned
transfer. Set bit to 1 to prevent corresponding byte location
from being written. The number of valid byte mask bits
is determined by the data width field above. Byte mask is
ignored unless partial operation is specified in transaction
type.

Control[63:48] Port[15:00]: Specifies the remote adapter for the operation.
This field is not used by the DEC 4000 AXP I/O system
because both the Lbus and Futurebus+ adapters are one
piece designs and are not separated by a remote cable.

Write Data[63:00] Contains the data to be written to the secondary bus device
during a mailbox write operation. Data bits above the
natural width of the device or within bytes specifically
disabled with the mask field (for those devices that support
masked writes) are not used during the write operation.

Read Data[63:00] Contains data returned during a mailbox read operation.
Data bits above the natural width of the device accessed are
unpredictable.

Status[0] Done: cleared by processor, set by I/O module when the
mailbox operation is complete.

Status[1] Error: This bit is not valid unless the done bit is set

Status[63:2] Implementation-specific error status
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The two secondary I/O buses (Futurebus+ and Local I/O bus) use different
encodings of the command field. The following section describes the command
field encoding for the two buses.

Figure 13–21 Futurebus+ Mailbox Command Field (FCMD)
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Table 13–17 Futurebus+ Mailbox Command Field Description

Field Description

7 ADDRESS WIDTH [read/write]

0 = 32-bit
1 = 64-bit

5 DATA WIDTH [read/write]

0 = 32-bit
1 = 64-bit

Note

The data width field takes precedence over the low order address bits in
the Secondary Bus Address field.

4 WR [read/write]

0 = read
1 = write

3:0 TRANS [read/write]

0 = unmasked
2 = partial - byte mask is valid
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Figure 13–22 Futurebus+ Mailbox Status Field (FSTAT)
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Table 13–18 Futurebus+ Mailbox Status Field Description

Field Description

15 WT

Futurebus+ WT status bit

14 BE

Futurebus+ BE status bit

13 IV

Futurebus+ IV status bit

12 TF

Futurebus+ TF status bit

11 BC

Futurebus+ BC status bit

10 SL

Futurebus+ SL status bit

9 ED

Futurebus+ ED status bit

8 TE

Futurebus+ TE status bit

7 D64

The Futurebus+ D64 command bit, echoed from the mailbox command field.

6 PARTIAL

The Futurebus+ Partial command bit, echoed from the mailbox command field.

5 READ

The Futurebus+ Read command bit, echoed from the mailbox command field.

4 SPLIT

Indicates the mailbox operation was split by the device on the Futurebus+.

3:2 PHASE

Bus phase that the error was captured in. Because of the pipelined nature
of Futurebus+ error detection, this may be the phase after the error actually
occurred.

• 11 = Idle

• 10 = Connection

• 01 = Disconnection

• 00 = Data

1 ERROR

Indicates that an error was detected during the mailbox operation. Not valid
unless the Done bit is also set.

0 DONE

This bit is set by the I/O module when the mailbox operation has been completed
and indicates that the remaining mailbox status is valid.
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Figure 13–23 Lbus Mailbox Command Field (LCMD)
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Table 13–19 Lbus Mailbox Command Field Description

Field Description

12 FLASH ERASE ROM SELECT

This bit, when set, selects the Flash Erase ROMs as the target for the mailbox
operation. Bits <18:2> of the Secondary Bus Address select the longword location
within the ROMs.

11 SERIAL BUS CONTROLLER SELECT

This bit when set selects the I2
C � bus controller (serial control bus controller) as

the target for the mailbox operation. Bit 2 selects the register within the device.

10 ETHERNET ADDRESS ROM SELECT

This bit when set selects the Ethernet station address ROM as the target for the
mailbox operation. Bits <7:2> of the Secondary Bus Address selects the location
within the ROM.

9 TGEC SELECT

This bit, when set, selects the TGEC Ethernet interface devices as the target for
the mailbox operation. Bit <7> of the Secondary Bus Address selects one of the
two TGEC interfaces, bits <6:2> select the register within the device.

8 TOY CLOCK SELECT

This bit when set selects the DS1287 device as the target for the mailbox
operation. Bits <7:2> of the Secondary Bus Address select the register within
the device.

7 SCSI CONTROLLER SELECT

This bit, when set, selects the five SCSI controller (53C710) devices as the target
for the mailbox operation. Bits <8:6> of the Secondary Bus Address select one
of the five SCSI controllers, bits <5:2> of the Secondary Bus Address select the
register within the device.

6 SCSI SCRIPT RAM SELECT

This bit, when set, selects the Script RAM for the SCSI controllers as the target
for the mailbox operation. Bits <16:2> of the Secondary Bus Address select the
longword within the Script RAM buffer.

5 UART SELECT

This bit, when set, selects the 85C30 dual UART device as the target for the
mailbox operation. Bits <3:2> of the Secondary Bus Address select the register
within the device.

4 EEPROM SELECT

This bit, when set, selects the EEPROM device as the target for the mailbox
operation. Bits <14:2> of the secondary bus address select the location within the
8Kx8 EEPROM device.

3 CYCLE TYPE [read/write]

• 0 = read

• 1 = write

2:0 RESERVED

Reserved for future use.
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Figure 13–24 Lbus Mailbox Status Field (LSTAT)
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Table 13–20 Lbus Mailbox Status Field Description

Field Description

0 DONE

This bit is set by the I/O module when the mailbox operation has been completed
and indicates that the remaining mailbox status is valid.

1 ERROR

Indicates that an error was detected during the mailbox operation. Not valid
unless the done bit is also set.

13.18.4 Mailbox Operation
The address of a mailbox data structure is a double-hexaword-aligned memory
location. The I/O module writes into the second hexaword of the mailbox data
structure only. It may duplicate the data/status fields in both halves of the second
hexaword so that it can write a full cache line without a preceding read. The
I/O module does not overwrite the processor’s original command in the mailbox
data structure so that a failed command can be debugged. Software may reuse
mailbox data structures (for example, multiple reads from the same CSR), or it
may maintain templates that are copied to the Mailbox Data Structure.

Byte mask bits may be needed by some hardware devices for correct operation of
the read as well as the write. Setting the appropriate bit in the Control field of
the Mailbox Data Structure disables the corresponding byte location.

The following is a simple description of use of the mailbox mechanism by software
for both read and write operations. The Alpha System Reference Manual gives
complete details of the mailbox operation.

Read Operation from a Secondary Bus Address

1. Check status word for mailbox data structure in use; Clear status word in
mailbox data structure.

2. Write secondary bus address into mailbox data structure

3. Assemble control bits in CPU register (r/w, command, byte mask, port
number); write to mailbox data structure.

4. STQ_C of mailbox data structure address to mailbox pointer register

5. If STQ_C failed, then mailbox mechanism on I/O module was busy; back off
and try again. If STQ_C succeeded, continue to do "useful work" until data is
required.
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6. When data is required, load status word from mailbox data structure, BLBC
until data is returned (cache coherence scheme updates location when written
by I/O device)

7. Check error bit. load read data from mailbox data structure if no error (note
that data should already be in cache due to status word read. Additional bus
transaction is not required)

Mailbox read operation overhead:

• Memory read by CPU if Mbx+32 is not in processor cache

• Memory read by CPU if Mbx is not in processor cache

• I/O write to Mailbox Pointer register

• Memory read by I/O module (data supplied by processor cache)

• Secondary bus read by I/O module.

• Memory write of data and status by I/O module (causes invalidate of processor
cache)

• Memory read by CPU to get data and status

Write Operation to a Secondary Bus Address

1. Check status word for mailbox data structure in use. Clear status word in
mailbox data structure.

2. Deposit write data into mailbox data structure

3. Write secondary bus address into mailbox data structure.

4. Assemble control bits in CPU register (r/w, command, byte mask, port
number). Write to mailbox data structure.

5. STQ_C of mailbox data structure address to mailbox pointer register.

6. If STQ_C failed, the mailbox mechanism on the I/O module was busy. Back
off and try again. If STQ_C succeeded, write is "complete" in dump-and-run
sense. The I/O module interprets mask and store data to desired location; the
I/O module sets completion and any error status when done.)

Mailbox write operation overhead:

• Memory is read by CPU if Mbx+32 is not in processor cache.

• Memory is read by CPU if Mbx is not in processor cache.

• I/O write to mailbox pointer register is done.

• Memory is read by I/O module (data supplied by processor cache).

• Secondary bus write by I/O module is done.

• Memory write of status information by I/O module is done.
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Interrupts

There are three sources of interrupts to the processor that exist on the I/O
module as follows:

• Futurebus+ interrupts

• Local I/O device interrupts

• Hardware error interrupts (parity errors, timeouts, etc.).

The 21064 processor on the CPU module provides six asynchronous, level-
sensitive interrupts that are individually maskable via PAL code. Prioritization
of these inputs is handled in PAL code. The encoding of system interrupts onto
the processor inputs is shown in Table 14–1.

Table 14–1 DEC 4000 AXP System Interrupt Encoding

IRQ(n) Interrupt Source System Bus Signal

5 System event (Power or
Halt)

CSYS_EVENT_L

4 Interval timer CINT_TIM

3 Interprocessor Interrupt (CPU INTERNAL)

2 Futurebus+ interrupt CIRQ_L[1]

1 Local I/O interrupt CIRQ_L[0]

0 Hardware error C_ERR_L

14.1 Futurebus+ Interrupts
Futurebus+ devices interrupt the system by issuing a write cycle to the
Futurebus+ interrupt request register, a Futurebus visible CSR implemented in
the I/O module’s Futurebus+ adapter. At system configuration time, the processor
loads the address of the interrupt CSR and the data value (vector) to be used
when interrupting into the INT_LOC and INT_VAL registers on the Futurebus+
module. The location of these configuration registers within the Futurebus+
device is vendor specific.

The Futurebus+ adapter on the I/O module implements a simple 16 deep FIFO
queue for capturing Futurebus+ interrupts. If the queue is full, the adapter
issues a busy status on any further writes by a Futurebus+ device. This causes
the device to release the Futurebus+ and retry the cycle.

Whenever there is data in the queue, the Futurebus+ interrupt line to the
CPU module is asserted after any pending write operations in the Futurebus+
cache line buffers have been flushed out. Bit <6> in the IOCSR register is set
to indicate that the Futurebus+ interrupt queue is not empty. Care must be
taken when using a polled interrupt handler because the setting of Futurebus+
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interrupt status bit in the IOCSR does not guarantee the flushing of DMA writes.
After detecting the interrupt condition, the processor reads the Futurebus+
interrupt vector register to take the first value off the queue. The CPU uses this
data value to dispatch to the appropriate service routine. The interrupt line to
the CPU module is deasserted after the read of the Futurebus+ interrupt vector
register. The interrupt line is asserted again if more vectors remain in the FIFO
after any pending writes have been flushed. This process continues until the
queue is empty. A read of the Futurebus+ interrupt vector register when the
queue is empty, returns a vector of all 0s.

14.2 Local I/O Interrupts
The interrupts from the local I/O devices (SCSI/DSSI ports, Ethernet port, and
serial line units) are combined with a logical OR function into one processor
interrupt. The local interrupt (LINT) register contains a bit for each interrupting
device (Section 13.2).

The LINT register implements separate edge detectors for the device interrupts.
If any of the bits in the LINT register are set, the CIRQ_L[0] interrupt to the CPU
is asserted after any pending write operations in the Lbus cache line buffers
have been flushed. After detecting the interrupt, the processor reads the local
interrupt (LINT) register to determine which device or devices are requesting
service. It is the responsibility of PAL code to prioritize these inputs to determine
the order in which devices are serviced.

The processor must write a 1 to the bit in the LINT register that it wishes to
clear. This action causes the CIRQ_L[0] interrupt to deassert. It is asserted again
if there are more interrupt bits set in the LINT register after any writes in the
cache line buffers have been flushed. The interrupt output from each device
remains asserted until the processor clears the interrupting condition or disables
interrupts within the particular device. The hardware depends on the device
interrupt being cleared in order to guarantee another edge to set the appropriate
LINT register bit.

14.3 Hardware Error Interrupts
The I/O module asserts the hardware error interrupt (C_ERR ) signal to the CPU
module when it detects any of the conditions listed in Table 14–2. The processor
interrogates the I/O control and status register (IO_CSR), system bus error
register (CERR1), Lbus error register (LERR1), and Futurebus error register
(FERR1) to determine the cause. The I/O module makes no attempt to retry any
failed operation for which it was the initiator.

For system bus operations, the I/O module detects parity errors on a received
command/address transaction on the bus, whether the operation was directed at
the I/O module or not. At other times, it is the responsibility of the transaction
slave to fail any operation (no acknowledge) for which it detects an error. The
transaction initiator then asserts the hardware error interrupt.
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Table 14–2 I/O Module Hardware Error Interrupt Conditions

Error Condition I/O Module State Saved State

System bus command/address parity System bus Bystander CMD,ADR,CMD ID

System bus No Acknowledge System bus Master CMD,ADR, CMD ID

System bus Read Data Parity System bus Master CMD,ADR,CMD ID,
LW error bits

System bus Uncorrectable Read System bus Master CMD,ADR,CMD ID

Mailbox Error Lbus or Futurebus+ Master Mailbox Pointer
Register

Futurebus+ Write Data Parity Futurebus+ Slave Futurebus+ Address

Futurebus+ Address Parity Futurebus+ Slave Futurebus+ Address

Lbus Data Parity Mailbox read of TGEC CSR Mailbox Address

Lbus Data Parity Mailbox read of SCSI CSR Mailbox Address

Lbus Data Parity Mailbox read of SCSI Script
RAM

Mailbox Address

Lbus Data Parity TGEC DMA write DMA Address

Lbus Data Parity SCSI DMA write DMA Address

14.4 System Event Interrupt Requests
There are four sources of system event interrupt requests in the DEC 4000 AXP
system as follows:

• Halt switch on the operator control panel

• Change in the power supply status

• Remote boot detection by the local Ethernet controller

• Futurebus+ I/O device halt interrupt request

Any of these conditions generate a CSYS_EVENT interrupt pulse on the system
bus. This is an edge-sensitive interrupt on the processors. The processors are
responsible for determining the source of the request and setting priorities for
servicing multiple requests.

After detecting the system event interrupt, the processor first checks the power
supply controller for a change in status and takes appropriate action to handle
the new condition.

Power supply status conditions:

• Power system shutdown

• AC power failure

• DC power failure

• Over temperature warning

• Over temperature shutdown

• Fan failure

• Disk or tape power supply (LDC) failure

• Reserve battery activated
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The processor also reads the I/O control and status register (IOCSR) to determine
if the local Ethernet controller or a Futurebus+ is requesting a CPU halt or
reboot operation. If a Futurebus+ device is requesting a CPU halt, a 16-bit vector
provided by the device is available in the Futurebus+ halt vector register. This
vector value is software setable and is written to the device by the processor
during the device initialization sequence. The halt requests from the local
Ethernet controller and Futurebus+ device are individually maskable in the
IOCSR.

The processor also interrogates the operator control panel to determine if the halt
button has been pressed. The operator control panel and power system controller
are accessed through a serial bus interface on the I/O module.
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Futurebus+ Adapter Architecture

The Futurebus+ adapter on the I/O module supports Futurebus+ devices
compatible with Profile B as described in the IEEE 896.2 specification. The
Futurebus+ is used on the DEC 4000 AXP system solely as an I/O bus. No
provisions are made to support main memory on the Futurebus+. The cache
coherency domain of the memory system does not extend to the Futurebus+.

While the I/O module is compatible with the electrical and protocol sections of
Profile B, it is not compatible with the mechanical or CSR specifications of the
profile. The module is mechanically incompatible because it is physically larger
than the Futurebus+ Profile B modules and plugs into a special system backplane
enclosure slot that provides connections to the internal I/O devices. The CSR
incompatibility exists because the DEC 4000 AXP CPU always assumes it is
the configuration processor (Monarch processor in Futurebus+ terms) on the
Futurebus+; therefore it has no need to provide Futurebus+ accessible registers
to allow another device on the bus to configure the system. Many of the bus
protocol parameters that are setable through Futurebus+ registers are hardwired
on the DEC 4000 AXP I/O module.

All Futurebus+ accesses by the CPU must be performed using the mailbox
mechanism for secondary I/O space access, as described in Section 13.18.

15.1 Futurebus+ Address Space

Adapter as Futurebus+ Slave
The Futurebus+ adapter on the I/O module makes the physical memory available
for access by Futurebus+ modules. The adapter responds only to Futurebus+
transactions that use 32-bit addressing (A32 transactions). The adapter does
not respond as a slave to Futurebus+ transactions that use 64-bit addressing
(A64 transactions). Primary I/O and secondary I/O spaces are not accessible by
Futurebus+ transactions.

Devices that can generate 64-bit addresses should always assume that they are
in a system mixed with 32-bit nodes. CSRs must always be accessed with A32
transactions, and memory addresses that fit in 32-bit space (64-bit addresses with
at least 32 leading zeros) must always use the A32 qualifier.

The Futurebus+ A32 address space is shown in Figure 15–1 and Table 15–1. A64
address space is shown in Figure 15–2.
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Figure 15–1 A32 Futurebus+ Address Space
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Table 15–1 Futurebus+ Address Mapping

Region Size Address Range

System Memory 2 GB 0000 0000H - 7FFF FFFFH

Available Futurebus+
Memory Space

1.5 GB 8000 0000H - DFFF FFFFH

Node Private Space 256 MB E000 0000H - EFFF FFFFH

Futurebus+ CSR Space 256 MB F000 0000H - FFFF FFFFH

Figure 15–2 A64 Futurebus+ Address Space
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Adapter as Futurebus+ Master
The DEC 4000 AXP CPU can access Futurebus+ addresses only through the
use of the mailbox mechanism (Section 13.18). This mechanism allows access
to the Futurebus+ using either A32 or A64 addressing. Bit 7 in the Mailbox
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Data Structure control field specifies the address size during the Futurebus+
transaction by the adapter.

The adapter does not respond to master transactions that map back to system
memory or adapter Futurebus+ registers.

Futurebus+ Node CSR Addressing
Each Futurebus+ module is allocated 4 kbytes of address space for register space.
The IEEE P1212 and IEEE 896.1 specifications describe these registers. The
register space is divided into CORE CSRs, Futurebus+ specific CSRs, a node
ROM window and a vendor reserved area (Figure 15–3 ).

Figure 15–3 Futurebus+ Node Addressing

0

512

1K

node[B] CSR
CORE

bus[0]
0 node[B+1] Futurebus+

reserved

o
o
o

Memory

o

o

o

7/8 2K

4K

Vendor
15/16

Registers bus[1023]

28 bits
18 bits

areabus[1]

1

node[B+n]

reserved

o
o
o

Internal

ROM

node[B+61]

32 bits

area

12 bits

15.2 Futurebus+ Adapter Registers
The I/O module provides five Futurebus+ visible registers called the Futurebus+
Interrupt Request [3..0] registers and Futurebus+ Halt Request register. These
registers are located at the following Futurebus+ addresses (bus 1023, node 0):

• Futurebus+ Interrupt Request [0] - FFFC 0800

• Futurebus+ Interrupt Request [1] - FFFC 0804

• Futurebus+ Interrupt Request [2] - FFFC 0808

• Futurebus+ Interrupt Request [3] - FFFC 080C

• Futurebus+ Halt Request - FFFC 0810

The Futurebus+ Interrupt Request [3..0] registers are used by Futurebus+
modules to cause a CPU interrupt. These are write only registers that can be
accessed only by using the 32-bit addressing mode of the Futurebus+. These
registers do not respond to A64 writes or any read cycle.
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The DEC 4000 AXP system provides one interrupt request level to the CPU for
Futurebus interrupts. The four Futurebus+ Interrupt Request registers feed into
a single interrupt FIFO queue that is 16 entries deep.

Because this register is really the input to a 16-deep FIFO queue, the queue may
be full when a module attempts to write a vector value to it. The I/O module
responds with a busy status to the Futurebus+ master. The master must give up
ownership of the bus and retry the cycle at a later time.

The Futurebus+ halt request register is used by Futurebus+ modules to cause
a CPU halt interrupt. This is a write-only register that can be accessed only
by using the 32-bit addressing mode of the Futurebus+. The register does not
respond to A64 writes or any read cycle.

The writing of a 16-bit halt vector to this register by the Futurebus+ master
causes a system event interrupt if the Halt Enable bit in the primary Control and
Status register is set. Because this register may be full when a module attempts
to write a halt vector value to it, the I/O module responds with a BUSY status
to the Futurebus+ master. The master must give up ownership of the bus and
retries the cycle at a later time.

15.3 Futurebus+ Interrupt Request Register (FIRQ)

Figure 15–4 Futurebus+ Interrupt Request Register (firq)
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Table 15–2 Futurebus+ Interrupt Request Register Description

Field Description

15:0 VECTOR [write-only]

The sixteen bit data value to be used by the CPU as the interrupt vector.

15.4 Futurebus+ Halt Request Register (FHRQ)

Figure 15–5 Futurebus+ Halt Request Register (fhrq)
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15.4 Futurebus+ Halt Request Register (FHRQ)

Table 15–3 Futurebus+ Halt Request Register Description

Field Description

15:0 VECTOR [write-only]

The sixteen bit data value to be used by the CPU as the halt vector.

15.5 Supported Data Transfer Protocols

15.5.1 Futurebus+ Slave
The I/O module responds to both 32-bit (D32) and 64-bit (D64) Futurebus+
transfers. The only supported transaction types are:

• Read

• Read Partial

• Write

• Write Partial

• Read Response

The CPU attempts to configure modules at system initialization to perform
burst-data transfers in multiples of 32 bytes, which is the natural transfer size
of the system bus. This avoids the need for the I/O module to perform a read
block-merge data-write block operation which wastes system bandwidth. System
performance degrades rapidly if excessive use of partial block transfers is made.

Data transfers should start on naturally aligned 32-byte boundaries. If the
transfer is nonaligned, the I/O module uses the ED status line of the Futurebus+
cycle to end the transaction on a naturally aligned boundary. This should force
the device to align further transfers in the same DMA operation.

The Futurebus+ device should declare the length of the transaction during the
first data phase of the Futurebus+ cycle. This allows the I/O module to optimize
the transaction. When the data length is declared, it implies that the transaction
is aligned to the natural boundary of the transaction length.

15.5.2 Futurebus+ Master
The I/O module acts as a Futurebus+ master when performing operations through
the mailbox mechanism. The cycles supported are:

• Read

• Read Partial

• Write

• Write Partial

• Read Response

The I/O module can perform both D64 and D32 transactions of the defined types.
In all cases, the I/O module indicates a transfer size of 1, because there is only
one data value specified in the mailbox mechanism.
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15.6 Futurebus+ Error Handling
As a Futurebus+ slave, the I/O module indicates any detected error conditions
to the Futurebus+ master using the define transaction status indicators. It is
the bus master’s responsibility to either RETRY the operation or inform the host
CPU.

As a Futurebus+ master, the I/O module interrupts the host CPU on any error
detected on a system bus transaction. Errors occurring on the Futurebus+ are
reported to the CPU through the status field of the mailbox mechanism, the
FERR1 and FERR2 registers, or both.
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Local I/O Devices

The local (Lbus) I/O bus (Lbus) is a 32-bit multiplexed, address and data bus that
interconnects the local I/O devices. The local I/O devices are the SCSI controller
chips, the EEPROM, and the serial line units.

16.1 Lbus Addressing
The Lbus address space is not a divided, flat address space as might be expected.
Individual device type select bits are provided in the command field of the
mailbox data structure, while the secondary bus address field is used to address
an individual location within the selected device. This structure simplifies the
logic implementation and reduces access latency.

With the exception of the SCSI controller, access to the SCSI script RAM, DMA
activity between Lbus devices is not permitted. The SCSI controllers can perform
the following operations:

• SCSI script RAM instruction fetches

• Main memory instruction fetches

• SCSI data transfers to or from SCSI script RAM

• SCSI data transfers to or from main memory

• SCSI script RAM to SCSI script RAM transfers

• Main memory to main memory transfers

• Main memory move transfers to or from SCSI Script RAM

Bit <31> of the 53C710 SCSI controller’s DMA address is used to select the type
of DMA activity to be performed. When bit <31> is 0, the 53C710 DMA cycle is
directed to main memory, when bit <31> is a 1, the DMA cycle is directed to the
SCSI controller private bus. Bit 30 of the address is used to select between a
controller’s own CSR space and the SCSI script RAM.

During a 53C710 DMA cycle to the SCSI script RAM (Bit 30 = 0), address bits
<16:2> select the longword within the RAM. Address bits <30:17> have no effect
during the cycle. During a SCSI controller DMA to its own register space (Bit
30 = 1), bits <5:2> select the register within the controller. Bits <29:6> have
no effect. DMA accesses to a controller’s own register space are used to update
controller registers directly from a command script. Scripts can be generic
because the controller number is not included in the CSR address decoding.
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16.1 Lbus Addressing

Table 16–1 SCSI Controller Address Decoding

A[31] A[30] Source or Destination

0 x System memory

1 0 Script RAM

1 1 Controller’s CSRs

In the following descriptions of the local devices, a 32-bit register format is used
to describe the individual device registers. Many of the devices use a byte-wide
interface. Register data values for these devices are provided on bits <7:0> of
the Write Data and Read Data fields of the mailbox data structure. Unused
bits are shown in gray. The hardware does not check the values in the unused
bit locations during write operations and it does not guarantee that the data in
unused locations is of any predictable value during read operations.

16.2 EEPROM
The I/O module provides 8 kbytes of EEPROM for use by the console firmware as
nonvolatile storage. Bit <4> in the Lbus mailbox data structure command field
selects the EEPROM device for access. Bits <14:2> of the secondary bus address
field select the byte within the device. Only single byte write and read operations
are supported for this device. Bits <7:0> of the mailbox data structure write data
and read data fields are used for write and read operations respectively. The
mask field of the mailbox data structure has no effect.

16.3 Serial Line Ports
The I/O module contains two serial line ports: the console serial line port and
the auxiliary serial line port. Both serial lines operate in asynchronous mode
only. The console serial line does not provide modem control and uses a 6-pin
DECconnect MMJ connector mounted on the I/O module handle. This line is
compatible with the RS-232-C,D,E, EIA 423, CCITT V.28 and V.10 standards.
The auxiliary serial line provides modem control and uses a 25-pin DIN connector
mounted on the I/O module handle. This line is compatible with RS-232-C,D,E,
EIA 423, CCITT V.28 and V.24 standards, as well as BELL 101, 103 and 112
modems.

Both serial lines are implemented using a single 85C30 device. Bit <5> in the
Lbus mailbox data structure command field selects the 85C30 device for access,
while bits <3:2> of the secondary bus address field select the register within the
device. Only single-byte write and read operations are supported for this device.
Bits <7:0> of the mailbox data structure write data and read data fields are used
for write and read operations respectively. The mask field of the mailbox data
structure has no effect.

Figure 16–1 shows the mapping of the mailbox data structure secondary bus
address field to the 85C30 registers. The 85C30 provides two registers for each
serial line unit.
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16.3 Serial Line Ports

Figure 16–1 Serial Line Unit Register Map
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reserved AUX_DATA

reserved CON_CTRL
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The 85C30 contains 10 internal read registers (RR0 - RR3, RR8, RR10 - RR13,
RR15) and 16 internal write registers (WR0 - WR15) for each channel. The 85C30
contains only one WR2 register and WR9 register, but they can be accessed by
either channel.

With the exception of RR0, WR0, RR8, and WR8 internal registers are accessed
by a two-step process using a register pointer to perform the addressing.

1. The pointer bits must be set by writing to the AUX_CTRL or CON_CTRL
registers which correspond to WR0 for each channel when the pointer bits
are 0. The pointer bits may be written in either channel because only one set
exists in the 85C30.

2. After the pointer bits are set, the next read or write cycle to the AUX_CTRL
or CON_CTRL accesses the desired internal register. At the end of this read
or write, the pointer bits are reset to zero so the next control write is to the
register pointer. If for some reason the state of the pointer bits is unknown,
they may be reset to 0 by performing a read to the AUX_CTRL or CON_CTRL
registers.

Because the pointer bits are reset to zero unless explicitly set otherwise, WR0
and RR0 for each channel may be accessed in a single cycle. That is, it is not
necessary to write the pointer bits with 0 before accessing WR0 and RR0 for
either channel.

There are three pointer bits in WR0 that allow access to the registers with
addresses 0 through 7. To access the registers with addresses 8 through 15, a
special command must accompany the pointer bits. The command may be written
to WR0 at the same time that the pointer bits are written.

There are three ways to read the receive data buffer (RR8) or write to the
transmit data buffer (WR8) for each channel:

1. The two-step process

2. By accessing the 85C30 using the AUX_DATA register for channel B or CON_
DATA register for channel A.

3. A read or write of the AUX_DATA register or CON_DATA register accesses
the data registers directly, and independently, of the state of the pointer bits.
This allows single-cycle access to the data registers and does not disturb the
pointer bits.
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16.4 AUX_CTRL Register (ACR)

16.4 AUX_CTRL Register (ACR)

Figure 16–2 AUX_CTRL Register (acr)
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Table 16–2 AUX_CTRL Register Description

Field Description

7:0 CONTROL DATA [read/write]

This 8-bit data field accesses the WR0 or RR0 registers of the auxiliary serial
line channel when the register pointers are reset to 0. The data format of the
WR0 register contains a register pointer that can be written to select one of the
auxiliary serial line internal registers. The next read or write of the AUX_CTRL
accesses the desired internal register. Any read or write of the AUX_CTRL
register when the register pointer is not 0, resets the register pointer to 0.

16.5 AUX_Data Register (AD)

Figure 16–3 AUX_Data Register (ad)
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Table 16–3 AUX_Data Register Description

Field Description

7:0 RECEIVE/TRANSMIT DATA [read/write]

This register provides direct access to the receive data register (RR8) and
transmit data register (WR8) for the auxiliary serial line unit. This corresponds
to channel B in the 85C30.
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16.6 Console Control Register (CON_CTRL)

16.6 Console Control Register (CON_CTRL)

Figure 16–4 Console Control Register (CCTRL)
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Table 16–4 Console Control Register Description

Field Description

7:0 CONTROL DATA [read/write]

This 8-bit data field accesses the WR0 or RR0 registers of the console serial line
channel when the register pointers are reset to 0. The data format of the WR0
register contains a register pointer that can be written to select one of the console
serial line internal registers. The next read or write of the CON_CTRL accesses
the desired internal register. Any read or write of the CON_CTRL register when
the register pointer is nonzero resets the register pointer to 0.

16.7 Console Data Register (CD)

Figure 16–5 Console Data Register ( CD)
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Table 16–5 Console Data Register Description

Field Description

7:0 RECEIVE / TRANSMIT DATA [read/write]

This register provides direct access to the receive data register (RR8) and
transmit data register (WR8) for the console serial line unit. This corresponds to
channel A in the 85C30.

Because the 85C30 does not provide enough modem control signals within an
individual channel, the modem control signals for the auxiliary serial line are
split between both channels. The following table is a guide to using the modem
control signals provided for the auxiliary serial line:
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16.7 Console Data Register (CD)

Table 16–6 Auxiliary Serial Line Modem Control

Signal
Digital
Abbreviation

CCITT V.24
Number Channel Register Bit

Data Signaling Rate Selector SPDMI 112 A (console) RR0 5

Calling Indicator RI 125 A RR0 3

Data Channel Received Line
Signal Detector

CD 109 B (auxiliary) RR0 3

Data Set Ready DSR 107 A RR0 4

Clear to Send CTS 106 B RR0 5

Data Signaling Rate Detector
(DTE)

DSRS 111 B WR5 1

Data Terminal Ready DTR 108/2 A WR5 7

Request To Send RTS 105 A WR5 1

16.8 Time-of-Year Clock (TOY)
The Time-of-Year (TOY) clock is implemented on the DEC 4000 AXP I/O module
using the Dallas Semiconductor DS1287 real time clock device. This device
provides the battery backed up TOY clock, 50 bytes of nonvolatile RAM, and a
programmable square wave output. The square wave output is used to drive the
system bus timer interrupt (CINT_TIM) signal.

The interrupt output of the DS1287 is not connected to any processor interrupt.
Therefore the timers and alarms, if desired, are only available using polled
software routines.

Bit 8 in the Lbus mailbox data structure command field selects the DS1287
device for access. Bits <7:2> of the Secondary Bus Address field select the
register within the device. Only single byte write and read operations are
supported for this device. Bits <7:0> of the mailbox data structure write data and
read data fields are used for write and read operations respectively. The mask
field of the mailbox data structure has no effect. The following sections describe
the TOY clock registers:
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Figure 16–6 TOY Clock Register Map

31 0 address

reserved seconds 0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0004

0008

000C

0010

0014

0018

001C

0020

0024

0028

002C

0030

0034

0038

00FC

sec alarm

hours

day of wk

year

reserved

minutes

min alarm

month

day of mon

reserved

hrs alarm

reg A

TOY RAM[0]

reserved

reg B

TOY RAM[49]

reserved

reg C

reserved

reg D

reserved

reserved

reserved

reserved

reserved

reserved

reserved

reserved

reserved

reserved

16.9 TOY Register A (TOYA)

Figure 16–7 TOY Register A (toyA)
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Table 16–7 TOY Register A Description

Field Description

7 UPDATE IN PROGRESS [read-only]

The update in progress bit is a status flag that can be monitored. When the UIP
bit is a one, the update transfer occurs. When UIP is 0, the update transfer does
not occur for at least 244 µs. The time, calendar, and alarm information is fully
available for access when the UIP bit is zero. The UIP bit is read only and is
not affected by an Lbus reset. Writing the SET bit (in TOY Register B) to a 1
inhibits any update transfer and clears the UIP status bit.

6:4 DV [read/write]

These three bits are used to turn the oscillator on or off and to reset the
countdown chain. A pattern of 010 is the only combination of bits that turns
the oscillator on and allows the TOY clock to keep time. A pattern of 11X enables
the oscillator, but holds the countdown chain in reset. The next update occurs
500 ms after a pattern of 010 is written to this field.

3:0 RS [read/write]

These four rate-selection bits select one of the 13 taps on the 15-stage divider or
disable the divider output. The tap selected may be used to generate an output
square wave and/or periodic interrupt. The user may do one of the following:

1. Enable the interrupt with the PIE bit

2. Enable the square wave output with the SQWE bit

3. Enable both at the same time and the same rate

4. Enable neither

The available square wave frequencies are shown in Table 16–8.

Table 16–8 TOY Clock Square Wave Frequencies

RS bits
<3:0> Frequency (Hz)

RS bits
<3:0> Frequency (Hz)

RS bits
<3:0>

Frequency
(Hz)

0 off 5 2048 10 64

1 256 6 1024 11 32

2 128 7 512 12 16

3 8192 8 256 13 8

4 4096 9 128 14 4

15 2
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16.10 TOY Register B (TOYB)

16.10 TOY Register B (TOYB)

Figure 16–8 TOY Register B (toyB)
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16.10 TOY Register B (TOYB)

Table 16–9 TOY Register B Description

Field Description

7 SET [read/write]

When the SET bit is a 0, the update transfer works normally by advancing the
counts once per second. When a 1 is written to the SET bit, any update transfer
is inhibited, and the program may initialize the time and calendar bytes without
an update occurring. Read cycles can be executed in a similar manner. SET is
a [read/write] bit which is not modified by an Lbus reset or internal functions of
the TOY clock.

6 PERIODIC INTERRUPT ENABLE [read/write]

The periodic interrupt enable (PIE) bit is a [read/write] bit that allows the
periodic interrupt flag (PF) bit in TOY Register C to cause the device IRQ pin to
be asserted. The device interrupt is not used in this application.

5 ALARM INTERRUPT ENABLE [read/write]

The alarm interrupt enable AIE bit is a [read/write] bit that allows the alarm
flag (AF) bit in TOY Register C to cause the device IRQ pin to be asserted. The
device interrupt is not used in this application.

4 UPDATE ENDED INTERRUPT ENABLE [read/write]

The updated ended interrupt enable UIE bit is a [read/write] bit that allows the
Update End Flag (UF) bit in TOY Register C to cause the device IRQ pin to be
asserted. The device interrupt is not used in this application.

3 SQUARE WAVE ENABLE [read/write]

When the Square Wave Enable (SQWE) bit is set to a one, a square wave signal
at the frequency set by the rate-selection bits RS[3:0] is driven out on the C-bus
CINT_TIM signal. When the SQWE bit is zero, the CINT_TIM signal is held
deasserted; the state of SQWE is cleared by an Lbus reset.

2 DATA MODE [read/write]

The Data Mode (DM) bit indicates whether time and calendar information are in
binary or BCD format. The DM bit is set by software to the appropriate format
and can be read as required. This bit is not modified by internal functions of the
TOY clock or by an Lbus reset. A 1 in this field signifies binary data while a zero
in DM specifies BCD data.

1 24/12 HOUR CONTROL [read/write]

The 24/12 control bit establishes the format of the hours byte. A 1 indicates the
24-hour mode and a 0 indicates the 12-hour mode. This bit is not affected by
internal TOY clock functions or Lbus reset.

0 DAYLIGHT SAVINGS ENABLE [read/write]

The Daylight Savings Enable (DSE) bit is a [read/write] bit which enables two
special updates when DSE is set to one. On the first Sunday in April the time
increments from 1:59:59 AM to 3:00:00 AM, on the last Sunday in October
when the time first reaches 1:59:59 AM it changes to 1:00:00 AM. These special
updates do not occur when the DSE bit is zero. This bit is not affected by internal
functions or Lbus reset.
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16.11 TOY Register C (TOYC)

16.11 TOY Register C (TOYC)

Figure 16–9 TOY Register C (toyC)
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Table 16–10 TOY Register C Description

Field Description

7 INTERRUPT REQUEST FLAG [read-only]

The Interrupt Request Flag (IRQF) bit is set to a 1 when one or more of the
following are true:

• PF = PIE = 1

• AF = AIE = 1

• UF = UIE = 1

• IRQF = PF * PIE + AF * AIE + UF * UIE

All flag bits are cleared after TOY Register C is read or after an Lbus reset.

6 PERIODIC INTERRUPT FLAG [read-only]

The Periodic Interrupt Flag (PF) is a read-only bit which is set to a one when
an edge is detected on the selected tap of the divider chain. The RS<3:0> bits
establish the periodic rate. PF is set to a one independent of the state of the PIE
bit. When both PF and PIE are ones, the IRQ signal is active and sets the IRQF
bit. The PF bit is cleared by an Lbus reset or a read of TOY Register C.

5 ALARM INTERRUPT [read-only]

A one in the Alarm Interrupt Flag (AF) bit indicates that the current time has
matched the alarm time. If the AIE bit is also a one, the IRQF bit is asserted.
The AF bit is cleared by an Lbus reset or a read of TOY Register C.

4 UPDATE ENDED INTERRUPT FLAG [read-only]

The Update Ended Interrupt Flag (UF) bit is set after each update cycle. If the
UIE bit is also a one, the IRQF bit is asserted. The UF bit is cleared by an Lbus
reset or a read of TOY Register C.
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16.12 TOY Register D (TOYD)

16.12 TOY Register D (TOYD)

Figure 16–10 TOY Register D (TOYD)
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Table 16–11 TOY Register D Description

Field Description

7 VALID RAM AND TIME [read-only]

The Valid RAM and Time (VRT) bit is set to the one state by the device
manufacturer prior to shipment. This bit is not writeable and should always
be a one when read. If a zero is ever present, an exhausted Lithium energy
source is indicated and both the contents of the TOY clock data and RAM data
are questionable. This bit is unaffected by an Lbus reset.
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Ethernet Adapters (TGEC)

The DEC 4000 AXP I/O module uses the TGEC (DC253) as the interface to the
Ethernet ports.

Thinwire and standard Ethernet connectors are available on the I/O module
handle for each port. Only one connector can be used at a time for each port.

Bit <9> in the Lbus mailbox data structure command field selects the TGEC
devices for access. Bit 7 of the secondary bus address selects one of the two
TGEC devices while bits <6:2> select the register within the device. Bits <31:0>
of the mailbox data structure write data and read data fields are used for write
and read operations respectively. Registers within the TGEC are accessible only
as longwords, the Mask field in the mailbox data structure has no effect during
access to the TGEC.

The TGEC asserts the NIx_IRQ bit (bits 6 or 7 depending upon the device) in
the LINT register to indicate an interrupting condition. The assertion of any
bits in the LINT register asserts the CIRQ_L[0] system bus interrupt line. The
TGEC interrupt remains asserted until the interrupting condition is cleared in
the TGEC control/status registers.

The TGEC provides 16 control/status registers which may be accessed by the
host. The address map for these registers is shown in Figure 17–1. Bit <7> of the
Secondary Bus Address field in the mailbox data structure selects one of the two
Ethernet ports. The base address of each interface is shown in Table 17–1.

Table 17–1 Ethernet Interface Selection

Addr [7] Controller Base Address

0 NI(0) 0000 000016

1 NI(1) 0000 008016
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Figure 17–1 TGEC Register Map
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17.1 TGEC Programming
The operation of the TGEC is controlled by a program in host memory called
the port driver. The TGEC and the port driver communicate through two data
structures: Command and Status Registers (CSRs) located in the TGEC and
mapped in the host I/O address space, and through descriptor lists and data
buffers, collectively called Host Communication Area , in host memory.

The CSRs are used for initialization, global pointers, commands and global errors
reporting, while the host memory resident structures handle the actions and
statuses related to buffer management.

17.1.1 Programming Overview
The TGEC can be viewed as two independent, concurrently executing processes:
reception and transmission. After the TGEC completes its Initialization sequence,
these two processes alternate between three states: STOPPED, RUNNING or
SUSPENDED. State transitions occur as a result of port driver commands
(writing to a CSR) or various external events occurrences. Some of the port driver
commands require the referenced process to be in a specific state.

A simple programming sequence of the chip may be summarized as:

1. After power on (or reset), check the device type (SGEC or TGEC) by running
the following commands:

• Write ’00000000’ to the CSR is address 2000801816 (it can be CSR3 if it is
a TGEC device, or CSR6 if it is an SGEC device).
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• Read from the same CSR.

• If the data is ’00000000’ it is a TGEC device.

• If the data is ’01E0F000’ it is a SGEC device.

2. Verifying the self test completed successfully.

3. Writing CSRs to set major parameters such as System Base Register,
Interrupt Vector, Address Filtering mode and so on.

4. Creating the transmit and receive lists in memory and writing the CSRs to
identify them to the TGEC.

5. Placing a setup frame in the transmit list, to load the internal reception
address filtering table.

6. Starting the Reception and Transmission processes placing them in the
RUNNING state.

7. Waiting for TGEC interrupts. CSR5 contains all the global interrupt status
bits.

8. Remedying the suspension cause, if either of the Reception or Transmission
processes enter the SUSPENDED state.

9. Issuing a Tx poll demand command, to return the transmission process
to the RUNNING state. A Rx Poll Demand can be issued to remedy the
reception process suspension cause, and to return the reception process to the
RUNNING state.

If the Rx poll demand is not issued, the Reception process will return to
the RUNNING state when the TGEC receives the next recognized incoming
frame.

The following sections contain detailed programming and state transitions
information.

17.1.2 TGEC Command and Status Registers
The TGEC contains 16 command and status registers which may be accessed by
the host.

17.1.3 Host Access to CSRs
The TGEC’s CSRs are located in I/O address space.

The CSRs must be quadword aligned and can be accessed only with longword
instructions. The address of CSRx is the base address plus 8x bytes. For
example, if the base address is 2000 8000, then the address of CSR2 is 2000 8010.

Note

Accessing to an odd-address register will cause unpredictable results.

In order to save chip real estate, yet not tie up the host bus for extended periods
of time, the 16 CSRs are subdivided into two groups:

1. Physical CSRs (CSR0 through CSR7, and CSR15)

2. Virtual CSRs (CSR8 through CSR14)

The group the CSR is part of, determines the way the host will access it.
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17.1.3.1 TGEC Physical CSRs
These registers are physically present in the chip. Host access to these CSRs is
by a single instruction (for example, MOVL). There is no host perceivable delay
and the instruction completes immediately. Most commonly used TGEC features
are contained in the physical CSRs.

17.1.3.2 TGEC Virtual CSRs
These registers are not physically present in the TGEC and are incarnated by
the on-chip processor. Accesses to TGEC functions implied by these registers
may take up to 20 µseconds. So as not to tie up the host bus, virtual CSR access
requires several steps by the host.

CSR5<DN> is used to synchronize access to the virtual CSRs: after the first
virtual CSR access, the TGEC deasserted CSR5<DN> until it will complete the
action.

Note

Accessing the virtual CSRs, without polling first on the CSR5<DN>
reassertion will cause unpredictable results.

17.1.3.2.1 CSR Write To write to a virtual CSR the host takes the following
actions:

1. It issues a write CSR instruction. Instruction completes immediately, but the
data is not yet copied by the TGEC.

2. It wait for CSR5<DN>. No TGEC virtual CSR may be accessed before
CSR5<DN> asserts.

17.1.3.2.2 CSR Read To read a virtual CSR the host takes the following
actions:

1. It issues a read CSR instruction. Instruction completes immediately, but no
valid data is sent to the host.

2. It waits for CSR5<DN>. No TGEC virtual CSR may be accessed before
CSR5<DN> asserts.

3. It reissues a read CSR instruction, to the same CSR as in step 1. The host
receives valid data.
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17.1.4 Vector Address, IPL, Sync/Asynch (CSR0)
Because the TGEC may generate an interrupt on parity errors during host writes
to CSRs, this register must be the first one written by the host.

CSR0 address is: 2000800016

Note

A parity error during CSR0 host write may cause a host system crash due
to an erroneous Interrupt Vector. To protect against such an eventuality,
CSR0 must be written as follows while the IPL - to which the TGEC’s
IRQ_L is assigned - is disabled:

1. Write CSR.

2. Read CSR.

3. Compare value read to value written. If values mismatch, repeat from
step 1.

4. Read CSR5 and examine CSR5<ME> for pending parity interrupt.
Should an interrupt be pending, write CSR5 to clear it.

Figure 17–2 Vector Address, IPL, Sync/Asynch (CSR0)
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Table 17–2 Vector Address, IPL, Sync/Asynch Description

Field Description

31:30 INTERRUPT PRIORITY LEVEL [read/write]

This is the interrupt priority level that the TGEC will respond to when IRQ_L is
asserted.

• IP

29 SYNC/ASYNCH [read/write]

This bit determines the TGEC operating mode when it is the bus master. When
set, the TGEC will operate as a synchronous device and when clear, the TGEC
will operate as an asynchronous device.

15:00 INTERRUPT VECTOR [read/write]

(continued on next page)
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Table 17–2 (Cont.) Vector Address, IPL, Sync/Asynch Description

Field Description

During an Interrupt Acknowledge cycle for a TGEC interrupt on IRQ_L, this is
the value that the TGEC will drive on the host bus CDAL<31:0> pins (CDAL
pins <1:0> and <31:16> are set to ‘‘0’’). Bits <1:0> are ignored when CSR0 is
written, and set to ‘‘1’’ when read.

Table 17–3 CSR0 access

Value after RESET: 1FFF000316

Read access rules: None

Write access rules: The IPL to which the TGEC IRQ_L is
assigned - must be DISABLED
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17.1.5 Transmit Polling Demand (CSR1)
CSR1 address is: 2000800816

Figure 17–3 Transmit Polling Demand (CSR1)
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Table 17–4 Transmit Polling Demand Description

Field Description

0 TX POLLING DEMAND [write-only]

Checks the transmit list for frames to be transmitted. The PD value is
meaningless.

Table 17–5 CSR1 Access

Value after RESET: Not applicable

Read access rules: None

Write access rules: Tx process SUSPENDED
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17.1.6 Receive Polling Demand (CSR2)
CSR2 address is: 2000801016

Figure 17–4 Receive Polling Demand (CSR2)
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Table 17–6 Receive Polling Demand Description

Field Description

0 RX POLLING DEMAND [write-only]

Checks the receive list for receive descriptors to be acquired. The PD value is
meaningless.

Table 17–7 CSR2 Access

Value after RESET: Not applicable

Read access rules: None

Write access rules: Rx process SUSPENDED
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17.1.7 Descriptor List Addresses (CSR3, CSR4)
The two descriptor list head address registers are identical in function, one being
used for the transmit buffer descriptors and one being used for the receive buffer
descriptors. In both cases, the registers are used to point the TGEC to the start
of the appropriate buffer descriptor list.

The descriptor lists reside in VAX physical memory space and must be
longword aligned.

Note

For best performance, it is recommended that the descriptor lists be
OCTAWORD aligned.

CSR3 address is: 2000801816

CSR4 address is: 2000802016

Note

If the Transmit descriptor list is built as a ring (the chain descriptor
points at the first descriptor of the list), the ring must contain, at least,
TWO descriptors in addition to the chain descriptor.

Initially, these registers must be written before the respective Start command
is given (see Section 17.1.9), else the respective process will remain in the
STOPPED state. New descriptor list head addresses are only acceptable while
the respective process is in the STOPPED or SUSPENDED states. Addresses
written while the respective process is in the RUNNING state, are ignored and
discarded.

If the host attempts to read any of these registers before ever writing to them,
the TGEC responds with unpredictable values.
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Figure 17–5 Descriptor List Addresses Format
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Table 17–8 lists the descriptor list addresses.

Table 17–8 Descriptor List Addresses Bits

Bit Name Access Description

29:00 RBA R/W Address of the start of the receive list. This is a
30-bit VAX physical address.

29:00 TBA R/W Address of the start of the transmit list. This is a
30-bit VAX physical address.

Note

The descriptor lists must be longword aligned.

Table 17–9 lists the CSR3 access modes.

Table 17–9 CSR3 Access

Value after RESET: unpredictable

Read access rules: None

Write access rules: Rx process STOPPED or
SUSPENDED
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Table 17–10 CSR4 access

Value after RESET: unpredictable

Read access rules: None

Write access rules: Tx process STOPPED or
SUSPENDED

After either CSR3 or CSR4 are written, the new address is readable from the
written CSR. However, if the TGEC status did not match the related write access
rules, the new address does not take effect and the written information is (lost,
EVEN if the TGEC later matches the right condition.
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17.1.8 Status Register (CSR5)
This register contains all the status bits the TGEC reports to the host.

CSR5 address is: 2000802816

Figure 17–6 Status Register 5 (CSR5)
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Initialization Done (ro)

Self test Failed (ro)

Self test   Status (ro)

Transmission process State (ro)

Reception process  State (ro)

Operating Mode (ro)

Done (ro)

Transmit completed (wc)

Boot_Message (wc)

Transmit Watchdog Timer interrupt (wc)

Receive Watchdog Timer interrupt (wc)

Memory Error (wc)

Receive buffer Unavailable (wc)

Receive Interrupt (wc)

Transmit Interrupt (wc)

Interrupt Summary (wc)

Table 17–11 Status Register 5 Description

Field Description

31 INITIALIZATION DONE [read-only]

When set, indicates the TGEC has completed the Initialization (reset and self
test) sequences, and is ready for further commands. When clear, indicates the
TGEC is performing the Initialization sequence and ignores all commands. After
the initialization sequence completes, the transmission and reception processes
are in the STOPPED state.

30 SELF TEST FAILED [read-only]

When set, indicates the TGEC self test has failed. The self test completion code
bits indicate the failure type.

29:26 SELF TEST STATUS [read-only]

(continued on next page)
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Table 17–11 (Cont.) Status Register 5 Description

Field Description

The self test completion code according to the following table. Only valid if SF is
set.

Value Meaning
0001 ROM error
0010 RAM error
0011 Address filter RAM error
0100 Transmit FIFO error
0101 Receive FIFO error
0110 Self_test loopback error

Self test takes 25ms to complete after Hardware or Software RESET.

25:24 TRANSMISSION PROCESS STATE [read-only]

Indicates the current state of the Transmission process, as follows:

Value Meaning
00 STOPPED
01 RUNNING
10 SUSPENDED

23:22 RECEPTION PROCESS STATE [read-only]

This field indicates the current state of the Reception process, as follows:

Value Meaning
00 STOPPED
01 RUNNING
10 SUSPENDED

18:17 OPERATING MODE [read-only]

These bits indicate the current TGEC operating mode as in the following table:

Value Meaning
00 Normal operating mode.
01 Internal Loopback - Indicates the TGEC is disengaged from the
Ethernet wire. Frames from the transmit list are looped back to the
receive list, subject to address filtering. Section 17.5.2 explains this mode of
operation.
10 External Loopback - Indicates the TGEC is working in full duplex
mode. Frames from the transmit list are transmitted on the Ethernet wire
and also looped back to the receive list, subject to address filtering.
11 Reserved for Diagnostics.

16 DONE [read-only]

When set, indicates the TGEC has completed a requested virtual CSR access.
After a reset, this bit is set.

8 TRANSMIT COMPLETED [read/write 1 to clear]

This bit is set together with CSR5<TI> when the transmit process enters either
the SUSPENDED or STOPPED state at the completion of the current frame
transmission.

7 BOOT_MESSAGE [read/write 1 to clear]

(continued on next page)
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Table 17–11 (Cont.) Status Register 5 Description

Field Description

When set, indicates that the TGEC has detected a boot_message on the serial
line and has set the external pin BOOT_L.

6 TRANSMIT WATCHDOG TIMER INTERRUPT [read/write 1 to clear]

When set, indicates the transmit watchdog timer has timed out, indicating the
TGEC transmitter was babbling. The Transmission process is aborted and placed
in the STOPPED state. (Also reported into the Tx descriptor status TDES0<TO>
flag).

5 RECEIVE WATCHDOG TIMER INTERRUPT [read/write 1 to clear]

When set, indicates the Receive Watchdog Timer has timed out, indicating that
some other node is babbling on the network. Current frame reception is aborted
and RDES0<LE> and RDES0<LS> will be set. Bit CSR5<RI> will also set. The
Reception process remains in the RUNNING state.

4 MEMORY ERROR [read/write 1 to clear]

Is set when any of the following occur:

• TGEC is the CP-BUS Master and the ERR_L pin is asserted by external
logic (generally indicative of a memory problem).

• Parity error detected on a host to TGEC CSR write or TGEC read from
memory.

When a memory error is set, the reception and transmission processes are
aborted and placed in the STOPPED state.

Note

At this point, it is mandatory that the port driver
issue a reset command and rewrite all CSRs.

3 RECEIVE BUFFER UNAVAILABLE [read/write 1 to clear]

When set, indicates that the next descriptor on the receive list is owned by the
host and could not be acquired by the TGEC. The Reception process is placed
in the SUSPENDED state. Section 17.5 explains the Reception process state
transitions.

Once set by the TGEC, this bit will not be set again until the TGEC encounters a
descriptor it can not acquire. To resume processing receive descriptors, the host
must flip the ownership bit of the descriptor and can issue the Rx Poll Demand
command. If no Rx poll demand is issued, the Reception process resumes when
the next recognized incoming frame will is received.

2 RECEIVE INTERRUPT [read/write 1 to clear]

When set, indicates that a frame has been placed on the receive list. Frame
specific status information was posted in the descriptor. The Reception process
remains in the RUNNING state.

1 TRANSMIT INTERRUPT [read/write 1 to clear]

(continued on next page)
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Table 17–11 (Cont.) Status Register 5 Description

Field Description

When set, indicates one of the following:

• Either all the frames in the transmit list have been transmitted (next
descriptor owned by the host), or a frame transmission was aborted due to a
locally induced error. The port driver must scan down the list of descriptors
to determine the exact cause. The Transmission process is placed in the
SUSPENDED state. Section 17.5.1 explains the Transmission process state
transitions. To resume processing transmit descriptors, the port driver must
issue the Poll Demand command.

• A frame transmission completed, and TDES1<IC> was set. The
Transmission process remains in the RUNNING state, unless the next
descriptor is owned by the host or the frame transmission aborted due to
an error. In the latter cases, the Transmission process is placed in the
SUSPENDED state.

0 INTERRUPT SUMMARY [read/write 1 to clear]

The logical ‘‘OR’’ of CSR5 bits 1 through 6.

Table 17–12 shows the bit access modes for CSR5.

Table 17–12 CSR5 Access

Value after RESET: 0039FE0016

Read access rules: None

Write access rules: CSR5<07:01> bits cleared by 1, others
bits not writeable

17.1.8.1 CSR5 Status Report
The Status register CSR5 is split into two words:

The high word which contains the global status of the TGEC, as the initialization
status, the DMA and operation mode and the Receive and Transmit process
states.

The low word which contains the status related to the Receive and Transmit
frames.

Any change of the CSR5 bits <ID>, <SF>, <OM> or <DN> - which is always the
result of a host command - is reported without an interrupt.

Any process state change initiated by a host command CSR6<ST> or CSR6<SR>,
is reported without an interrupt.

In the above two cases, the driver must poll on CSR5 to get the acknowledge
of its command (i.e. polling on <ID, SF> after Reset or polling on <TS> after a
START_TX command).

Any process state change initiated by the TGEC activity is immediately followed
by at least one of the CSR5<6:1> interrupts and the interrupt_summary
CSR5<IS>.
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The TGEC 16-bit internal processor updates the 32-bit CSR5 register in two
phases: the high word is modified first, then the low word is written, generating
an interrupt to the host. In this case, the driver must scan first the CSR5 low
word to get the interrupt status, then the CSR high_word to get the related
process state. (that is, <TC,TI> interrupt with <TS> = SUSPENDED reports an
end of transmission due to a Tx descriptor unavailable.)

If the host polls on the process state change, it may detect a change without
interrupt, due to the small time window separating the CSR5 high_word and
low_word updates.

Maximum time window is 4*T cycles of the host clock.
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17.1.9 Command and Mode Register (CSR6)
This register is used to establish operating modes and for port driver commands.

CSR6 address is: 2000803016

Figure 17–7 Command and Mode Register (CSR6)
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Reset command (rw)

Interrupt Enable  mode (rw)

Burst Limit mode (rw)

Boot_message Enable   mode (rw)

Single_cycle Enable  mode (rw)

CCTL/CDMR modes (rw)

HexaWord alignment  mode (rw)

Start/Stop Transmission command (rw)

Start/Stop Reception  command (rw)

Operating Mode (rw)

Disable data  Chaining  mode (rw)

Force Collision  mode (rw)

Threshold control bits (rw)

Pass Bad Frames mode (rw)

Address Filtering mode (rw)

Swapping mode (rw)

Table 17–13 Command and Mode Register Description

Field Description

31 RESET COMMAND [read/write]

Upon being set, the TGEC will abort all processes and start the reset sequence.
After completing the reset and self test sequence, the TGEC will set bit
CSR5<ID>. Clearing this bit has no effect.

The CSR6<RE> value is unpredictable on read after HARDWARE reset.

30 INTERRUPT ENABLE MODE [read/write]

When set, setting of CSR5 bits 1 through 6 will cause an interrupt to be
generated.

29:25 BURST LIMIT MODE [read/write]

(continued on next page)
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Table 17–13 (Cont.) Command and Mode Register Description

Field Description

Specifies the maximum number of longwords to be transferred in a single DMA
burst on the host bus.

When CSR6<SE> is cleared, permissible values are 1,2,4,8 and 16. When SE
is set, the only permissible values are 1 and 4: a value of 2 and 8 or 16 is
respectively forced to 1 and 4.

20 BOOT_MESSAGE ENABLE MODE [read/write]

When set, enables the boot_message recognition. When the TGEC recognizes an
incoming boot message on the serial line, CSR5<BO> is set and the external pin
BOOT_L is asserted for a duration of 6*Tcycles (of the host clock).

Takes effect only if CSRs 11,12,13 have been initialized and a setup frame has
been proceeded.

The boot message recognition is disabled regardless of the <BE> bit, when
either the PROMISCUOUS filtering or the INVERSE filtering mode is enabled
(CSR6<AF>=01 or SDES1<IF>=1).

19 SINGLE_CYCLE ENABLE MODE [read/write]

When set, the TGEC transfers only a single longword or an octaword in a single
DMA burst on the host bus.

18:17 CCTL/CDMR MODES [read/write]

These bits determine the functionality of CCTL_L/CDMR_L pin:

Value Meaning
00 Used as CCTL pin
01 Used as CDMR pin for the control transfers
10 Used as CDMR pin for RX/TX transfers
11 Used as CDMR pin for control and RX/TX transfers

16 HEXAWORD ALIGNMENT MODE [read/write]

When set the receive and transmit DMA channels perform a hexaword
alignment: if the buffer is not hexaword aligned, the DMA executes a first
transfer up to the next hexaword boundary before starting the second transfer
according to the selected burst limit. Meaningless if Single_cycle is enabled
CSR6<SE> = 1.

Note

For Burst_limit = 8 , the Receive and Transmit
DMA transfers never cross a hexaword boundary
within a burst.

11 START/STOP TRANSMISSION COMMAND [read/write]

(continued on next page)
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Table 17–13 (Cont.) Command and Mode Register Description

Field Description

When set, the transmission process is placed the RUNNING state. The TGEC
checks the transmit list at the current position for a frame to transmit. The
address set by CSR4 or the position retained when the Tx process was previously
stopped. If it does not find a frame to transmit, the transmission process enters
the SUSPENDED state. The start transmission command is honored only when
the transmission process is in the STOPPED state. The first time this command
is issued, an additional requirement is that CSR4 has already been written to,
else the transmission process will remain in the STOPPED state.

When cleared, the transmission process is placed in the STOPPED state after
completing transmission of the current frame. The next descriptor position in
the transmit list is saved, and becomes the current position after transmission is
restarted.

The stop transmission command is honored only when the transmission process
is in the RUNNING or SUSPENDED states.

10 START/STOP RECEPTION COMMAND [read/write]

When set, the Reception process is placed in the RUNNING state, the TGEC
attempts to acquire a descriptor from the receive list and process incoming
frames. Descriptor acquisition is attempted from the current position in the
list. The address set by CSR3 or the position retained when the Rx process was
previously stopped. If no descriptor can be acquired, the Reception process enters
the SUSPENDED state.

The start reception command is honored only when the reception process is in
the STOPPED state. The first time this command is issued, CSR3 must already
have been written to, or else the Reception process will remain in the STOPPED
state.

When cleared, the reception process is placed in the STOPPED state, after
completing reception of the current frame. The next descriptor position in the
receive list is saved, and becomes the current position after reception is restarted.
The stop reception command is honored only when the reception process is in the
RUNNING or SUSPENDED states.

9:8 OPERATING MODE [read/write]

These bits determine the TGEC main operating mode.

00 — Normal operating mode.
01 — Internal Loopback - The TGEC will loopback buffers from the transmit
list. The data will be passed from the transmit logic back to the receive logic.
The receive logic will treat the looped frame as it would any other frame, and
subject it to the address filtering and validity check process.
10 — External Loopback - The TGEC transmits normally and in addition,
will enable its receive logic to its own transmissions. The receive logic will
treat the looped frame as it would any other frame, and subject it to the
address filtering and validity check process.
11 — Reserved for Diagnostic

7 DISABLE DATA CHAINING MODE [read/write]

When set, no data chaining will occur in reception. Frames, longer than the
current receive buffer, will be truncated. RDES0<FS,LS> will always be set. The
frame length returned in RDES0<FL> will be the true length of the nontruncated
frame while RDES0<BO> will indicate that the frame has been truncated due to
buffer overflow.

When clear, frames too long for the current receive buffer, will be transferred to
the next buffer(s) in the receive list.

(continued on next page)
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Table 17–13 (Cont.) Command and Mode Register Description

Field Description

6 FORCE COLLISION MODE [read/write]

This bit allows the collision logic to be tested. The chip must be in internal
loopback mode for FC to be valid. If FC is set, a collision will be forced during
the next transmission attempt. This will result in 16 transmission attempts with
Excessive Collision reported in the transmit descriptor.

5:4 THRESHOLD CONTROL BITS [read/write]

These bits control the selected threshold level for the TGEC Transmit FIFO. Four
threshold levels are allowed: 72 bytes, 96 bytes 128, bytes and 160 bytes.

Value Threshold
00 72 bytes
01 96 bytes
10 128 bytes
11 160 bytes

3 PASS BAD FRAMES MODE [read/write]

When this bit is set, the TGEC will pass frames that have been damaged by
collisions or are too short due to premature reception termination. Both events
should have occurred within the collision window (64 bytes), else other errors will
be reported.

When clear, these frames will be discarded and never show up in the host receive
buffers.

Note

The swapping mode bit should be selected
once after reset. Any modification will cause
unexpected results.

2:1 ADDRESS FILTERING MODE [read/write]

These bits define the way incoming frames will be address filtered:

Value Meaning
00 Normal - Incoming frames will be filtered according to the values of the
<HP> and <IF> bits of the setup frame descriptor.
01 Promiscuous - All incoming frames will be passed to the host, regardless
of the <HP> bit value.
10 All Multicast - All incoming frames with multicast address destinations
will be passed to the host. Incoming frames with physical address
destinations will be filtered according to the <HP> bit value.

0 SWAPPING MODE [read/write]

When clear the TGEC works with data in DEC™ standard byte ordering Endian.
When set the TGEC swaps the data bytes to MOTOROLA™ standard byte
ordering Endian.

Table 17–14 lists the CSR6 bit access modes.
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Table 17–14 CSR6 Access

Value after RESET: 81E0F000 hex or 01E0F000 hex

Read access rules: None

Write access rules:

* <RE, IE, CD, SW> Unconditional

* <BE> Setup_frame proceeded,

Password (CSR11, CSR12 and CSR13)
initialized,

Promiscuous and Inverse filtering
modes disabled

* <BL, SE, OM> Rx and Tx processes STOPPED

* <HW> Rx and Tx processes STOPPED,

Single_Cycle mode <SE> disabled

* <FC> Rx and Tx processes STOPPED,

Internal_Loopback mode

* <DC, PB, AF> Rx process STOPPED

* <TR> Tx process STOPPED

* Start_Receive <SR>=1 Rx STOPPED and CSR3 Initialized

* Start_Transmit <ST>=1 Tx STOPPED and CSR4 Initialized

* Stop_Receive <SR>=0 Rx RUNNING or SUSPENDED

* Stop_Transmit <ST>=0 Tx RUNNING or SUSPENDED

After CSR6 is written, the new value is readable from CSR6. However, if the
TGEC status does not match the related write access rules, the new mode setting
and command do not take effect and the written information is lost, even if the
TGEC later matches the right condition.
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17.1.10 System Base Register (CSR7)
This CSR contains the physical starting address of the VAX System Page Table.
This register must be loaded by host software before any address translation
occurs so that memory will not be corrupted.

CSR7 address is: 2000803816

Figure 17–8 System Base Register (CSR7)
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Table 17–15 System Base Register Description

Field Description

29:0 SYSTEM BASE ADDRESS [read/write]

The physical starting address of the VAX System Page Table. Not used if VA
(Virtual Addressing) is cleared in all descriptors.

This register should be loaded only once after a reset. Subsequent modifications
of this register at any other time may cause unpredictable results.

Table 17–16 shows the bit access modes.

Table 17–16 CSR7 access

Value after RESET: Unpredictable

Read access rules: None

Write access rules: Writing once after initialization
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17.1.11 Reserved Register (CSR8)
This entire register is reserved.

17.1.12 Watchdog Timers (CSR9)
The TGEC has two timers that restrict the length of time in which the chip can
receive or transmit.

CSR9 address is: 2000804816

Figure 17–9 Watchdog Timer (CSR9)
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RECEIVE WATCHDOG  TIME-OUT (rw)

TRANSMIT WATCHDOG TIME-OUT (rw)

Table 17–17 Watchdog Timer Description

Field Description

31:16 RECEIVE WATCHDOG TIME-OUT [read/write]

The Receive Watchdog Timer protects the host cpu against babbling transmitters
on the network. If the receiver stays on for RT � 16 cycles of the serial clock,
the TGEC will cut off reception and set the CSR5<RW> bit. If the timer is set to
zero, it will never time-out. The value of RT is an unsigned integer. With a 10
MHz serial clock, this provides a range of 72µs to 100 ms. The default value is
1250 corresponding to 2 ms.

The Rx watchdog timer is programmed only while the reception process is in the
STOPPED state.

Note

A Rx watchdog value between 1 and 44 is forced to
the minimum time_out value of 45 (72µs).

15:0 TRANSMIT WATCHDOG TIME-OUT [read/write]

(continued on next page)
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Table 17–17 (Cont.) Watchdog Timer Description

Field Description

The Transmit Watchdog Timer protects the network against babbling TGEC
transmissions, on top of any such circuitry present in transceivers. If the
transmitter stays on for TT � 16 cycles of the serial clock, the TGEC will cut
off the transmitter and set the CSR5<TW> bit. If the timer is set to zero, it
will never time-out. The value of TT is an unsigned integer. With a 10 MHz
serial clock, this provides a range of 72µs to 100ms. The default value is 1250
corresponding to 2ms.

The Tx watchdog timer is programmed only while the Transmission process is in
the STOPPED state.

Note

A Tx watchdog value between 1 and 44 is forced to
the minimum time_out value of 45 (72µs).

Table 17–18 shows the bit access modes.

Table 17–18 CSR9 Access

Value after RESET: 0000000016

Read access rules: None

Write access rules:

* Rx watchdog timer Rx process STOPPED

* Tx watchdog timer Tx process STOPPED

These watchdog timers are enabled by default. These timers will assume the
default values after hardware or software resets.
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17.1.13 TGEC Identification and Missed Frame Count (CSR10)
This register contains a missed-frame counter and TGEC identification
information.

CSR10 address is: 2000805016

Figure 17–10 TGEC Identification and Missed Frame Count (CSR10)
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Table 17–19 TGEC Identification and Missed Frame Count Description

Field Description

31:28 CHIP IDENTIFICATION NUMBER [read-only]

This field allows to to determine whether the plugged in device is a TGEC or
another TGEC compatible device (for example, SGEC or LC_SGEC). The TGEC
device identification number is 2.

23:20 HARDWARE REVISION NUMBER [read-only]

Revision number for this particular TGEC.

19:16 FIRMWARE REVISION NUMBER [read-only]

Internal firmware revision number for this particular TGEC.

15:0 MISSED FRAME COUNT [read-only]

Counter for the number of frames that were discarded and lost because host
receive buffers were unavailable. The counter is cleared when read by the host.

Pass 1.0

DIN = 2 ; HRN = 1 ; FRN = 1

Table 17–20 shows the bit access modes.

Table 17–20 CSR10 access

Value after RESET: 2011000016

Read access rules: Missed_frame counter cleared by read

Write access rules: Not applicable
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17.1.14 Boot Message (CSR11, 12, 13)
These registers contain the boot message VERIFICATION and PROCESSOR
fields.

These CSRs are loaded only when the boot message is disabled (CSR6<BE> = 0).

CSR11 address is: 2000805816

CSR12 address is: 2000806016

CSR13 address is: 2000806816 Figure 17–11 shows the format of the boot
message registers and Table 17–21 lists the bit access modes.

Figure 17–11 Boot Message Registers Format
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Table 17–21 CSR11,12,13 bits

Bit Name Access Description

CSR11 31:00 VRF<31:00> R/W Boot message VERIFICATION field
<31:00>

CSR12 31:00 VRF<63:32> R/W Boot message VERIFICATION field
<63:32>

CSR13 07:00 PRC R/W Boot message PROCESSOR field

Note

The least significant bit of the Verification Field (VRF<0>) corresponds to
the first incoming bit of the verification field in the serial boot message.
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Table 17–22 CSR11,12,13 access

Value after RESET: 0000000016 for each of
CSR11,CSR12,CSR13

Read access rules: None

Write access rules: Boot message DISABLED (CSR6<BE>
= 0)
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17.1.15 Diagnostic Registers (CSR14, 15)
These registers are reserved for diagnostic features.

CSR14 address is: 2000807016

CSR15 address is: 2000807816

17.2 Descriptors and Buffers Format
The TGEC transfers frame data to and from receive and transmit buffers in host
memory. These buffers are pointed to by descriptors which are also resident in
host memory.

There are two descriptor lists: one for receive and one for transmit. The starting
address of each list is written into CSRs 3 and 4 respectively. A descriptor
list is a forward-linked (either implicitly or explicitly) list of descriptors, the
last of which may point back to the first entry, thus creating a ring structure.
Explicit chaining of descriptors, through setting xDES1<CA> is called Descriptor
Chaining. The descriptor lists reside in VAX physical memory address space.

The TGEC first reads the descriptors, ignoring all unused bits regardless of their
state. The only word the TGEC writes back, is the first word (xDES0) of each
descriptor. Unused bits in xDES0 will be written as ‘‘0’’. Unused bits in xDES1 -
xDES3 may be used by the port driver and the TGEC will never disturb them.

A data buffer can contain an entire frame or part of a frame, but it cannot contain
more than a single frame. Buffers contain only data; buffer status is contained
in the descriptor. The term Data Chaining is used to refer to frames spanning
multiple data buffers. Data Chaining can be enabled or disabled, in reception,
through CSR6<DC>. Data buffers reside in VAX memory space, either physical
or virtual.

The virtual to physical address translation is based on the assumption that PTEs
are locked in the host memory the time the TGEC owns the related buffer.

For best performance in virtual addressing mode, PPTE vectors must not cross a
page of the PPTE table.

17.2.1 Receive Descriptors
The receive descriptor format is shown in Figure 17–12, and described in the
following paragraphs.
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Figure 17–12 Receive descriptor format
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17.2.1.1 RDES0 Word
RDES0 word contains received frame status, length and descriptor ownership
information.

Table 17–23 RDES0 Bits

Bit Name Description

00 OF Overflow - When set, indicates received data in this descriptor’s
buffer was corrupted due to internal FIFO overflow. This will
generally occur if TGEC DMA requests are not granted before
the internal receive FIFO fills up.

01 CE CRC Error - When set, indicates that a CRC error has occurred on
the received frame.

(continued on next page)
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Table 17–23 (Cont.) RDES0 Bits

Bit Name Description

02 DB Dribbling Bits - When set, indicates the frame contained a non-
integer multiple of eight bits. This error will be reported only if
the number of dribbling bits in the last byte is greater than two.
Meaningless if RDES0<CS> or RDES0<RF> are set.

The CRC check is performed independent of this error, however, only
whole bytes are run through the CRC logic. Consequently, received
frames with up to six dribbling bits will have this bit set, but if
<CE> (or another error indicator) is not set, these frames should be
considered valid:

CE DB Error

0 0 None

0 1 None

1 0 CRC error

1 1 Alignment error

03 TN Translation Not Valid - When set, indicates that a translation error
occurred when the TGEC was translating a VAX virtual buffer
address. It will only set if RDES1<VA> was set. The Reception
process remains in the RUNNING state and attempts to acquire the
next descriptor.

05 FT Frame Type - When set, indicates the frame is an Ethernet type
frame (Frame Length_Field > 1500). When clear, indicates the frame
is an IEEE 802.3 type frame. Meaningless for Runt frames < 14
bytes.

06 CS Collision Seen - When set, indicates the frame was damaged by a
collision that occurred after the 64 bytes following the SFD.

07 TL Frame Too Long - When set, indicates the frame length exceeds the
maximum Ethernet specified size of 1518 bytes.

Note

Frame Too Long is only a frame length
indication and does not cause any
frame truncation.

08 LS Last Segment - When set, indicates this buffer contains the last
segment of a frame and status information is valid.

09 FS First Segment - When set, indicates this buffer contains the first
segment of a frame.

10 BO Buffer overflow - When set, indicates that the frame has been
truncated due to a buffer too small to fit the frame size. This bit may
only be set if Data Chaining is disabled (CSR6<DC> = 1).

11 RF Runt Frame - When set, indicates this frame was damaged by
a collision or premature termination before the collision window
had passed. Runt frames will only be passed on to the host if
(CSR6<PB>) is set. Meaningless if RDES0<OF> is set.

(continued on next page)
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Table 17–23 (Cont.) RDES0 Bits

Bit Name Description

13:12 DT Data Type - Indicates the type of frame the buffer contains, according
to the following table:

Value Meaning

00 Serial received frame.

01 Internally looped back frame.

10 Externally looped back frame, Serial received frame.

(The TGEC does not differentiate between looped back
and serial received frames. Therefore this information
is global and reflects only CSR6<OM>).

14 LE Length Error - When set, indicates a frame truncation caused by one
of the following:

• The frame segment does not fit within the current buffer and the
TGEC does not own the next descriptor. The frame is truncated.

• The Receive Watchdog timer expired. CSR5<RW> is also set.

• Invalid Page Table Entry of one of the frame’s buffer virtual
address.

15 ES Error Summary - The logical ‘‘OR’’ of RDES0 bits
OF,CE,TN,CS,TL,LE,RF.

30:16 FL Frame Length - The length in bytes of the received frame.
Meaningless if RDES0<LE> is set.

31 OW Own bit - When set, indicates the descriptor is owned by the TGEC.
When cleared, indicates the descriptor is owned by the host. The
TGEC clears this bit upon completing processing of the descriptor
and its associated buffer.

17.2.1.2 RDES1 Word
Table 17–24 describes the receive descriptor 1 bits.

Table 17–24 RDES1 Bits

Bit Name Descriptor

29 VT Virtual Type - In case of virtual addressing (RDES1<VA> = 1),
indicates the type of virtual address translation. When clear, the
buffer address RDES3 is interpreted as a SVAPTE (System Virtual
Address of the Page Table Entry). When set, the buffer address is
interpreted as a PAPTE (Physical Address of the Page Table Entry).
Meaningful only if RDES1<VA> is set.

(continued on next page)
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Table 17–24 (Cont.) RDES1 Bits

Bit Name Descriptor

30 VA Virtual Addressing - When set, RDES3 is interpreted as a virtual
address. The type of virtual address translation is determined by the
RDES1<VT> bit. The TGEC uses RDES3 and RDES2<Page Offset>
to perform a VAX virtual address translation process to obtain the
physical address of the buffer. When clear, RDES3 is interpreted as
the actual physical address of the buffer:

VA VT Addressing mode

0 x Physical

1 0 Virtual - SVAPTE

1 1 Virtual - PAPTE

31 CA Chain Address - When set, RDES3 is interpreted as another
descriptor’s VAX physical address. This allows the TGEC to process
multiple, non-contiguous descriptor lists and explicitly "chain" the
lists. Note that contiguous descriptors are implicitly chained.

In contrast to what is done for a Rx buffer descriptor, the TGEC
clears neither the ownership bit RDES0<OW> nor one of the other
bits of RDES0 of the chain descriptor after processing.

To protect against infinite loop, a chain descriptor pointing back to
itself is appears as owned by the host, regardless of the ownership
bit state.

17.2.1.3 RDES2 Word
Table 17–25 describes the receive descriptor 2 bits.

Table 17–25 RDES2 Bits

Bit Name Descriptor

08:00 PO Page Offset - The byte offset of the buffer within the page. Only
meaningful if RDES1<VA> is set. Receive buffers must be word
aligned.

30:16 BS Buffer Size - The size, in bytes, of the data buffer. Receive buffers
size must be an even number of bytes, not shorter than 16 bytes.

17.2.1.4 RDES3 Word
Table 17–26 describes the receive descriptor 3 bits.
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Table 17–26 RDES3 Bits

Bit Name Descriptor

31:00 SV/PV/PA SVAPTE/PAPTE/Physical Address - When RDES1<VA> is set,
RDES3 is interpreted as the address of the Page Table Entry and
used in the virtual address translation process. The type of the
address System Virtual address (SVAPTE) or Physical Address
(PAPTE) is determined by RDES1<VT>. When RDES1<VA> is
clear, RDES3 is interpreted as the physical address of the buffer.
When RDES1<CA> is set, RDES3 is interpreted as the VAX physical
address of another descriptor. Receive buffers must be word aligned.

17.2.1.5 Receive Descriptor Status Validity
Table 17–27 summarizes the validity of the receive descriptor status bits
regarding the reception completion status:

Table 17–27 Receive Descriptor Status Validity

Reception Rx Status report

status RF TL CS FT DB CE (ES,LE,BO,DT,FS,LS,FL,TN,OF)

Overflow X V X V X X V

Collision after 512 bits V V V V X X V

Runt frame V V V V X X V

Runt frame < 14 bytes V V V X X X V

Watchdog timeout V V X V X X V

V - Valid
X - Meaningless

17.2.2 Transmit Descriptors
The transmit descriptor format is shown in Figure 17–13 and described in the
following paragraphs.
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Figure 17–13 Transmit Descriptor Format
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17.2.2.1 TDES0 Word
TDES0 word contains transmitted frame status and descriptor ownership
information. Table 17–28 describes the transmit descriptor 0 bits.

Table 17–28 TDES0 bits

Bit Name Description

00 DE Deferred - When set, indicates that the TGEC had to defer while
trying to transmit a frame. This condition occurs if the channel is
busy when the TGEC is ready to transmit.

01 UF Underflow Error - When set, indicates that the transmitter has
truncated a message due to data late from memory. UF indicates
that the TGEC encountered an empty transmit FIFO while in the
midst of transmitting a frame. The transmission process enters the
SUSPENDED state and sets CSR5<TC,TI>.

02 TN Translation Not Valid - When set, indicates that a translation error
occurred when the TGEC was translating a VAX virtual buffer
address. It may only set if TDES1<VA> was set. The transmission
process enters the SUSPENDED state and sets CSR5<TC,TI>.

06:03 CC Collision Count - A four bit counter indicating the number of
collisions that occurred before the transmission attempt succeeded or
failed. Meaningless when TDES0<EC> is also set.

07 HF Heartbeat Fail - When set, indicates heartbeat collision check failure
the transceiver failed to return a collision pulse as a check after the
transmission. Some transceivers do not generate heartbeat, and so
will always have this bit set. If the transceiver does support it, it
indicates transceiver failure. Meaningless if TDES0<UF>.

08 EC Excessive Collisions - When set, indicates that the transmission was
aborted because 16 successive collisions occurred while attempting to
transmit the current frame.

(continued on next page)
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Table 17–28 (Cont.) TDES0 bits

Bit Name Description

09 LC Late Collision - When set, indicates frame transmission was aborted
due to a late collision. Meaningless if TDES0<UF>.

10 NC No Carrier - When set, indicates the carrier signal from the
transceiver was not present during transmission (possible problem in
the transceiver or transceiver cable).

Meaningless in internal loopback mode (CSR5<OM>=1).

11 LO Loss of Carrier - When set, indicates loss of carrier during
transmission (possible short circuit in the Ethernet cable).

Meaningless in internal loopback mode (CSR5<OM>=1).

12 LE Length Error - When set, indicates one of the following:

• Descriptor unavailable (owned by the host) in the middle of data
chained descriptors.

• Zero length buffer in the middle of data chained descriptors.

• Setup or Diagnostic descriptors (Data type TDES1<DT> <> 0) in
the middle of data chained descriptors.

• Incorrect order of first_segment TDES1<FS> and last_segment
TDES1<LS> descriptors in the descriptor list.

• Invalid Page Table Entry of one of the frame’s buffer virtual
address.

The Transmission process enters the SUSPENDED state and sets
CSR5<TC,TI>.

14 TO Transmit Watchdog Timeout - When set, indicates the transmit
watchdog timer has timed out, indicating the TGEC transmitter was
babbling. The interrupt CSR5<TW> is set and the Transmission
process is aborted and placed in the STOPPED state.

15 ES Error Summary - The logical ‘‘OR’’ of UF, TN, EC, LC, NC, LO, LE
and TO.

29:16 TDR Time Domain Reflectometer - This is a count of bit time and is useful
for locating a fault on the cable using the velocity of propagation
on the cable. Only valid if TDES0<EC> is also set. Two Excessive
Collisions in a row and with the same or similar (within 20) TDR
values indicate a possible cable open.

31 OW Own bit - When set, indicates the descriptor is owned by the TGEC.
When cleared, indicates the descriptor is owned by the host. The
TGEC clears this bit upon completing processing of the descriptor
and its associated buffer.

17.2.2.2 TDES1 word
Table 17–29 describes the transmit descriptor 1 bits.
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Table 17–29 TDES1 bits

Bit Name Descriptor

23 VT Virtual Type - In case of virtual addressing (TDES1<VA> = 1),
indicates the type of virtual address translation. When clear, the
buffer address TDES3 is interpreted as a SVAPTE (System Virtual
Address of the Page Table Entry). When set, the buffer address is
interpreted as a PAPTE (Physical Address of the Page Table Entry).
Meaningful only if TDES1<VA> is set.

24 IC Interrupt on Completion - When set, the TGEC will set CSR5<TI>
after this frame has been transmitted. To take effect, this bit must
be set in the descriptor where LS is set.

25 LS Last Segment - When set, indicates the buffer contains the last
segment of a frame.

26 FS First Segment - When set, indicates the buffer contains the first
segment of a frame.

27 AC Add CRC disable - When set, the TGEC will not append the CRC to
the end of the transmitted frame. To take effect, this bit must be set
in the descriptor where FS is set. If the transmitted frame is shorter
than 64 bytes, the TGEC will add the padding field and the CRC
regardless of the <AC> flag.

29:28 DT Data Type - Indicates the type of data the buffer contains, according
to the following table:

Value Meaning

00 Normal transmit frame data

10 Setup frame - Explained in Section 17.2.3.

11 Diagnostic frame -

30 VA Virtual Addressing - When set, TDES3 is interpreted as a virtual
address. The type of virtual address translation is determined by the
TDES1<VT> bit. The TGEC uses TDES3 and TDES2<Page Offset>
to perform a VAX virtual address translation process to obtain the
physical address of the buffer. When clear, TDES3 is interpreted as
the actual physical address of the buffer:

VA VT Addressing mode

0 x Physical

1 0 Virtual - SVAPTE

1 1 Virtual - PAPTE

31 CA Chain Address - When set, TDES3 is interpreted as another
descriptor’s VAX physical address. This allows the TGEC to process
multiple, non-contiguous descriptor lists and explicitly "chain" the
lists. Note that contiguous descriptors are implicitly chained.

In contrast to what is done for a Tx buffer descriptor, the TGEC
clears neither the ownership bit TDES0<OW> nor one of the other
bits of TDES0 of the chain descriptor after processing.

To protect against infinite loop, a chain descriptor pointing back
itself, is seen as owned by the host, regardless of the ownership bit
state.
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17.2.2.3 TDES2 Word
Table 17–30 describes the transmit descriptor 2 bits.

Table 17–30 TDES2 Bits

Bit Name Descriptor

08:00 PO Page Offset - The byte offset of the buffer within the page. Only
meaningful if TDES1<VA> is set. Transmit buffers may start on
arbitrary byte boundaries.

30:16 BS Buffer Size - The size, in bytes, of the data buffer. If this field is 0,
the TGEC will skip over this buffer and ignore it. The frame size is
the sum of all BS fields of the frame segments between and including
the descriptors having TDES1<FS> and TDES1<LS> set.
If the port driver wishes to suppress transmission of a frame, this
field must be set to 0 in all descriptors comprising the frame and
prior to the TGEC acquiring them. If this rule is not adhered to,
corrupted frames might be transmitted.

17.2.2.4 TDES3 word
Table 17–31 describes the transmit descriptor 3 bits.

Table 17–31 TDES3 Bits

Bit Name Descriptor

31:00 SV/PV/PA SVAPTE/PAPTE/Physical Address - When TDES1<VA> is set, TDES3
is interpreted as the address of the Page Table Entry and used in
the virtual address translation process. The type of the address
System Virtual address (SVAPTE) or Physical Address (PAPTE) is
determined by TDES1<VT>. When TDES1<VA> is clear, TDES3 is
interpreted as the physical address of the buffer. When TDES1<CA>
is set, TDES3 is interpreted as the VAX physical address of another
descriptor. Transmit buffers may start on arbitrary byte boundaries.

17.2.2.5 Transmit Descriptor Status Validity
Table 17–32 summarizes the validity of the Transmit descriptor status bits
regarding the Transmission completion status:

Table 17–32 Transmit descriptor status validity

Transmission Tx Status Report

Status LO NC LC EC HF CC (ES,TO,LE,TN,UF,DE)

Underflow X X V V X V V

Excessive collisions V V V V V X V

Watchdog timeout X V X X X V V

Internal Loopback X X V V X V V

V - Valid
X - Meaningless

Ethernet Adapters (TGEC) 17–37



17.2 Descriptors and Buffers Format

17.2.3 Setup Frame
A setup frame defines TGEC Ethernet destination addresses. These addresses
will be used to filter all incoming frames. The setup frame is never transmitted
over the Ethernet, nor looped back to the receive list. While the setup frame is
being processed, the receiver logic will temporarily disengage from the Ethernet
wire. The setup frame size is always 128 bytes and must be wholly contained in
a single transmit buffer. There are two types of setup frames:

1. Perfect Filtering addresses (16) list

2. Imperfect Filtering hash bucket (512) heads + one physical address

17.2.3.1 First Setup Frame
A setup frame must be queued (placed in the transmit list with TGEC
ownership) to the TGEC before the Reception process is started, except for when
the TGEC operates in promiscuous reception mode. After RESET, the TGEC
wakes up in PROMISCUOUS mode.

17.2.3.2 Subsequent Setup Frame
Subsequent setup frames may be queued to the TGEC regardless of the Reception
process state. The only requirement for the setup frame to be processed, is that
the Transmission process be in the RUNNING state. The setup frame will be
processed after all preceding frames have been transmitted and after the current
frame reception, if any, is completed.

The setup frame does not affect the Reception process state but during the setup
frame processing, the TGEC is disengaged from the Ethernet wire.

17.2.3.3 Setup Frame Descriptor
The setup frame descriptor format is shown in Figure 17–14, and described in the
following paragraphs.

Figure 17–14 Setup frame descriptor format
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Table 17–33 describes the setup frame descriptor bits.

Table 17–33 Setup frame descriptor bits

Word Bit Name Description

SDES0 13 SE Setup Error - When set, indicates the setup
frame buffer size is incorrect regarding the
address filtering mode:

• In perfect filtering, if the buffer size is not a
multiple of 8 bytes or bigger than 128 bytes.

• In hash filtering, if the buffer is shorter than
72 bytes.

15 ES Error Summary - Set when SE is set.

31 OW Own bit - When set, indicates the descriptor is
owned by the TGEC. When cleared, indicates
the descriptor is owned by the host. The TGEC
clears this bit upon completing processing of the
descriptor and its associated buffer.

SDES1 24 IC Interrupt on Completion - When set, the TGEC
will set CSR5<TI> after this setup frame has
been processed.

25 HP Hash/Perfect filtering mode - When set, the
TGEC will interpret the setup frame as a hash
table, and do an imperfect address filtering. The
imperfect mode is useful when there are more
than 16 multicast addresses to listen to.

When clear, the TGEC will do a perfect address
filter of incoming frames according to the
addresses specified in the setup frame.

26 IF Inverse filtering - When set, the TGEC will do
an inverse filtering: the TGEC will receive the
incoming frames with destination address not
matching the perfect addresses and will reject
the frames with destination address matching
one of the perfect addresses.

Meaningful only for Perfect_filtering
(SDES1<HP>=0), while promiscuous and All_
Multicast modes are not selected (CSR6<AF>=0).

29:28 DT Data Type - Must be 2 to indicate setup frame.

(continued on next page)
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Table 17–33 (Cont.) Setup frame descriptor bits

Word Bit Name Description

SDES2 30:16 BS Buffer Size - In perfect mode the buffer size
indicates the number of perfect addresses stored
into the setup buffer. If this number is smaller
than 16, the remaining addresses are internally
filled with one of the setup buffer addresses.

The buffer size must be consistent with the
filtering mode:

• In perfect filtering, the buffer size must be a
multiple of 8 bytes from 8 up to 128 bytes.

• In hash filtering, the buffer size must be
equal to or bigger than 72 bytes.

If the buffer size is incorrect, the setup frame is
not loaded and the setup error bit SDES0<SE> is
set.

SDES3 29:1 PA Physical Address - Physical address of setup
buffer. Setup buffer must be word aligned.

17.2.3.4 Perfect Filtering Setup Frame Buffer
This section describes how the TGEC interprets a setup frame buffer when
SDES1<HP> is clear.

The TGEC can store 16 (full 48-bits Ethernet) destination addresses. It will
compare the addresses of any incoming frame to these, and regarding the status
of Inverse_Filtering flag SDES1<IF>, will reject those which

• do not match, if SDES1<IF> = 0;

• match, if SDES1<IF> = 1.

The setup frame must always supply all 16 addresses. Any mix of physical and
multicast addresses can be used. Unused addresses should be duplicates of one of
the valid addresses. The addresses are formatted as shown in Figure 17–15.
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Figure 17–15 Perfect Filtering setup frame buffer format

31 16 15 0 bit

Bytes <3:0> PERFECT ADDRESS_00 Physical/Multicast bit
<7:4> xxxxxxxxxxxxxxx|

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

xxxxxxxxxxxxxxx|
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

xxxxxxxxxxxxxxx|
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

xxxxxxxxxxxxxxx|
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

xxxxxxxxxxxxxxx|
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

xxxxxxxxxxxxxxx|
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

xxxxxxxxxxxxxxx|
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

xxxxxxxxxxxxxxx|

~
~

<123:120>
<127:124>

~
~

.

.

.

PERFECT ADDRESS_01

xxxxxx = don’t care

PERFECT ADDRESS_02

PERFECT ADDRESS_03

PERFECT ADDRESS_04

PERFECT ADDRESS_05

PERFECT ADDRESS_13

PERFECT ADDRESS_14

PERFECT ADDRESS_15

ESB90P0067

The low-order bit of the low-order bytes is the address’s multicast bit.

Example 17–1 illustrates a Perfect Filtering Setup buffer (fragment).
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Example 17–1 Perfect Filtering Buffer
Ethernet addresses to be filtered:

! A8-09-65-12-34-76
09-BC-87-DE-03-15

.

.

.

Setup frame buffer fragment:
" 126509A8

00007634
DE87BC09
00001503

.

.

.

! Two Ethernet addresses written according to the DEC STD 134 specification
for address display.

" Those two addresses as they would appear in the buffer.

17.2.3.5 Imperfect Filtering Setup Frame Buffer
This section describes how the TGEC interprets a setup frame buffer when
SDES1<HP> is set.

The TGEC can store 512 bits, serving as hash bucket heads, and one physical
48-bit Ethernet address. Incoming frames with multicast destination addresses
will be subjected to the imperfect filtering. Frames with physical destination
addresses will be checked against the single physical address.

For any incoming frame with a multicast destination address, the TGEC applies
the standard Ethernet CRC function the first six bytes containing the destination
address, then uses the most significant nine bits of the result, as a bit index into
the table. If the indexed bit is set, the frame is accepted. If it is cleared, the
frame is rejected.

This filtering mode is called imperfect, because multicast frames not addressed to
this station may slip through, but it will still cut down the number of frames the
host will be presented with.

The format for the hash table and the physical address is shown in Figure 17–16.
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Figure 17–16 Imperfect Filtering Setup Frame Format

31 16 15 0 bit

bytes <3:0> HASH_FILTER_00
HASH_FILTER_01

HASH_FILTER_14
HASH_FILTER_15

<7:4>
.
.
.

<63:60>

<67:64>
<71:68>

<75:72>

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

xxxxxxxxxxxxxxxx|
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

PHYSICAL ADDRESS Physical/Multicast bit

<127:120>

xxxxxx = don’t care

ESB90P0068

Bits are sequentially numbered from right to left and down the table. For
example, if CRC(destination address)<8:0> = 33, the TGEC will examine bit
number 1 in the second longword.

Example 17–2 illustrates an imperfect filtering setup frame buffer.
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Example 17–2 Imperfect Filtering Buffer
Ethernet addresses to be filtered:

! 25-00-25-00-27-00
A3-C5-62-3F-25-87
D9-C2-C0-99-0B-82
7D-48-4D-FD-CC-0A
E7-C1-96-36-89-DD
61-CC-28-55-D3-C7
6B-46-0A-55-2D-7E

" A8-12-34-35-76-08

Setup frame buffer:
# 00000000

10000000
00000000
00000000
00000000
40000000
00000080
00100000
00000000
10000000
00000000
00000000
00000000
00010000
00000000
00400000

$ 353412A8
00000876

! Ethernet multicast addresses written according to the DEC STD 134
specification for address display.

" An Ethernet physical address.

# The first part of an Imperfect filter Setup frame buffer with set bits for the
multicast addresses !.

$ The second part of the buffer with the physical address ".

17.3 TGEC Hardware and Software Reset
The TGEC responds to two types of reset commands: a hardware reset through
the RESET_L pin, and a software reset command triggered by setting CSR6<RE>.
In both cases, the TGEC aborts all ongoing processing and starts the Reset
sequence. The TGEC restarts and reinitializes all internal states and registers.
No internal states are retained, no descriptors are owned and all the host visible
registers are set to ‘‘0’’, except where otherwise noted. The TGEC does not
explicitly disown any owned descriptor; so descriptors OWNED bits might be left
in a state indicating TGEC ownership.

The following table indicates the CSR fields which are not set to ‘‘0’’ after reset:

Field Value

CSR3 Unpredictable

CSR4 Unpredictable
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Field Value

CSR5<DN> 1

CSR6<BL> 1

CSR6<RE> Unpredictable after HARDWARE reset

1 after SOFTWARE reset

CSR7 Unpredictable

CSR9 RT = TT = 1250

After the reset sequence completes, the TGEC executes the self test procedure to
do basic sanity checking.

If the self test completes successfully, the TGEC initializes the TGEC, then sets
the Initialization Done flag CSR5<ID>.

At the first failure detected in one of the basic tests executed in the self_test
routine, the test is aborted and the self_test failure CSR5<SF> is set together
with the self_test error status CSR5<SS>which indicates the failure reason. The
self test takes 25ms to complete after Hardware or Software RESET.

If the initialization completes successfully, the TGEC is ready to accept further
host commands. Both the Reception and Transmission processes are placed in the
STOPPED state.

Successive reset commands (either hardware or software) may be issued. The
only restriction is that TGEC CSRs should not be accessed during a 1µs period
following the reset. Access during this period will result in a CP-BUS timeout
error. Access to TGEC CSRs during the self test are permitted; however, only
CSR5 reads should be performed.

17.4 TGEC Interrupts
Interrupts are generated as a result of various events. CSR5 contains all the
status bits which may cause an interrupt, provided CSR6<IE> is set. The port
driver must clear the interrupt bits (by writing a ‘‘1’’ to the bit position), to enable
further interrupts from the same source.

Interrupts are not queued, and if the interrupting event reoccurs before the
port driver has responded to it, no additional interrupts will be generated. For
example, CSR5<RI> indicates one or more frames were delivered to host memory.
The port driver should scan all descriptors, from its last recorded position up to
the first TGEC owned one.

An interrupt will only be generated once for simultaneous, multiple interrupting
events. It is the port driver responsibility to scan CSR5 for the interrupt cause(s).
The interrupt will not be regenerated, unless a new interrupting event occurs
after the host acknowledged the previous one, and provided the port driver
cleared the appropriate CSR5 bit(s). For example, CSR5<TI> and CSR5<RI>
may both set, the host acknowledges the interrupt and the port driver begins
executing by reading CSR5. Now CSR5<RU> sets. The port driver writes back its
copy of CSR5, clearing CSR5<TI> and CSR5<RI>. After the host IPL is lowered
below the TGEC level, another interrupt will be delivered with the CSR5<RU>
bit set.

Should the port driver clear all CSR5 set interrupt bits before the interrupt has
been acknowledged, the interrupt will be suppressed.
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17.4.1 Startup Procedure
A sequence of checks and commands must be performed by the port driver to
prepare the TGEC for operation.

1. Wait for the TGEC to complete its Initialization sequence by polling on
CSR5<ID> and CSR5<SF> (refer to Section 17.1.8 for details).

2. Examine CSR5<SF> to find out whether the TGEC passed its self test. If it
did not, it should be replaced (refer to Section 17.1.8 for details).

3. Write CSR0 to establish system configuration dependent parameters (refer to
Section 17.1.4 for details).

4. If the port driver intends to use VAX virtual addresses, CSR7 must be written
to identify the System Page Table to the TGEC (refer to Section 17.1.10 for
details).

5. If the port driver wishes to change the default settings of the watchdog
timers, it must write to CSR9 (refer to Section 17.1.12 for details).

6. Port driver must create the transmit and receive descriptor lists, then write
to CSR3 and CSR4 to provide the TGEC with the starting address of each
list. The first descriptor on the transmit list will usually contain a setup
frame (refer to Section 17.1.7 for details).

7. Write CSR6 to set global operating parameters and start the Transmission
and Reception processes. The Reception and Transmission processes enter
the RUNNING state and attempt to acquire descriptors from the respective
descriptor lists and begin processing incoming and outgoing frames (refer to
Section 17.1.9 for details). The Reception and Transmission processes are
independent of each other and can be started and stopped separately.

Note

If address filtering (either perfect or imperfect) is desired, the Reception
process should be started only after the Setup frame has been processed.

8. The port driver now waits for any TGEC interrupts. If either the Reception
or Transmission processes were SUSPENDED, the port driver must issue the
Poll Demand command after it has rectified the suspension cause.

17.5 Reception Process
While in the RUNNING state, the reception process polls the receive descriptor
list, attempting to acquire free descriptors. Incoming frames are processed and
placed in acquired descriptors’ data buffers, while status information is written
to the descriptor RDES0 words. The TGEC always tries to acquire an extra
descriptor in anticipation of incoming frames. Descriptor acquisition is attempted
under the following conditions:

• Immediately after being placed in the RUNNING state through setting of
CSR6<SR>.

• The TGEC begins writing frame data to a data buffer pointed to by the
current descriptor.

• The last acquired descriptor was chained (RDES1<CA> = 1) to another
descriptor.
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• A virtual translation error was encountered RDES0<TN> while the TGEC
was translating the buffer base address of the acquired descriptor.

As incoming frames arrive, the TGEC strips the preamble bits and stores the
frame data in the receive FIFO. Concurrently, it performs address filtering
according to CSR6 fields AF, HP and its internal filtering table. If the frame fails
the address filtering, it is ignored and purged from the FIFO. Frames which are
shorter than 64 bytes, due to collision or premature termination, are also ignored
and purged from the FIFO, unless CSR6<PB> is set.

After 64 bytes have been received, the TGEC begins transferring the frame data
to the buffer pointed to by the current descriptor. If Data Chaining is enabled
(CSR6<DC> clear), the TGEC will write frame data overflowing the current data
buffer into successive buffer(s). The TGEC sets the RDES0<FS> and RDES0<LS>
in the first and last descriptors, respectively, to delimit the frame. Descriptors
are released (RDES0<OW> bit cleared) as their data buffers fill up or the last
segment of a frame has been transferred to a buffer.

The TGEC sets RDES0<LS> and the RDES0 status bits in the last descriptor it
releases for a frame. After the last descriptor of a frame is released, the TGEC
sets CSR5<RI>.

This process is repeated until the TGEC encounters a descriptor flagged as owned
by the host. After filling up all previously acquired buffers, the Reception sets
CSR5<RU> and enters the SUSPENDED state. The position in the receive list is
retained.

Any incoming frames while in this state will cause the TGEC to fetch the current
descriptor in the host memory. If the descriptor is now owned by the TGEC, the
Reception re-enters the RUNNING state and starts the frame reception.

If the descriptor is still owned by the host, the TGEC increments the Missed
Frames Counter (CSR10<MFC>) and discards the frame.

Table 17–34 summarizes the Reception process state transitions and resulting
actions:

Table 17–34 Reception Process State Transitions

From State Event To state Action

STOPPED Start Reception command RUNNING Receive polling begins from
last list position or from the
list head if this is the first Start
command issued, or if the receive
descriptor list address (CSR3)
was modified by the port driver.

RUNNING TGEC attempts acquisition of a
descriptor owned by the host

SUSPENDED CSR5<RU> is set when the
last acquired descriptor buffer
is consumed. Position in list
retained.

RUNNING Stop Reception command STOPPED Reception process is STOPPED
after the current frame, if any,
is completely transferred to
data buffer(s). Position in list
retained.

(continued on next page)
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Table 17–34 (Cont.) Reception Process State Transitions

From State Event To state Action

RUNNING Memory or host bus parity error
encountered

STOPPED Reception is cut off and
CSR5<ME> is set.

RUNNING Reset command STOPPED Reception is cut off.

SUSPENDED Rx Poll demand or Incoming
frame and available descriptor

RUNNING Receive polling resumes from
last list position or from the list
head if CSR3 was modified by
the port driver.

SUSPENDED Stop Reception command STOPPED None.

SUSPENDED Reset command STOPPED None.

17.5.1 Transmission Process
While in the RUNNING state, the Transmission process polls the transmit
descriptor list for any frames to transmit. Frames are built and transmitted
on the Ethernet wire. Upon completing frame transmission (or giving up),
status information is written to the TDES0 words. Once polling starts, it
continues (in sequential or descriptor chained order) until the TGEC encounters a
descriptor flagged as owned by the host, or an error condition. At this point, the
Transmission process is placed in the SUSPENDED state and CSR5<TC,TI> is
set.

CSR5<TI> will also be set after completing transmission of a frame which has
TDES1<IC> set in its last descriptor. In this case, the Transmission process
remains in the RUNNING state.

Frames may be data chained and span several buffers. Frames must be delimited
by TDES1<FS> and TDES1<LS> in the first and last descriptors, respectively,
containing the frame. While in the RUNNING state, as the Transmission process
starts, it first expects a descriptor with TDES1<FS> set. Frame data transfer
from the host buffer to the internal FIFO is initiated.

Concurrently, if the current frame had TDES1<LS> clear, the transmission
process attempts to acquire the next descriptor, expecting TDES1<FS> and
TDES1<LS> to be clear, indicating an intermediary buffer, or TDES1<LS> to be
set, indicating the end of the frame.

After the last buffer of the frame has been transmitted, the TGEC writes back
final status information to the TDES0 word of the descriptor having TDES1<LS>
set, optionally sets CSR5<TI> if TDES1<IC> was set, and repeats the process
with the next descriptor(s). Actual frame transmission begins after at least 72
bytes have been transferred to the internal FIFO, or a full frame is contained
in the FIFO. Descriptors are released (TDES0<OW> bit cleared) as soon as the
TGEC is through processing a descriptor.

Transmit polling suspends under the following conditions:

• The TGEC reaches a descriptor with TDES0<OW> clear. To resume, the port
driver must give descriptor ownership to the TGEC and issue a Poll Demand
command.

• The TDES1<FS> and TDES1<LS> are incorrectly paired or out of order.
TDES0<LE> will be set.
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• A frame transmission is given up due to a locally induced error. The
appropriate TDES0 bit is set.

The transmission process enters the SUSPENDED state and sets CSR5<TC,TI>.
Status information is written to the TDES0 word of the descriptor causing the
suspension. The position in the transmit list, in all of the above cases, is retained.
The retained position is that of the descriptor following the last descriptor closed
(set to host ownership) by the TGEC.

Note

The TGEC does not automatically poll the Tx descriptor list and the port
driver must explicitly issue a Tx Poll Demand command after rectifying
the suspension cause.

The following table summarizes the transmission process state transitions:

Table 17–35 Transmission process state transitions

From state Event To state Action

STOPPED Start Transmission command RUNNING Transmit polling begins from
the last list position or from the
head of the list if this is the first
Start command issued, or if the
transmit descriptor list address
(CSR4) was modified by the port
driver.

RUNNING TGEC attempts acquisition of a
descriptor owned by the host.

SUSPENDED CSR5<TC,TI> is set. Position in
list retained.

RUNNING Out of order delimiting flag
(TDES0<FS> or TDES0<LS>)
encountered.

SUSPENDED TDES0<LE> and CSR5<TC,TI>
are set. Position in list retained.

RUNNING Frame transmission aborts due
to a locally induced error (refer
to Table 17–28 for details).

SUSPENDED Appropriate TDES0 and
CSR5<TC,TI> bits are set.
Position in list retained.

RUNNING Stop Transmission command STOPPED Transmission process is
STOPPED after the current
frame, if any, is transmitted.
Position in list retained.

RUNNING Transmit watchdog expires STOPPED Transmission is cut off and
CSR5<TW,TC,TI> , TDES0<TO>
are set. Position in list retained.

RUNNING Memory or host bus parity error
encountered

STOPPED Transmission is cut off and
CSR5<ME> is set.

RUNNING Reset command STOPPED Transmission is cut off.

(continued on next page)
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Table 17–35 (Cont.) Transmission process state transitions

From state Event To state Action

SUSPENDED Tx Poll Demand command RUNNING Transmit polling resumes from
last list position or from the list
head if CSR4 was modified by
the port driver.

SUSPENDED Stop Transmission command STOPPED None.

SUSPENDED Reset command STOPPED None.

17.5.2 Loopback Operations
The TGEC supports two loopback modes for test applications.

• Internal loopback

This mode is generally used to verify correct operations of the TGEC internal
logic. While in this mode, the TGEC will take frames from the transmit list
and loop them back, internally, to the receive list. The TGEC is disengaged
from the Ethernet wire while in this mode.

• External loopback

This mode is generally used to verify correct operations up to the Ethernet
cable. While in this mode, the TGEC will take frames from the transmit list
and transmit them on the Ethernet wire. Concurrently, the TGEC listens to
the line which carries its own transmissions and places incoming frames in
the receive list.

Note

Caution should be exercised in this mode as transmitted frames are
placed on the Ethernet wire. Furthermore, the TGEC does not check
the origin of any incoming frames, consequently , frames not necessarily
originating from the TGEC might make it to the receive buffers.

In either of these modes, all the address filtering and validity checking rules
apply. The port driver needs to take the following actions:

1. Place the Reception and Transmission processes in the STOPPED state. The
port driver must wait for any previously scheduled frame activity to cease.
This is done by polling the TS and RS fields in CSR5.

2. Prepare appropriate transmit and receive descriptor lists in host memory.
These may follow the existing lists at the point of suspension, or may be new
lists which will have to be identified to the TGEC by appropriately writing
CSR3 and CSR4.

3. Write to CSR6<OM> according to the desired loopback mode and place the
Transmission and Reception processes in the RUNNING state through Start
commands.

4. Respond and process any TGEC interrupts, as in normal processing.

To restore normal operations, the port driver must execute above step #1, then
write the OM field in CSR6 with ‘‘00’’.
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17.5.3 DNA CSMA/CD Counters and Events Support
This section describes the TGEC features that support the port driver in
implementing and reporting the specified counters and events. 1

Table 17–36 lists the CSMA/CD counters.

Table 17–36 CSMA/CD Counters

Counter TGEC Features

Time because counter creation Supported by the host driver.

Bytes received Port driver must add up the RDES0<FL> fields of all
successfully received frames.

Bytes sent Port driver must add up the TDES2<BS> fields of all
successfully transmitted buffers.

Frames received Port driver must count the successfully received frames
in the receive descriptor list.

Frames sent Port driver must count the successfully transmitted
frames in the transmit descriptor list.

Multicast bytes received Port driver must add up the RDES0<FL> fields of all
successfully received frames with multicast address
destinations.

Multicast frames received Port driver must count the successfully received frames
with multicast address destinations.

Frames sent, initially deferred Port driver must count the successfully transmitted
frames with TDES0<DE> set.

Frames sent, single collision Port driver must count the successfully transmitted
frames with TDES0<CC> equal to 1.

Frames sent, multiple collisions Port driver must count the successfully transmitted
frames with TDES0<CC> greater than 1.

Send failure (Excessive collisions) Port driver must count the transmit descriptors having
TDES0<EC> set.

Send failure ( Carrier check failed) Port driver must count the transmit descriptors having
TDES0<LC> set.

Send failure (Short circuit ) Two successive transmit descriptors with the No_
carrier flag TDES0<NC> set, indicates a short circuit.

Send failure (Open circuit) Two successive transmit descriptors with the
Excessive_collisions flag TDES0<EC> set with the
same Time domain reflectometer value TDES0<TDR>,
indicate an open circuit.

Send failure (Remote Failure to Defer ) Flagged as a late collision TDES0<LC> in the transmit
descriptors.

Receive failure (Block Check Error) Port driver must count the receive descriptors having
RDES0<CE> set with RDES0<DB> cleared.

Receive failure (Framing Error ) Port driver must count the receive descriptors having
both RDES0<CE> and RDES0<DB> set.

Receive failure(Frame too long) Port driver must count the receive descriptors having
RDES0<TL> set.

(continued on next page)

1 As specified in the DNA Maintenance Operations (MOP) Functional Specification,
Version T.4.0.0, 28 January 1988.
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Table 17–36 (Cont.) CSMA/CD Counters

Counter TGEC Features

Unrecognized frame destination Not applicable.

Data overrun Port driver must count the receive descriptors having
RDES0<OF> set.

System buffer unavailable Reported in the Missed_frame counter CSR10<MFC>
(refer to Section 17.1.13).

User buffer unavailable not applicable.

Collision detect check failed Port driver must count the transmit descriptors having
TDES0<HF> set.

CSMA/CD specified events can be reported by the port driver based on
Table 17–36. The initialization failed event is reported through CSR5<SF>.
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18
SCSI/DSSI Adapters

The I/O module contains five NCR 53C710 controllers, each capable of supporting
DSSI, SCSI-1 or SCSI-2 protocols. Eight-bit SCSI/DSSI transfers are supported
using single ended drivers and receivers. Controllers 3 through 0 provide true
DSSI drivers and receivers and are connected by the DEC 4000 AXP enclosure
to the fixed disk storage devices. Controller 4 provides only SCSI driver and
receiver levels and is connected by the DEC 4000 AXP enclosure to the removable
media devices. Each controller can be configured to support the following data
transfer rates between the controller and the peripheral devices.

• Asynchronous SCSI - � 5 MB/sec

• Synchronous SCSI

single ended - � 6.25 MB/sec

• DSSI

single ended - � 6.25 MB/sec

Each controller contains a 2-MIPS scripts processor that allows both DMA and
SCSI/DSSI instructions to be fetched from a local scratch memory or from main
memory. These instructions enable the device to select, reselect, disconnect,
wait for disconnect, transfer information, change bus phases and in general,
implement all aspects of the SCSI/DSSI protocol. Complex bus sequences
are built by the DEC 4000 AXP processor and executed independently by the
scripts processor. The DEC 4000 AXP processor is interrupted after successful
completion or an error condition.

The controllers also allow low-level control of the SCSI/DSSI bus through register
read and write operations by the DEC 4000 AXP processor. This gives the DEC
4000 AXP processor the ability to sample and/or assert signals on the SCSI/DSSI
bus. The diagnostic capabilities of the controllers allow them to perform a
self-selection so they can be tested as both an initiator and a target.

A description of the NCR 53C710 SCSI I/O processor controller registers and
programming information follows.

18.1 NCR 53C710 SCSI Adapter Registers
SCSI adapter registers can be addresses as bytes or longwords only; other access
sizes result in bus errors.

Warning

The only register that the host CPU can access while the 53C710 is
executing scripts is the ISTAT register. Attempts to access other registers
interferes with the operation of the chip. All registers are accessible via
scripts.
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18.1.1 SCSI Register Map
The register map in Figure 18–1 shows the register address assignments for
a single SCSI/DSSI controller. There are five controllers included on the I/O
module.

Bits <5:2> of the secondary bus address field in the mailbox data structure select
one of sixteen longword registers within a SCSI/DSSI controller. Bits <8:6> of
this field are used to select one of the five controllers according to the following
mapping function shown in Table 18–1.

Table 18–1 SCSI/DSSI Selection

Addr [8:6] Controller Device Slot

0 SCSI(0) Fixed Slot A

1 SCSI(1) Fixed Slot B

2 SCSI(2) Fixed Slot C

3 SCSI(3) Fixed Slot D

4 SCSI(4) Removable Media E

5 unused

6 unused

7 unused
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Figure 18–1 SCSI/DSSI Controller Register Map

31 0 ADDRESS

SIEN (r/w) SDID (r/w) SCNTL1(r/w) SCNTL0(r/w) SCSI(n)+00

SCSI(n)+04

SCSI(n)+08

SCSI(n)+0C

SCSI(n)+10

SCSI(n)+14

SCSI(n)+18

SCSI(n)+1C

SCSI(n)+20

SCSI(n)+24

SCSI(n)+28

SCSI(n)+2C

SCSI(n)+30

SCSI(n)+34

SCSI(n)+38

SCSI(n)+3C

SXFER(r/w)

DSA (r/w)

CTEST0 (r/w)

CTEST6(r/w)

DBC (r/w)

DNAD (r/w)

(r/w)

SCRATCH (r/w)

ADDER

CTEST7(r/w)

SOCL (r/w) SODL (r/w)

CTEST5(r/w)

SCID (r/w)

SIDL (r)

TEMP (r/w)

CTEST4(r/w)

CTEST8(r/w)

DSP

(r)

DCNTL (r/w)

SBCL (r/w) SBDL (r)

ISTAT (r/w)

SFBR (r)

SSTAT0 (r)

DFIFO (r/w)

DSPS (r/w)

SSTAT2 (r) SSTAT1 (r) DSTAT (r)

CTEST1 (r)

DMODE (r/w)

CTEST3 (r) CTEST2 (r)

DIEN (r/w)

LCRC (r/w)

DWT (r/w)

DCMD (r/w)

SCSI_REG
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18.2 SCSI Control 0 (SCNTL0)

18.2 SCSI Control 0 (SCNTL0)

Figure 18–2 SCSI Control 0 (SCNTL0)

01234567

ARBITRATION MODE BIT 1 (RW)

ARBITRATION MODE BIT 0 (RW)

START SEQUENCE (RW)

SELECT WITH ATN ON A START SEQUENCE (RW)

ENABLE PARITY CHECKING (RW)

ENABLE PARITY GENERATION PARITY THROUGH (RW)

ASSERT ATN ON PARITY ERROR (RW)

TARGET  MODE (RW)

Table 18–2 SCSI Control 0 Description

Field Description

7 ARBITRATION MODE BIT 1 [read/write]

(ARB1) Arbitration mode bit 1 Table 18–3 shows the interpretation of the
arbitration mode bits.

6 ARBITRATION MODE BIT 0 [read/write]

(ARB0) Arbitration mode bit 0—See ARB1 text

5 START SEQUENCE [read/write]

(START) When this bit is set, the 53C710 starts the arbitration sequence
indicated by the Arbitration Mode bits. The Start Sequence bit is used in low
level mode; when executing SCSI scripts, this bit is controlled by the scripts
processor. An arbitration sequence should not be started if the connected bit in
the SCNTL1 register indicates that 53C710 is already connected to the SCSI bus.

This bit is automatically cleared when the arbitration sequence is complete. If a
sequence is aborted, the connected bit in the SCNTL1 register should be checked
to verify that the 53C710 did not connect to the SCSI bus.

4 SELECT WITH ATN ON A START SEQUENCE [read/write]

(WATN) When this bit is set, the SCSI ATN signal is asserted during the
selection phase (ATN is asserted at the same time BSY is deasserted while
selecting a target). If a selection timeout occurs while attempting to select a
target device, ATN is deasserted at the same time SEL is deasserted.

When this bit is cleared, the ATN signal is not asserted during selection.

When executing SCSI scripts, this bit is controlled by scripts processor, but it
may be set manually in low level mode.

3 ENABLE PARITY CHECKING [read/write]

(continued on next page)
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18.2 SCSI Control 0 (SCNTL0)

Table 18–2 (Cont.) SCSI Control 0 Description

Field Description

(EPC) When this bit is set, the SCSI data bus is checked for odd parity when
data is received from the SCSI bus in either initiator or target mode. The host
data bus is checked for odd parity if bit 2, the Enable Parity Generation bit, is
cleared. Host data bus parity is checked as data is loaded into the SODL register
when sending SCSI data in either initiator or target mode. If a parity error is
detected, bit 0 of the SSTAT0 register is set and an interrupt may be generated.

If the 53C710 is operating in initiator mode and a parity error is detected, ATN
can optionally be asserted, but the transfer continues until the target changes
phase to Message Out.

When this bit is cleared, parity errors are not reported.

2 ENABLE PARITY GENERATION PARITY THROUGH [read/write]

(EPG) When this bit is set, the SCSI parity bit is generated by the 53C710. The
host data bus parity lines DP<3:0> are ignored and should not be used as parity
signals. When this bit is cleared, the parity present on the host data parity lines
flows through the 53C710’s internal FIFOs and is driven onto the SCSI bus when
sending data (if the host bus is set to even parity, it is changed to odd before it is
sent to the SCSI bus). This bit is set to enable the DP3_ABRT pin to function as
an abort input (ABRT).

1 ASSERT ATN ON PARITY ERROR [read/write]

(AAP) When this bit is set, the 53C710 automatically asserts the SCSI ATN
signal upon detection of a parity error. ATN is asserted only in initiator mode.
The ATN signal is asserted before deasserting ACK during the byte transfer with
the parity error. The Enable Parity Checking bit must also be set for the 53C710
to assert ATN in this manner. The following parity errors can occur.

1. A parity error detected on data received from the SCSI bus.

2. A parity error detected on data transferred to the 53C710 from the host data
bus.

If the Assert ATN on Parity Error bit is cleared or the Enable Parity Checking
bit is cleared, ATN is not asserted automatically on the SCSI bus when a parity
error is received.

0 TARGET MODE [read/write]

(TRG) This bit determines the default operating mode of the 53C710, though
there are instances when the chip may act in a role other than the default. For
example, a mostly initiator device may be selected as a target. An automatic
mode change does affect the state of this bit. After completion of a mode change
I/O operation, the 53C710 returns to the role defined by this bit.

When this bit is set, the chip is a target device by default. When the target mode
bit is cleared, the 53C710 is an initiator device by default.

Simple Arbitration

1. The 53C710 waits for a bus free condition to occur.

2. It asserts BSY and its SCSI ID (contained in the SCID register) onto the
SCSI bus. If the SEL/signal is asserted by another SCSI device, the 53C710
deasserts BSY, deassert its ID and sets the Lost Arbitration bit in the SSTATI
register.

3. After an arbitration delay, the CPU should read the SBDL register to check if
a higher priority SCSI ID is present. If no higher priority ID bit is set, and
the LOST ARBITRATION bit is not set, the 53C710 has won arbitration.
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18.2 SCSI Control 0 (SCNTL0)

4. Once the 53710 has won arbitration, SEL must be asserted via the SOCL for
a bus clear plus a bus settle delay (1.2 µS) before a low level selection can be
performed.

Full Arbitration, Selection and Reselection

1. The 53C710 waits for a bus free condition.

2. It asserts BSY and its SCSI ID (the highest priority ID stored in the SCID
register) onto the SCSI bus.

3. If the SEL signal is asserted by another SCSI device or if the 53C710 detects
a higher priority ID, the 53C710 deasserts BSY deasserts its ID, and waits
until the next bus free state to try arbitration again.

4. The 53C710 repeats arbitration until it wins control of the SCSI bus. When it
has won, the Won Arbitration bit is set in the SSTATI register.

5. The 53C710 performs selection by asserting the following onto the SCSI bus
SEL, the target’s ID (stored in the SDID register) and the 53C710’s ID (the
highest priority ID stored in the SCID register)

6. After a selection is complete, the Function Complete bit is set in the SSTAT0
register.

7. If a selection timeout occurs, the SELECTION TIMEOUT BIT is set in the SSTAT0
register.

Table 18–3 Arbitration Mode Bit Interpretations

Arb1 Arb0 Arbitration Mode

0 0 Simple Arbitration

0 1 Reserved

1 0 Reserved

1 1 Full arbitration, selection, or reselection

18.3 SCSI Control 1 (SCNTL1)
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18.3 SCSI Control 1 (SCNTL1)

Figure 18–3 SCSI Control 1 (SCNTL1)

01234567

EXTRA CLOCK CYCLE OF DATA SETUP (RW)

ASSERT SCSI DATA BUS (RW)

ENABLE SELECTION & RESELECTION (RW)

CONNECTED (RW)

ASERT SCSI RST SIGNAL (RW)

ASERT EVEN SCSI PARITY (RW)

RESERVED (RW)

RESERVED (RW)

Table 18–4 SCSI Control 1 Description

Field Description

7 EXTRA CLOCK CYCLE OF DATA SETUP [read/write]

(EXC) When this bit is set, an extra clock period of data setup is added to each
SCSI data transfer. The extra data setup time can provide additional system
design flexibility, though it affects the SCSI transfer rates. Clearing this bit
disables the extra clock cycle of data setup time.

6 ASSERT SCSI DATA BUS [read/write]

(ADB) When this bit is set, the 53C710 drives the contents of the SCSI Output
Data Latch (SODL) register onto the SCSI data bus. When the 53C710 is
initiator, the SCSI I/O signal must be inactive to assert the SODL contents onto
the SCSI bus. When the 53C710 is a target, the SCSI I/O signal must be active
for the SODL contents to be asserted onto the SCSI bus. The contents of the
SODL register can be asserted at any time, even before the 53C710 is connected
to the SCSI bus. This bit should be cleared when executing SCSI scripts. It is
normally used only for diagnostics testing or operation in low level mode.

5 ENABLE SELECTION & RESELECTION [read/write]

(ESR) When this bit is set, the 53C710 responds to bus initiated selections and
reselections. The 53C710 can respond to selections and reselections in both
initiator and target roles. If SCSI Disconnect/Reconnect is to be supported, this
bit should be set as part of the initialization routine.

4 CONNECTED [read/write]

(CON) This bit is automatically set any time the 53C710 is connected to the
SCSI bus as an initiator or as a target. It is set after successfully completing
arbitration or when the 53C710 has responded to a bus initiated selection or
reselection. It also sets after successfully completing simple arbitration when
operating in low level mode. When this bit is clear, the 53C710 is not connected
to the SCSI bus.

The CPU can force a connected or disconnected condition by setting or clearing
this bit. This feature would be used primarily during loopback mode.

3 ASERT SCSI RST SIGNAL [read/write]

(continued on next page)
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18.3 SCSI Control 1 (SCNTL1)

Table 18–4 (Cont.) SCSI Control 1 Description

Field Description

(RST) Setting this bit asserts the SCSI RST signal. The RST signal remains
asserted until this bit is cleared. The 25 µs minimum assertion time defined in
the SCSI specification must be timed out by the controlling microprocessor or a
script delay routine.

2 ASERT EVEN SCSI PARITY [read/write]

(AESP) When this bit is set and the Enable Parity Generation bit is set in
the SCNTL0 register, the 53C710 asserts even parity. It forces a SCSI parity
error on each byte sent to the SCSI bus from the 53C710. If parity checking is
enabled, then the 53C710 checks data received for odd parity. This bit is used
for diagnostic testing and should be clear for normal operation. It can be used to
generate parity errors to test error handling functions.

1 RESERVED [read/write]

0 RESERVED [read/write]

18.4 SCSI Destination ID (SDID)
This register sets the SCSI ID of the device to be selected when executing a select
or reselect command. When executing SCSI scripts, the script processor writes
the destination SCSI ID to this register. The SCSI ID is defined by the user in a
SCSI scripts select or reselect instruction.

When using Table Indirect I/O commands, the destination ID is loaded from the
data structure.

Figure 18–4 SCSI Destination ID (SDID)

01234567

SCSI ID 7-0 (RW)

Table 18–5 SCSI Destination ID Description

Field Description

7:0 SCSI ID 7-0 [read/write]

(ID7—ID0) Only one of these bits should be set for proper selection or reselection.

18.5 SCSI Interrupt Enable (SIEN)
This register contains the interrupt mask bits corresponding to the interrupting
conditions described in the SSTAT0 register. An interrupt is masked by clearing
the appropriate mask bit. Masking an interrupt prevents IRQ from being
asserted for the corresponding interrupt, but the status bit is still set in the
SSTAT0 register. Masking an interrupt does not prevent the ISTAT SIP bit from
being set, except in the case of nonfatal interrupts (SEL and FCMP). Setting a
mask bit unmasks the corresponding interrupt, enabling the assertion of IRQ for
that interrupt.
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18.5 SCSI Interrupt Enable (SIEN)

A masked nonfatal interrupt does not prevent unmasked or fatal interrupts from
getting through; interrupt stacking does not begin until either the ISTAT SIP or
DIP bit is set.

The 53C710 IRQ output is latched; once asserted, it remains asserted until the
interrupt is cleared by reading the appropriate status register. Masking an
interrupt after the IRQ output is asserted does not cause IRQ to be deasserted.
In the case of nonfatal interrupts, masking an interrupt after it occurs causes
the ISTAT SIP bit to clear allowing pending interrupts to fall through. (Interrupt
stacking is disabled).

Figure 18–5 SCSI Interrupt Enable (SIEN)

01234567

INITIATOR: PHASE MISMATCH, ON TARGET: ATN ACTIVE (RW)

FUNCTION COMPLETE (RW)

SCSI BUS TIMEOUT (RW)

SELECTED OR RESELECTED (RW)

SCSI GROSS ERROR (RW)

UNEXPECTED DISCONNECT (RW)

SCSI RST RECEIVED (RW)

PARITY ERROR (RW)

Table 18–6 SCSI Interrupt Enable Description

Field Description

7 INITIATOR: PHASE MISMATCH, ON TARGET: ATN ACTIVE [read/write]

6 FUNCTION COMPLETE [read/write]

5 SCSI BUS TIMEOUT [read/write]

4 SELECTED OR RESELECTED [read/write]

3 SCSI GROSS ERROR [read/write]

2 UNEXPECTED DISCONNECT [read/write]

1 SCSI RST RECEIVED [read/write]

0 PARITY ERROR [read/write]

18.6 SCSI Chip ID (SCID)
This register sets up the 53C710’s SCSI ID. If more than one bit is set, the
53C710 responds to each corresponding SCSI ID. The 53C710 always uses the
highest priority SCSI ID during arbitration. For example, if 8416 were written to
this register, the 53C710 would respond when another device selects ID 7 or ID 2.
When arbitrating for SCSI bus, ID 7 would be used as the 53C710’s SCSI ID.
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18.6 SCSI Chip ID (SCID)

Figure 18–6 SCSI Chip ID (SCID)

01234567

SCSI ID 7-0 (RW)

Table 18–7 SCSI Chip ID Description

Field Description

7:0 SCSI ID 7-0 [read/write]

18.7 SCSI Transfer (SXFER)
When using Table Indirect I/O commands, bits <6:0> of this register are loaded
from the I/O data structure.

Figure 18–7 SCSI Transfer (SXFER)

01234567

DISABLE HALT ON PARITY ERROR, OR ON ATN (RW)

SCSI SYNCHRONOUS TRANSFER PERIOD BIT 2:0 (RW)

MAX SCSI SYNCHRONOUS OFFSET (RW)

Table 18–8 SCSI Transfer Description

Field Description

7 DISABLE HALT ON PARITY ERROR, OR ON ATN [read/write]

(DHP) When this bit cleared, the 53C710 immediatley halts the SCSI data
transfer when a parity error is detected or when the ATN signal is asserted. If
ATN or a parity error is received in the middle of data transfer, the 53C710 may
transfer up to 3 additional bytes before halting to synchronize between internal
core cells. During synchronous operation, the 53C710 transfers data until there
are no outstanding synchronous offsets. If the 53C710 is receiving data, any data
residing in the SCSI or DMA FIFOs is sent to memory before halting. While
sending data in target mode with pass parity enabled, the byte with the parity
error is not sent across the SCSI bus.

When this bit is set, the 53C710 does not halt the SCSI transfer when ATN or
a parity error is received until the end of a block move operation. When this bit
is set and the initiator asserts ATN, the 53C710 completes the block move and
then, depending on whether or not the ATN interrupt is enables either generates
an interrupt or continues fetching instructions (the instruction following should
be a move, address IF ATN.)

(continued on next page)
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18.7 SCSI Transfer (SXFER)

Table 18–8 (Cont.) SCSI Transfer Description

Field Description

6:4 SCSI SYNCHRONOUS TRANSFER PERIOD BIT 2:0 [read/write]

(TP2—TP0) These bits determine the SCSI synchronous transfer period used by
the 53C710 when sending synchronous SCSI data in either initiator or target
mode. The table below describes the possible combinations and their relationship
to the synchronous data transfer period used by the 53C710.

TP2 TP1 TP0 XFERP
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

The actual synchronous transfer period used by the 53C710 when transferring
SCSI data is defined by the following equations.

• The minimum synchronous transfer period when sending SCSI data:

Period = TCP * (4 + XFERP + 1)

If Bit <7> in the SCNTL1 register is set

(one extra clock cycle of data setup)
Period = TCP * (4 + XFERP)

If Bit <7> in the SCNTL1 register is clear

(no extra clock cycle of data setup)

• The minimum synchronous transfer period when receiving SCSI data:

Period = TCP * (4 + XFERP)

Whether sending or receiving, TCP=1/SCSI core clock frequency. The SCSI
core clock frequency is determined by the CF<1:0> bits in the DCNTL
register and SSCF<1:0> bits in SBCL. The following table shows examples
of synchronous transfer periods for SCSI-1 transfer rates. Table 18–9 and
Table 18–10 shows example transfer periods for SCSI-1 and fast SCSI-2
transfer rates.

3:0 MAX SCSI SYNCHRONOUS OFFSET [read/write]

(MO3—MO0) These bits describe the maximum SCSI synchronous offset used by
the 53C710 when transferring synchronous SCSI data in either initiator or target
mode. Table 18–11 describes the possible combinations and their relationship
to the synchronous data offset used by the 53C710. These bits determine the
53C710 method of transfer for Data In and Data Out phases only; all other
information transfers occur asynchronously.
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18.7 SCSI Transfer (SXFER)

Table 18–9

Clk
SCSI
Clk XFERP Sync Sync

(MHz) +DCNTL Transfer Transfer

Bits
7,6 Period Rate

(ns) (MB/s)

66.67 +3 0 180 5.55

66.67 +3 1 225 4.44

50 +2 0 160 6.25

50 +2 1 200 5

40 +2 0 200 5

37.50 +1.5 0 160 6.25

33.33 +1.5 0 180 5.55

25 +1 0 160 6.25

20 +1 0 200 5

16.67 +1 0 240 4.17

Table 18–10

Clk
SCSI
Clk XFERP Sync Sync

(MHz) +SBCL Transfer Transfer

Bits
1,0 Period Rate

(ns) (MB/s)

66.67 +15 0 90 11.11�

66.67 +15 1 1125 8.88

50 +1 0 80 12.5�

50 +1 1 100 10.0

40 +1 0 100 10.0

37.50 +1 0 106.67 9.375

33 +1 0 120 8.33

25 +1 0 160 6.25

20 +1 0 200 5

16.67 +1 0 240 4.17

Table 18–11

MO3 MO2 MO1 MO0 Synchronous Offset

0 0 0 0 0 Asynchronous operation

(continued on next page)
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18.7 SCSI Transfer (SXFER)

Table 18–11 (Cont.)

MO3 MO2 MO1 MO0 Synchronous Offset

0 0 0 1 1

0 0 1 1 3

0 0 1 1 3

0 1 1 1 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8

1 X X 1 Reserved

1 X 1 X Reserved

1 1 X X Reserved

(� Violates SCSI specifications)

18.8 SCSI Output Data Latch (SODL)
This register is used primarily for diagnostics testing or programmed I/O
operations. Data written to this register is asserted onto the SCSI data bus by
setting the Assert Data Bus bit in the SCNTL1 register. This register is used to
send data via programmed I/O. Data flows through this register when sending
data in any mode. It is also used to write to the synchronous data FIFO when
testing the chip.

Figure 18–8 SCSI Output Data Latch ( SODL)

01234567

SCSI OUTPUT DATA LATCH (RW)

Table 18–12 SCSI Output Data Latch Description

Field Description

7:0 SCSI OUTPUT DATA LATCH [read/write]

18.9 SCSI Output Control Latch (SOCL)
This register is used primarily for diagnostics testing or programmed I/O
operation. It is controlled by the scripts processor when executing SCSI scripts.
SOCL should be used only when transferring data via programmed I/O. Some
bits are set or reset when executing SCSI scripts. Do not write to the register
once the 53C710 becomes connected and starts executing SCSI scripts.
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18.9 SCSI Output Control Latch (SOCL)

Figure 18–9 SCSI Output Control Latch (SOCL)

01234567

ASSERT SCSI REQ SIGNAL (RW)

ASSERT SCSI ACK SIGNAL (RW)

ASSERT SCSI BSY SIGNAL (RW)

ASSERT SCSI SEL SIGNAL (RW)

ASSERT SCSI ATN SIGNAL (RW)

ASSERT SCSI MSG SIGNAL (RW)

ASSERT SCSI C/D SIGNAL (RW)

ASSERT SCSI I/O SIGNAL (RW)

Table 18–13 SCSI Output Control Latch Description

Field Description

7 ASSERT SCSI REQ SIGNAL [read/write]

6 ASSERT SCSI ACK SIGNAL [read/write]

5 ASSERT SCSI BSY SIGNAL [read/write]

4 ASSERT SCSI SEL SIGNAL [read/write]

3 ASSERT SCSI ATN SIGNAL [read/write]

2 ASSERT SCSI MSG SIGNAL [read/write]

1 ASSERT SCSI C/D SIGNAL [read/write]

0 ASSERT SCSI I/O SIGNAL [read/write]

18.10 SCSI First Byte Received (SFBR)
This register contains the first byte received in any asynchronous information
transfer phase. For example, when the 53C710 is operating in initiator mode, this
register contains the first byte received in Message In, Status Phase, Reserved In
and Data In.

When a Block Move Instruction is executed for a particular phase, the first byte
received is stored in this register even if the present phase is the same as the last
phase. The first byte-received value for a particular input phase is not valid until
after a MOVE instruction is executed.

This register is also the accumulator for register read-modify-writes with the
SFBR as the destination allowin gbit testing after an operation.

Additionally, the SFBR register may be used to contain the device ID after a
selection or reselection, if the COM bit is clear in the DCNTL register. However,
for maximum flexibility it is strongly recommended that the ID byte be directed
only to the LCRC register (COM bit set).
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18.10 SCSI First Byte Received (SFBR)

The CPU cannot write the SFBR. Therefore SFBR cannot be written by a a
Memory Move instruction. However, it can be loaded via read/write operations.
To load the SFBR with a byte stored in system memory, the byte must first be
moved to an intermediate 53C710 register (such as the SCRATCH register), and
then to the SFBR.

Figure 18–10 SCSI First Byte Received ( SFBR)

01234567

FIRST BYTE RECEIVED (RW)

Table 18–14 SCSI First Byte Received Description

Field Description

7:0 FIRST BYTE RECEIVED [read/write]

18.11 SCSI Input Data Latch (SIDL)
This register is used primarily for diagnostics testing, programmed I/O operation
or error recovery. Data received from the SCSI bus can be read from this register.
Data can be written to the SODL register and then read back into the 53C710
by reading this register to provide loopback testing. When receiving SCSI data,
the data flows into the register and out to the host FIFO. This register differs
from the SBDL register in that this register contains latched data and the SBDL
always contains exactly what is currently on the SCSI data bus. Reading this
register causes the SCSI parity bit to be checked, and causes a parity error
interrupt if the data is not valid.

Figure 18–11 SCSI Input Data Latch (SIDL)

01234567

SCSI INPUT DATA LATCH (RO)

Table 18–15 SCSI Input Data Latch Description

Field Description

7:0 SCSI INPUT DATA LATCH [read-only]
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18.12 SCSI Bus Data Lines (SBDL)

18.12 SCSI Bus Data Lines (SBDL)
This register contains the SCSI data bus status. Even though the SCSI data
bus is active low, these bits are active high. The signal status is not latched and
is a true representation of exactly what is on the data bus at the time that the
register is read. This register is used when receiving data via programmed I/O.
This register can also be used for diagnostics testing or a low level mode.

Figure 18–12 SCSI Bus Data Lines (SBDL)

01234567

SCSI BUS DATA (RO)

Table 18–16 SCSI Bus Data Lines Description

Field Description

7:0 SCSI BUS DATA [read-only]

18.13 SCSI Bus Control Lines (SBCL)
When read, this register returns the SCSI control line status. A bit is set when
the corresponding SCSI control line is asserted. These bits are not latched; they
are a true representation of what is on the SCSI bus at the time the register is
read. This register can be used for diagnostics testing or operation in low level
mode. Writing to bits <7:2> has no effect. Table 18–17 explains the control bit
interpretations.

Table 18–17 Bits <1:0> SSCF1-SSCFO (Synchronous SCSI Clock Control bits)

SSCF1 SSCf0 Snychronous CLK

0 0 Set by DCNTL

0 1 SCLK/1.0

1 0 SCLK/1.5

1 1 SCLK/2.0

When written, these bits determine the clock prescale factor used by the
synchronous portion of the SCSI core. The default is to use the same clock
prescale factor as the asynchronous logic (set by CF<1:0> in DCNTL). Setting one
or both of these bits allows the synchronous logic to run at a different speed than
the asynchronous logic; this is necessary for fast SCSI-2.
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18.13 SCSI Bus Control Lines (SBCL)

Figure 18–13 SCSI Bus Control Lines (SBCL)

01234567

REQ STATUS (RW)

ACK STATUS (RW)

BSY STATUS (RW)

SEL STATUS (RW)

ATN STATUS (RW)

MSG STATUS (RW)

C/D STATUS (RW)

I/O STATUS (RW)

Table 18–18 SCSI Bus Control Lines Description

Field Description

7 REQ STATUS [read/write]

6 ACK STATUS [read/write]

5 BSY STATUS [read/write]

4 SEL STATUS [read/write]

3 ATN STATUS [read/write]

2 MSG STATUS [read/write]

1 C/D STATUS [read/write]

0 I/O STATUS [read/write]

18.14 DMA Status (DSTAT)
Reading this register clears any bits that are set at the time the register is read,
but does not necessarily clear the register because additional interrupts may
be pending (the 53C710 stacks interrupts). DMA interrupt conditions may be
individually masked through the DIEN register.

When performing consecutive 8-bit reads of both the DSTAT and SSTAT0
registers (in either order), insert a delay equivalent to 12 BCLK periods between
the reads to ensure the interrupts clear properly. Also, if reading both registers
when both the ISTAT SIP and DIP bits may not be set, the SSTAT0 register
should be read before the DSTAT register to avoid missing a SCSI interrupt.
Both concerns are avoided if the registers are read together as a 32-bit longword.
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18.14 DMA Status (DSTAT)

Figure 18–14 DMA Status (DSTAT)

01234567

DMA FIFO EMPTY (RO)

RESERVED (RO)

BUS FAULT (RO)

ABORTED (RO)

SCRIPT STEP INTERRUPT (RO)

SCRIPT INTERRUPT INSTRUCTION RECEIVED (RO)

WATCHDOG TIMEOUT DETECTED (RO)

ILLEGAL INSTRUCTION DETECTED (RO)

Table 18–19 DMA Status Description

Field Description

7 DMA FIFO EMPTY [read-only]

(DFE) This status bit is set when the DMA FIFO is empty. This bit may be
changing at the time this register is read. It may be used to determine if any
data resides in the FIFO when an error occurs and an interrupt is generated.
This bit is a pure status bit and does not cause an interrupt.

6 RESERVED [read-only]

5 BUS FAULT [read-only]

(BF) This bit is set when a host bus fault condition is detected. A host bus fault
occurs when the 53C710 is bus master, and is defined as a memory cycle that
is ended by the assertion of BERR (without HALT) or TEA (without TA ). A bus
fault also occurs if RETRY is attempted after the first transfer of a cache-line
burst.

4 ABORTED [read-only]

(ABRT) This bit is set when an abort condition occurs. An abort condition occurs
because of the following; the DP3-ABRT input signal is asserted by another
device (parity generation mode) or a software abort command is issued by setting
bit <7> of the ISTAT register.

3 SCRIPT STEP INTERRUPT [read-only]

(SSI) If the Single-Step Mode bit in the DCNTL register is set, this bit is set and
an interrupt is generated after executing each scripts instruction.

2 SCRIPT INTERRUPT INSTRUCTION RECEIVED [read-only]

( SIR ) This status bit is set whenever an interrupt instruction is evaluated as
true.

1 WATCHDOG TIMEOUT DETECTED [read-only]

(WDT) This status bit is set when the watchdog timer decrements to zero. The
watchdog timer is used only for the host memory interface. When the timer
decrements to zero, it indicates that the memory system did not assert the
acknowledge signal within the specified timeout period.

(continued on next page)
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18.14 DMA Status (DSTAT)

Table 18–19 (Cont.) DMA Status Description

Field Description

0 ILLEGAL INSTRUCTION DETECTED [read-only]

(IID) This status bit is set any time an illegal instruction is decoded, whether the
53C710 is operating in single-step mode or automatically executing SCSI scripts.
This bit is also set if the 53C710 is executing a Wait Disconnect instruction and
the SCSI REQ line is asserted without a disconnect occurring.

18.15 SCSI Status Zero (SSTAT0)
Reading this register clears any bits that are set at the time the register is read,
but does not necessarily clear the register because additional interrupts may
be pending (the 53C710 stacks interrupts). SCSI interrupt conditions may be
individually masked through the SIEN register.

When performing consecutive 8-bit reads of both the DSTAT and SSTAT0
registers (in either order ), insert a delay equivalent to 12 BCLK periods between
the reads to ensure the interrupts clear properly. Also, if reading both registers
when both the ISTAT SIP and DIP bits may not be set, the SSTAT0 register
should be read before the DSTAT register to avoid missing a SCSI interrupt.
Both concerns are avoided if the registers are read together as a 32-bit longword.

Figure 18–15 SCSI Status 0 (SSTAT0)

01234567

INITIATOR:  PHASE MISMATCH, OR TARGET: ATN ACTIVE (RO)

FUNCTION COMPLETE (RO)

SCSI BUS TIMEOUT (RO)

SELECTED OR RESELECTED (RO)

SCSI GROSS ERROR (RO)

UNEXPECTED DISCONNECT (RO)

SCSI RST RECEIVED (RO)

PARITY ERROR (RO)

Table 18–20 SCSI Status 0 Description

Field Description

7 INITIATOR: PHASE MISMATCH, OR TARGET: ATN ACTIVE [read-only]

(M/A) In initiator mode, this bit is set if the SCSI phase asserted by the target
does not match the SCSI phase defined in a Block Move instruction. The phase
is sampled when REQ is asserted by the target. In target mode, this bit is set
when the ATN signal is asserted by the initiator.

(continued on next page)
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18.15 SCSI Status Zero (SSTAT0)

Table 18–20 (Cont.) SCSI Status 0 Description

Field Description

6 FUNCTION COMPLETE [read-only]

(FCMP) This bit is set when an arbitration-only or full-arbitration sequence has
completed.

5 SCSI BUS TIMEOUT [read-only]

(STO) This bit is set if one of the following conditions occur.

1. There is a selection or reselection timeout. A selection/reselection timeout
occurs if the device being selected or reselected does not respond within the
250 ms timeout period.

2. The Wait for Disconnect takes longer than 250 ms. The Wait for Disconnect
instruction has a bus activity timer that ios reset by the physical disconnect.

3. The Wait for Disconnect instruction has a bus activity timer that is reset by
the physical disconnect.

4. No SCSI activity occurs for 250 ms while the 53C710 is connected to the bus.
There is a timer on all bytes (in all phases) sent or received on the SCSI bus.
The timer is a bus activity timer that is reset by a byte going over the SCSI
bus. If 250 ms pass without a byte being moved, then a timeout occurs.

4 SELECTED OR RESELECTED [read-only]

(SEL) This bit is set when the 53C710 is selected or reselected by another SCSI
device. The Enable Selection and Reselection bit must be set in the SCNTL1
register for the 53C710 to respond to selection and reselection attempts.

3 SCSI GROSS ERROR [read-only]

(SGE) This bit is set when the 53C710 encounters a SCSI Gross Error condition.
The following conditions can cause a SCSI gross error condition.

1. Data underflow: The SCSI FIFO register was read when no data was
present.

2. Data overflow: Too many bytes were written to the SCSI FIFO or the
synchronous offset caused the SCSI FIFO to be overwritten.

3. Offset underflow: When the 53C710 is operating in target mode and an ACK
pulse is received when the outstanding offset is zero.

4. Offset overflow: The other SCSI device sent a REQ or ACK pulse with
data that exceeded the maximum synchronous offset defined by the SXFER
register.

5. Residual data in the synchronous data FIFO - A transfer other than
synchronous data received was started with data left in the synchronous
data FIFO.

6. A phase change occurred with an outstanding synchronous offset when the
53C710 was operating as an initiator.

2 UNEXPECTED DISCONNECT [read-only]

(continued on next page)
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18.15 SCSI Status Zero (SSTAT0)

Table 18–20 (Cont.) SCSI Status 0 Description

Field Description

(UDC) This bit is valid only when the 53C710 is in initiator mode. It is set when
the 53C710 is operating in initiator mode and the target device unexpectedly
disconnects from the SCSI bus. When the 53C710 is executing SCSI scripts,
an unexpected disconnect is defined to be a disconnect that does not occur after
receiving either a Disconnect Message (0416) or a Command Complete Message
(0016). When the 53C710 operates in low-level mode, any disconnect can cause an
interrupt, even a valid SCSI disconnect.

1 SCSI RST RECEIVED [read-only]

(RST) This bit is set when the 53C710 detects an active RST signal, whether
the reset was generated outside the chip or caused by the Assert RST bit in the
SCNTL1 register. The 53C710 SCSI reset detection logic is edge-sensitive so
that multiple interrupts are not generated for a single assertion of the SCSI RST
signal.

0 PARITY ERROR [read-only]

(PAR) This bit is set when the 53C710 detects a parity error while sending or
receiving SCSI data. The Enable Parity Checking bit (bit <3> in the SCNTL0
register) must be set for this bit to become active. A parity error can occur when
receiving data from the SCSI bus or when receiving data from the host bus. From
the host bus, parity is checked as it is transferred from the DMA FIFO to the
SODL register. A parity error can occur from the host bus only if pass-through
parity is enabled (SCNTL0<3>=1, and SCNTL0<2>=0).

18.16 SCSI Status One (SSTAT1)

Figure 18–16 SCSI Status One (SSTAT1)

01234567

SIDL REGISTER FULL (RO)

SODR REGISTER FULL (RO)

SODL REGISTER FULL (RO)

ARBITRATION IN PROGRESS (RO)

LOST ARBITRATION (RO)

WON ARBITRATION (RO)

SCSI RST SIGNAL (RO)

SCSI SDP PARITY SIGNAL (RO)
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18.16 SCSI Status One (SSTAT1)

Table 18–21 SCSI Status One Description

Field Description

7 SIDL REGISTER FULL [read-only]

(IFL) This bit is set when the SCSI Input Data Latch register (SIDL) contains
data. Data is transferred from the SCSI bus to the SCSI Input Data Latch
register before being sent to the DMA FIFO and then to the host bus. The SIDL
register contains SCSI data received asynchronously. Synchronous data received
does not flow through this register.

6 SODR REGISTER FULL [read-only]

(ORF) This bit is set when the SCSI Output Data Register (SODR), a hidden
buffer register which is not directly accessible, contains data. The SODR
register is used by the SCSI logic as a second storage register when sending
data synchronously. It is not accessible to the user (cannot be read or written).
This bit can be used to determine how many bytes reside in the chip when an
error occurs.

5 SODL REGISTER FULL [read-only]

(OLF) This bit is set when the SCSI Output Data Latch (SODL) contains data.
The SODL register is the interface between the DMA logic and the SCSI bus.
In synchronous mode, data is transferred from the host bus to the SCSI Output
Data Register (SODR, a hidden buffer register which is not accessible), and then
to the SODL register before being sent to the SCSI bus. In asynchronous mode,
data is transferred from the host bus to the SODL register, and then to the SCSI
bus. The SODR buffer register is not used for asynchronous transfers. This
bit can be used to determine how many bytes reside in the chip when an error
occurs.

4 ARBITRATION IN PROGRESS [read-only]

(AIP) Arbitration in Progress (AIP=1) indicates that the 53C710 has detected a
bus free condition, asserted BSY and asserted its SCSI ID onto the SCSI bus.

3 LOST ARBITRATION [read-only]

(LOA) When set, LOA indicates that the 53C710 detected a bus free condition,
arbitrated for the SCSI bus, and lost arbitration because another SCSI device
was asserting the SEL signal.

2 WON ARBITRATION [read-only]

(WOA) When set, WOA indicates that the 53C710 detected a bus free condition,
arbitrated for the SCSI bus, and won arbitration. The arbitration mode selected
in the SCNTL0 register must be full arbitration and selection for this bit to be
set.

1 SCSI RST SIGNAL [read-only]

(RST) This bit represents the current status of the SCSI RST signal. This signal
is not latched and may be changing when read.

0 SCSI SDP PARITY SIGNAL [read-only]

(SDP) This bit represents the current status of the SCSI SDP parity signal. This
signal is not latched and may be changing when read.

18.17 SCSI Status Two (SSTAT2)
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18.17 SCSI Status Two (SSTAT2)

Figure 18–17 SCSI Status Two (SSTAT2)

01234567

FIFO FLAGS (RO)

LATCHED SCSI PARITY (RO)

SCSI MSG SIGNAL (RO)

SCSI C/D Signal (RO)

SCSI I/O SIGNAL (RO)

Table 18–22 SCSI Status Two Description

Field Description

7:4 FIFO FLAGS [read-only]

(FF3—FF0) These four bits define the number of bytes that currently reside in
the 53C710’s SCSI synchronous data FIFO. These bits are not latched and they
change as data moves through the FIFO. Because the FIFO is only 8 bytes deep,
values over 8 do not occur.

FF3 FF2 FF1 FF0 Bytes in the SCSI FIFO
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8

3 LATCHED SCSI PARITY [read-only]

(SDP) This bit reflects the SCSI parity signal (SDP) corresponding to the data
latched in the SCSI Input Data Latch register (SIDL). It changes when a new
byte is latched into the SIDL register. This bit is active high. It is set when the
parity signal is active.

2 SCSI MSG SIGNAL [read-only]

1 SCSI C/D Signal [read-only]

0 SCSI I/O SIGNAL [read-only]

(I/O) These SCSI phase status bits are latched on the asserting edge of REQ
when operating in either initiator or target mode. These bits are set when the
corresponding signal is active. They are useful when operating in low level mode.

18.18 Data Structure Address (DSA)
This register contains the base address used for all table-indirect calculations. It
is 32 bits wide and defaults to all zeros.

During any Memory Move operation, the contents of this register are overwritten.
If the DSA value is needed for a subsequent SCSI script, save and later restore
it. Note that is is possible to perform a Memory-to-DSA Move, but not a
DSA-to-Memory Move.
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18.18 Data Structure Address (DSA)

The Table Indirect scripts addressing mode is described in detail in the 53C710
Programmer’s Guide.

18.19 Chip Test Zero (CTEST0)

Figure 18–18 Chip Test Zero (CTEST0)

01234567

RESERVED (RW)

BYTE-TO-BYTE TIMER DISABLE (RW)

GENERATE RECEIVE PARITY FOR PASS THROUGH (RW)

ENABLE ACTIVE NEGATION (RW)

HALT SCSI CLOCK (RW)

EXTENED REQ/ACK FILTERING (RW)

RESERVED (RW)

DATA TRANSFER DIRECTION (RO)

Table 18–23 Chip Test Zero Description

Field Description

7 RESERVED [read/write]

This bit must always be written zero.

6 BYTE-TO-BYTE TIMER DISABLE [read/write]

(BTD) This bit, in conjuntion with the Notime bit in CTEST4, provides the
following selection/byte-to-byte timer options:

• At power-up or if both bits are not set, the selection and byte-to-byte time
are enabled.

• if notime is set, both functions are disabled.

• If notime is not set and the byte-to-byte disable is set, the selection timer
functions but the byte-to-byte timer is disabled.

5 GENERATE RECEIVE PARITY FOR PASS THROUGH [read/write]

(GRP) When this bit is set, and the 53C710 is in parity pass through mode, the
parity received on the SCSI bus does not pass through to the DMA FIFO. Parity
is generated as data enters the DMA FIFO, eliminating the possibility of bad
SCSI parity passing through to the host bus. A SCSI parity error interrupt is
generated , but a system parity problem will not be created. After reset or when
the bit is cleared, while parity pass through mode is enabled, parity received on
the SCSI bus passes through the 53C710 unmodified.

4 ENABLE ACTIVE NEGATION [read/write]

(continued on next page)

18–24 SCSI/DSSI Adapters



18.19 Chip Test Zero (CTEST0)

Table 18–23 (Cont.) Chip Test Zero Description

Field Description

(EAN) This bit provides the ability to activley deassert selected signals instead of
relying on pull-ups when the 53C710 is driving. When this bit is asserted SCSI
request, acknowledge, data and parity are activley deasserted. Active deassertion
of these signals accurs only when the 53C710 is in an information transfer phase.
When operating in a a different environment or at fast SCSI trimmings, Active
negation should be enabled to improve setup and hold times. Active negation is
disabled after reset or when this bit is cleared.

3 HALT SCSI CLOCK [read/write]

(HSC) Asserting this bit causes the internal divided SCSI clock to stop in a
glitchless manner. This bit may be used for test purposes or to lower Idd during
a power-down mode. Note that SCSI registers must be reinitialized a power-up
time.

2 EXTENED REQ/ACK FILTERING [read/write]

(ERF) The scsi core contains a dspecial digital filter on the REQ/ACK pins which
willcause glitches on deasserting edges to be disregarded. Asserting this bit
extends filter delay from 30 ns to 60 ns on the deasserting edge of the REQ
and ACK signals. The 30 ns delay should be used for fast SCSI. Note that this
bit must never be set during fast SCSI operation (>5 M transfers per second),
because a valid assertion could be treated as a glitch. This bit does not affect
transfer rates.

1 RESERVED [read/write]

0 DATA TRANSFER DIRECTION [read-only]

(DDIR) This status bit indicates the direction data is being transfered. When
this bit is set, ther data is transfered from the SCSI bus to the host bus. When
this bit is cleared, data is transfered from the host bus to the SCSI but. This bit
cannot be written.

18.20 Chip Test One (CTEST1)

Figure 18–19 Chip Test One (CTEST1)

01234567

BYTE EMPTY IN DMA FIFO (RO)

BYTE FULL IN DMA FIFO (RO)

Table 18–24 Chip Test One Description

Field Description

7:4 BYTE EMPTY IN DMA FIFO [read-only]

(continued on next page)
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18.20 Chip Test One (CTEST1)

Table 18–24 (Cont.) Chip Test One Description

Field Description

(FMT3—FMT0) These bits identify the bottom bytes in the DMA FIFO that are
empty. Each bit corresponds to a byte lane in the DMA FIFO. For example, if
byte lane 3 is empty, then FMT3 is 1. Because the FMT flags indicate the status
of bytes at the bottom of the FIFO, if all FMT bits are set, the DMA FIFO is
empty.

3:0 BYTE FULL IN DMA FIFO [read-only]

(FFL3—FFL0) These status bits identify the top bytes in the DMA FIFO that are
full. Each bit corresponds to a byte lane in the DMA FIFO. For example, if byte
lane 3 is full, then FFL3 is 1. Because the FFL flags indicate the status of bytes
at the top of the FIFO, if all FFL bits are set, the DMA FIFO is full.

18.21 Chip Test Two (CTEST2)

Figure 18–20 Chip Test Two (CTEST2)

01234567

RESERVED (RO)

SIGNAL PROCESS (RO)

SCSI OFFSET COMPARE (RO)

SCSI FIFO PARITY (RO)

DMA FIFO PARITY (RO)

SCSI TRUE END OF PROCESS (RO)

DATA REQUEST STATUS (RO)

DATA ACKNOWLEDGE STATUS (RO)

Table 18–25 Chip Test Two Description

Field Description

7 RESERVED [read-only]

6 SIGNAL PROCESS [read-only]

(SIGP) This bit is a copy of the SIGP bit in the ISTAT register (bit <5>). The
SIGP bit is a flag that may be passed to or from a running script. The only
scripts instruction directly offered by the SIGP bit is a Wait for Selection Re-
selection. When this bit is read, the SIGP bit in the ISTAT register is cleared.

5 SCSI OFFSET COMPARE [read-only]

(continued on next page)
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18.21 Chip Test Two (CTEST2)

Table 18–25 (Cont.) Chip Test Two Description

Field Description

(SOFF) This bit operates differently, depending on whether the chip is an
initiator or target. If the 53C710 is an initiator, this bit is set whenever the
SCSI synchronous offset counter is equal to zero. If the 53C710 is a target, this
bit is set whenever the SCSI synchronous offset counter is equal to the maximum
synchronous offset defined in the SXFER register.

4 SCSI FIFO PARITY [read-only]

(SFP) This bit represents the parity bit of the SCSI synchronous FIFO
corresponding to data read out of the FIFO. Reading the CTEST3 register
unloads a data byte from the bottom of the SCSI synchronous FIFO. When the
CTEST3 register is read, the data parity bit is latched into this bit location.

3 DMA FIFO PARITY [read-only]

(DFP) This bit represents the parity bit of the DMA FIFO when the CTEST6
register reads data out of the FIFO. Reading the CTEST6 register unloads one
data byte from the bottom of the DMA FIFO. When the CTEST6 register is read,
the parity signal is latched into this bit location and the next byte falls down to
the bottom of FIFO.

2 SCSI TRUE END OF PROCESS [read-only]

(TOEP) This bit indicates the status of the 53C710’s internal TEOP signal. The
TEOP signal acknowledges the completion of a block move through the SCSI
portion of the 53C710. When this bit is set, TEOP is active. When this bit is
clear, TEOP is inactive.

1 DATA REQUEST STATUS [read-only]

(DREQ) This bit indicates the status of the 53C710’s internal Data Request
signal (DREQ). When this bit is set, DREQ is active. When this bit is clear,
DREQ is inactive.

0 DATA ACKNOWLEDGE STATUS [read-only]

(DACK) This bit indicates the status of the 53C710’s internal Data Acknowledge
signal (DACK). When this bit is set, DACK is inactive. When this bit is clear,
DACK is active.

18.22 Chip Test Three (CTEST3)
Reading this register unloads the bottom byte of the 8-byte SCSI synchronous
FIFO. Reading this register also latches the parity bit for the FIFO into the
SCSI FIFO Parity bit in the CTEST2 register. The FIFO Full bits in the SSTAT2
register can be read to determine how many bytes currently reside in the SCSI
synchronous FIFO. Reading this register when the SCSI FIFO is empty causes a
SCSI Gross Error (FIFO underflow).

Figure 18–21 Chip Test Three (CTEST3)
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SCSI FIFO (RO)
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18.22 Chip Test Three (CTEST3)

Table 18–26 Chip Test Three Description

Field Description

7:0 SCSI FIFO [read-only]

18.23 Chip Test Four (CTEST4)

Figure 18–22 Chip Test Four (CTEST4)

01234567

HOST BUS MULTIPLEX MODE (RW)

HIGH IMPEDANCE MODE (RW)

SCSI HIGH-IMPEDANCE MODE (RW)

SCSI LOOPBACK ENABLE (RW)

SCSI FIFO WRITE ENABLE (RW)

FIFO BYTE CONTROL (RW)

Table 18–27 Chip Test Four Description

Field Description

7 HOST BUS MULTIPLEX MODE [read/write]

(MUX) When set, the MUX bit puts the 53C710 into host bus MUX mode. In
this mode, the chip asserts a valid address for one BCLK (during which AS/TS
is valid and the data bus is tristated), and then tristates the address bus and
drives the data bus (if a write). This allows the address and data buses to be tied
together. It should be written prior to acquiring bus mastership. The MUX mode
bit allows the 53C710 to operate without external hardware on those host buses
on which data and addresses share a common 32 bits.

6 HIGH IMPEDANCE MODE [read/write]

(ZMOD) Setting this bit causes the 53C710 to place all output and bidirectional
pins into a high-impedance state. In order to read data out of the 53C710, this
bit must be cleared. This bit is intended for board-level testing only. Setting this
bit during system operation will likely result in a system crash.

5 SCSI HIGH-IMPEDANCE MODE [read/write]

(continued on next page)
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18.23 Chip Test Four (CTEST4)

Table 18–27 (Cont.) Chip Test Four Description

Field Description

(SZM) Setting this bit causes the 53C710 to place certain SCSI outputs in a
high-impedance state. The following outputs are placed in a high-impedance
state:

• SD 7:0 SCSI OUTPUT DATA LATCH (SODL)

• SDP SCSI SDP PARITY SIGNAL (SSTAT1<0>)

• BSY ASSERT SCSI BSY SIGNAL (SOCL<5>)

• SEL SELECTED OR RESELECTED (SIEN<4>)

• RST SCSI RST RECEIVED (SIEN<1>)

• REQ ASSERT SCSI REQ SIGNAL (SOCL<7>)

• C/D ASSERT SCSI C/D SIGNAL (SOCL<1>)

• I/O ASSERT SCSI I/O SIGNAL (SOCL<0>)

• MSG ASSERT SCSI MSG SIGNAL (SOCL<2>)

• ACK ASSERT SCSI ACK SIGNAL (SOCL<6>)

• ATN ASSERT SCSI ATN SIGNAL (SOCL<3>)

The direction control lines (SDIR <7:0>, SDIRP, BSYDIR, RSTDIR, and SELDIR)
are driven low and are not in a high-impedance state. In order to transfer data
on the SCSI bus, this bit must be cleared.

4 SCSI LOOPBACK ENABLE [read/write]

(SLBE) Setting this bit enables loopback mode. Loopback allows any SCSI signal
to be asserted. 53C710 may be an initiator or a target. It also allows the 53C710
to transfer data from the SODL register back into the SIDL register. For a
complete description of the tests that can be performed in loopback mode, see
53C710 Programmer’s Guide.

3 SCSI FIFO WRITE ENABLE [read/write]

(SFWR) Setting this bit redirects data from the SODL to the SCSI FIFO. A write
to the SODL register loads a byte into the SCSI FIFO. The parity bit loaded into
the FIFO is odd or even parity depending on the status of the Assert SCSI even
Parity bit in the SCNTL1 register. Clearing this bit disables this feature.

2:0 FIFO BYTE CONTROL [read/write]

(FBL2—FBL0) These bits send the contents of the CTEST6 register to the
appropriate byte lane of the 32-bit DMA FIFO. If the FBL2 bit is set, bits FBL1
& FBL0 determine which of four byte lanes can be read or written. Each of the
four bytes that make up the 32-bit DMA FIFO can be accessed by writing these
bits to the proper value. For normal operation, FBL2 must equal zero (set to this
value before executing SCSI scripts).

18.24 Chip Test Five (CTEST5)
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18.24 Chip Test Five (CTEST5)

Figure 18–23 Chip Test Five (CTEST5)
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CLOCK ADDRESS INCREMENTER (RW)

CLOCK BYTE COUNTER (RW)

RESET SCSI OFFSET (RW)

MASTER CONTROL FOR SET OR RESET PULSES (RW)

DMA DIRECTION (RW)

END OF PROCESS (RW)

DATA REQUEST (RW)

DATA ACKNOWLEDGE (RW)

Table 18–28 Chip Test Five Description

Field Description

7 CLOCK ADDRESS INCREMENTER [read/write]

(ASCK) Setting this bit increments the address pointer contained in the DNAD
register (by four bytes). The DNAD register is incremented based on the DNAD
contents and the current DBC value. This bit automatically clears itself after
incrementing the DNAD register.

6 CLOCK BYTE COUNTER [read/write]

(BBCK) Setting this bit decrements the byte count contained in the DBC register.
It is decremented based on the DBC contents and the current DNAD value. This
bit automatically clears itself after decrementing the DBC register.

5 RESET SCSI OFFSET [read/write]

(ROFF) Setting this bit resets the current offset pointer in the SCSI synchronous
offset counter. This bit is set if a SCSI Gross Error condition occurs. The offset
should be reset when a synchronous transfer does not complete successfully. This
bit automatically resets itself after clearing the synchronous offset.

4 MASTER CONTROL FOR SET OR RESET PULSES [read/write]

(MASR) This bit controls the operation of bits <3:0>. When this bit is set, bits
<3:0> assert the corresponding signals. When this bit is reset, bits <3:0> deassert
the corresponding signals. This bit and bits <3:0> should not be changed in the
same write cycle.

3 DMA DIRECTION [read/write]

(DDIR) Setting this bit either asserts or deasserts the internal DMA Write
(DMAWR) direction signal depending on the current status of the MASR bit in
this register. Asserting the DMAWR signal indicates that data is transferred
from the SCSI bus to the host bus. Deasserting the DMAWR signal transfers
data from the host bus to the SCSI bus.

2 END OF PROCESS [read/write]

(continued on next page)
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18.24 Chip Test Five (CTEST5)

Table 18–28 (Cont.) Chip Test Five Description

Field Description

(EOP) Setting this bit either asserts or deasserts the internal EOP control signal
depending on the current status of the MASR bit in this register. The internal
EOP signal is an output from the DMA portion of the 53C710 to the SCSI portion
of the 53C710. Asserting the EOP signal indicates that the last data byte has
been transferred between the two portions of the chip. Deasserting the EOP
signal indicates that the last data byte has not been transferred between the two
portions of the chip. If the MASR bit is configured to assert this signal, this bit
automatically clears itself after pulsing the EOP signal.

1 DATA REQUEST [read/write]

(DREQ) Setting this bit either asserts or deasserts the internal DREQ (data
request signal) depending on the current status of the MASR bit in this register.
Asserting the DREQ signal indicates that the SCSI portion of the 53C710 request
a data transfer with the DMA portion of the chip. Deasserting the DREQ signal
indicates that data should not be transferred between the SCSI portion of the
53C710 and the DMA portion. If the MASR bit is configured to assert this signal,
this bit automatically clears itself after asserting the DREQ signal.

0 DATA ACKNOWLEDGE [read/write]

(DACK) Setting this bit either asserts or deasserts the internal DACK data
request signal dependent on the current status of the MASR bit in this register.
Asserting the DACK signal indicates that the DMA portion of the 53C710
acknowledges a data transfer with the SCSI portion of the chip. Deasserting
the DACK signal indicates that data should not be transferred between the DMA
portion of the 53C710 and the SCSI portion. If the MASR bit is configured to
assert this signal, this bit automatically clears itself after asserting the DACK
signal.

18.25 Chip Test Six (CTEST6)
Writing to this register writes data to the appropriate byte lane of the DMA FIFO
as determined by the FBL bits in the CTEST4 register. Reading this register
unloads data from the appropriate byte lane of the DMA FIFO as determined by
the FBL bits in the CTEST4 register. Data written to the FIFO is loaded into the
top of the FIFO. Data read out of the FIFO is taken from the bottom. When data
is read from the DMA FIFO, the parity bit for that byte is latched and stored in
the DMA FIFO parity bit in the CTEST2 register. To prevent DMA data from
being corrupted, this register should not be accessed before starting or restarting
a script.)

Figure 18–24 Chip Test Six (CTEST6)
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18.25 Chip Test Six (CTEST6)

Table 18–29 Chip Test Six Description

Field Description

7:0 DMA FIFO [read/write]

18.26 Chip Test Seven (CTEST7)

Figure 18–25 Chip Test Seven (CTEST7)
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CACHE BURST DISABLE (RW)

SNOOP CONTROL (RW)

SELECTION TIMEOUT DISABLE (RW)

DMA FIFO PARITY (RW)

EVEN PARITY (RW)

TRANSFER TYPE BIT (RW)

DIFFERENTIAL MODE (RW)

Table 18–30 Chip Test Seven Description

Field Description

7 CACHE BURST DISABLE [read/write]

(CDIS) When this bit is set, the 53C710 does not request a cache-line burst.
When this bit is clear, the chip attempts cache-line bursts when two conditions
are met.

1. The address must be lined up to a cache-line boundary (<A3:A0> must be
zero).

2. The transfer counter must be greater than 32.

Cache-line burst mode eliminates the need for a full handshake between the bus
master and the memory device when transferring data.

6:5 SNOOP CONTROL [read/write]

(SC1—SC0) The SC0 and SC1 bits control the two Snoop Control pins. The SC1
bit controls the Snoop Control 1 pin all of the time. The SC0 bit controls the
Snoop Control 0 pin only when the Snoop Mode bit is not set. Monitoring the
SC0 bit provides advance notice of a pending 53C710 bus request. Bus snooping
allows for transmission of additional information to other devices on the host
bus about the current type of transfer. In Bus Mode 2, the host processor can
snoop an alternate master Read/Write transfer, ensuring access to valid data.
In other operating modes, these bits and pins provide additional user-defined
functionality.

(continued on next page)
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18.26 Chip Test Seven (CTEST7)

Table 18–30 (Cont.) Chip Test Seven Description

Field Description

4 SELECTION TIMEOUT DISABLE [read/write]

(NOTIME) Setting this bit disables the 250 ms timer for all modes, including
byte to byte.

3 DMA FIFO PARITY [read/write]

(DFP) This bit represents the parity bit of the DMA FIFO when reading data
out of the DMA FIFO via programmed I/O. In order to transfer data to or from
the DMA FIFO, perform a read or a write to the CTEST6 register. When loading
data into the FIFO via programmed I/O, write this bit to the FIFO as the parity
bit for each byte loaded. When writing data to the DMA FIFO, set this bit with
the status of the parity bit to be written to the FIFO before writing the byte to
the FIFO.

2 EVEN PARITY [read/write]

(EVP) Parity is generated for all slave mode register reads and master memory
writes. This bit controls the parity sense. Setting this bit causes the 53C710 to
generate even parity when driving data on the host data bus. The 53C710 inverts
the parity bit received from the SCSI bus to create even parity. In addition, the
even parity received from the host bus is inverted to odd parity before the 53C710
checks parity and sends the data to the SCSI bus. Clearing this bit causes the
53C710 to maintain odd parity throughout the chip.

1 TRANSFER TYPE BIT [read/write]

(TT1) The inverted value of this bit is asserted on the TT1 pin during bus
mastership (Bus Mode 2 only). This bit is not used in Bus Mode 1.

0 DIFFERENTIAL MODE [read/write]

(DIFF) Setting this bit enables the 53C710 to interface with external differential
pair receivers. The SCSI BSY, SEL, and RST are input in differential mode
only. Resetting this bit enables single-ended mode. This bit should be set in the
initialization routine if the differential pair interface is to be used.

18.27 Temporary Stack (TEMP)
This 32-bit register stores the instruction address pointer for a CALL or a
RETURN instruction. The address pointer stored in this register is loaded into
the DSP register. This address points to the next instruction to be executed.
Do not write to TEMP while the 53C710 is executing SCSI scripts. During any
Memory-to-Memory Move operation, the contents of this register are destroyed.
If the TEMP value is needed for a subsequent SCSI script, save and then later
restore it.

18.28 DMA FIFO (DFIFO)
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18.28 DMA FIFO (DFIFO)

Figure 18–26 DMA FIFO (DFIFO)
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RESERVED (RW)

BYTE OFFSET COUNTER (RW)

Table 18–31 DMA FIFO Description

Field Description

7 RESERVED [read/write]

6:0 BYTE OFFSET COUNTER [read/write]

(BO6—BO0) These six bits indicate the amount of data transferred between
the SCSI core and the DMA core. They may be used to determine the number
of bytes in the DMA FIFO when a DMA error occurs. These bits are unstable
while data is being transferred between the two cores. Once the chip has stopped
transferring data, these bits are stable. The following steps determine how many
bytes are left in the DMA FIFO when an error occurs, regardless of the direction
of the transfer.

1. Subtract the seven least significant bits of the DBC register from the 7-bit
value of the DFIFO register.

2. AND the result with 7F16 for a byte count between zero and 64.

18.29 Interrupt Status (ISTAT)
This is the only register that can be accessed by the CPU while the 53C710 is
executing scripts without interfering in the operation of the 53C710. It may
be used to poll for interrupts if interrupts are masked. When either the SIP or
DIP bit is set, the DSTAT and SSTAT0 latches close and subsequent interrupts
are stacked (held in a pending register "behind" the status register). When
the current interrupt is cleared by reading the appropriate status register,
the stacked interrupts are transferred to the status register causing another
interrupt.

When an interrupt occurs, the 53C710 halts in an orderly fashion before asserting
IRQ. If, in the middle of an instruction fetch, the fetch is completed (except in
the case of a Bus Fault or Watchdog Timeout), though execution does not begin.
If possible, DMA write operations empty the FIFO before halting. All other
DMA operations finish only the current cycle (or burst if a cache line) before
halting. SCSI handshakes that have begun are completed before halting. The
53C710 attempts to clean up any outstanding synchronous offset. In the case of
the Transfer Control Instructions, once instruction execution begins it continues
toward completion before halting. If the instruction is a JUMP/CALL WHEN, the
wait aborts and the DSP is updated to the transfer address before halting. All
other instructions may halt before completing execution.
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18.29 Interrupt Status (ISTAT)

Figure 18–27 Interrupt Status (ISTAT)
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ABORT OPERATION (RW)

SOFTWARE RESET (RW)

SIGNAL PROCESS (RW)

RESERVED (RW)

CONNECTED (RW)

RESERVED (RW)

SCSI INTERRUPT PENDING (RW)

DMA INTERRUPT PENDING (RW)

Table 18–32 Interrupt Status Description

Field Description

7 ABORT OPERATION [read/write]

(ABRT) Setting this bit aborts the current operation being executed by the
53C710. If this bit is set and an interrupt is received, reset this bit before
reading the DSTAT register to prevent further aborted interrupts from being
generated. The sequence to abort any operation is:

1. Set this bit.

2. Wait for an interrupt.

3. Read the ISTAT register.

4. If the SCSI Interrupt Pending bit is set, read the SSTAT0 register to
determine the cause of the SCSI Interrupt and go back to step 2.

5. If the SCSI Interrupt Pending bit is clear, and the DMA Interrupt Pending
bit is set, write 0016 value to this register.

6. Read the DSTAT register to verify the aborted interrupt and to see if any
other interrupting conditions have occurred.

6 SOFTWARE RESET [read/write]

(RST) Setting this bit resets the 53C710. All registers except the DCNTL EA bit
are cleared to their respective default values and all SCSI signals are deasserted.
Setting this bit does not cause the SCSI RST signal to be asserted. This bit is not
self-clearing; it must be cleared to remove the reset condition (a hardware reset
also clears this bit). This reset does not clear the Enable Acknowledge (EA) or
Function Control One (FC1) bits.

5 SIGNAL PROCESS [read/write]

(continued on next page)
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18.29 Interrupt Status (ISTAT)

Table 18–32 (Cont.) Interrupt Status Description

Field Description

SIGP is a Read/Write bit that can be written at any time, and polled & reset via
CTEST2. The SIGP bit can be used in various ways to pass a flag to or from
a running script. The only script instruction directly affected by the SIGP bit
is Wait For Selection/Reselection. Setting this bit causes that opcode to jump
to the alternate address immediately. The instructions at the alternate jump
address should check the status of SIGP to determine the cause of the jump. The
SIGP bit may be used at any time and is not restricted to the Wait for Selection
/Reselection condition. Note that if the SIGP bit is active when a Selection
/Reselection occurs, the auto-switching from/to target mode is disabled and must
be manually set by either the host or a script.

4 RESERVED [read/write]

3 CONNECTED [read/write]

(CON) This bit is automatically set any time the 53C710 is connected to the
SCSI bus as an initiator or as a target. It is set after successfully completing
arbitration or when the 53C710 has responded to a bus-initiated selection or
reselection. It is also set after successfully completing arbitration when operating
in low level mode. When this bit is clear, the 53C710 is not connected to the
SCSI bus.

2 RESERVED [read/write]

1 SCSI INTERRUPT PENDING [read/write]

(SIP) This status bit is set when an interrupt condition is detected in the SCSI
portion of the 53C710. The following conditions cause a SCSI interrupt to occur:

• A phase mismatch (initiator mode) or ATN becomes active (target mode)

• An arbitration sequence is completed

• A selection or reselection timeout occurs

• The 53C710 was selected or reselected

• A SCSI gross error occurs

• An unexpected disconnect occurs

• A SCSI reset occurs

• A parity error is detected

To determine exactly which condition(s) caused the interrupt, read the SSTAT0
register.

0 DMA INTERRUPT PENDING [read/write]

(continued on next page)
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18.29 Interrupt Status (ISTAT)

Table 18–32 (Cont.) Interrupt Status Description

Field Description

(DIP) This status bit is set when an interrupt condition is detected in the DMA
portion of the 53C710. The following conditions causes a DMA interrupt to occur:

• A bus fault is detected

• An abort condition is detected

• A scripts instruction is executed in single-step mode

• A scripts interrupt instruction is executed

• The Watchdog Timer decrements to zero

• An illegal instruction is detected

To determine exactly which condition(s) caused the interrupt, read the DSTAT
register.

18.30 Chip Test Eight (CTEST8)

Figure 18–28 Chip Test Eight (CTEST8)
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CHIP REVISION LEVEL (RW)

FLUSH DMA FIFO (RW)

CLEAR DMA AND SCSI FIFOS (RW)

FETCH PIN MODE (RW)

SNOOP PINS MODE (RW)

Table 18–33 Chip Test Eight Description

Field Description

7:4 CHIP REVISION LEVEL [read/write]

(V3—V0) These bits identify the chip revision level for software purposes. This
chapter descibes devices with revision level 1.

3 FLUSH DMA FIFO [read/write]

(FLF) When this bit is set, data residing in the DMA FIFO is transferred
to memory, starting at the address in the DNAD register. The internal
DMAWR signal, controlled by the CTEST5 register, determines the direction
of the transfer. This bit is not self clearing; once the 53C710 has successfully
transferred the data, this bit should be reset. Note that all chip registers may be
read during flush operations.

(continued on next page)
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18.30 Chip Test Eight (CTEST8)

Table 18–33 (Cont.) Chip Test Eight Description

Field Description

2 CLEAR DMA AND SCSI FIFOS [read/write]

(CLF) When this bit is set, all data pointers for the SCSI and DMA FIFOs are
cleared. In addition to the SCSI and DMA FIFO pointers, the SIDL, SODL, and
SODR full bits in the SSTAT1 register are cleared. Any data in either of the
FIFOs is lost. This bit automatically resets after the 53C710 has successfully
cleared the appropriate FIFO pointers and registers.

1 FETCH PIN MODE [read/write]

(FM) When set, this bit causes the FETCH pin to deassert during indirect and
table-indirect read operations. FETCH is active only during the opcode portion
of an instruction fetch. This allows scripts to be stored in a PROM while data
tables are stored in RAM, reducing the long delay associated with arbitrating for
the host bus in order to fetch scripts instructions from system memory.

If this bit is not set, FETCH is asserted for all bus cycles during instruction
fetches.

0 SNOOP PINS MODE [read/write]

(SM) When set, the two snoop pins change function and become pure outputs
that are always driven, except when in ZMODE.

When clear, the snoop pins are driven during host bus ownership with the values
of the CTEST7 SC<1:0> bits.

18.31 Longitudinal Parity (LCRC)
This register contains the longitudinal parity for all data crossing from the DMA
FIFO to or from the SCSI core. The parity consists of an exclusive OR of all data
bytes.

Writing to this register clears its contents to 0016 regardless of the value written.

Like the SFBR register in the 53C710, this register is used by the SCSI core
to hold the SCSI ID value during selection and reselection. The LCRC register
should be used instead of the SFBR because the SFBR is used as an accumulator
during many scripts operations, and may be overwritten at any time by a
selection or reselection.

Figure 18–29 Longitudinal Parity (LCRC)
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BITS 7-0 LONGITUDINAL PARITY (RW)

Table 18–34 Longitudinal Parity Description

Field Description

7:0 BITS 7-0 LONGITUDINAL PARITY [read/write]

18–38 SCSI/DSSI Adapters



18.32 DMA Byte Counter (DBC)

18.32 DMA Byte Counter (DBC)
This 24-bit register determines the number of bytes to be transferred in a
Block Move instruction. While sending data to the SCSI bus, the counter is
decremented as data is moved into the DMA FIFO from memory. While receiving
data from the SCSI bus, the counter is decremented as data is written to memory
from the 53C710. The DBC counter is decremented each time that the AS signal
is pulsed by the 53C710. It is decremented by an amount equal to the number of
bytes that were transferred.

The maximum number of bytes that can be transferred in any one Block Move
command is 16,777,215 bytes. The maximum value that can be loaded into
the DBC register if FFFFFF16. If the instruction is Block Move and a value of
00000016 is loaded into the DBC register, an illegal instruction interrupt occurs if
the chip is not operating in a target mode command phase.

The DBC register is also used during table indirection I/O scripts to hold the
offset value.

Figure 18–30 DMA Byte Counter (DBC)
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Table 18–35 DMA Byte Counter Description

Field Description

23:0 DMA BYTE COUNTER [read/write]

18.33 DMA Command (DCMD)
This 8-bit register determines the instruction for the 53C710 to execute. This
register has a different function for each instruction. For a complete description,
refer to the 53C710 instruction set.

Figure 18–31 DMA Command (DCMD)
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18.33 DMA Command (DCMD)

Table 18–36 DMA Command Description

Field Description

7:0 DMA COMMAND [read/write]

18.34 DMA Next Data Address (DNAD)
This 32-bit register contains the general-purpose address pointer. At the start of
some script operations, its value is copied from the DSPS register. Its value may
not be valid except in certain abort conditions.

To maintain software compatibility with the 53C710, interrupt vectors should be
read from the DSPS register.

Figure 18–32 DMA Next Data Address (DNAD)
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Table 18–37 DMA Next Data Address Description

Field Description

31:0 DMA NEXT DATA ADDRESS [read/write]

18.35 DMA Scripts Pointer (DSP)
To execute SCSI scripts, the address of the first SCSI script must be written
to this register. In normal scripts operation, once the starting address of the
SCSI scripts is written to this register, the scripts are automatically fetched and
executed until an interrupt condition occurs.

In single-step mode, there is a scripts step interrupt after each instruction is
executed. The DSP register does not need to be written with the next address,
but the Start DMA bit ( DCNTL<2>), must be set each time the step interrupt
occurs to fetch and execute the next SCSI script. When writing this register 8
bits at a time, writing the upper 8 bits, 2F (2C), begins execution of SCSI scripts.

Figure 18–33 DMA Scripts Pointer (DSP)
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18.35 DMA Scripts Pointer (DSP)

Table 18–38 DMA Scripts Pointer Description

Field Description

7:0 DMA SCRIPTS POINTER [read/write]

18.36 DMA Scripts Pointer Save (DSPS)
This register contains the second longword of Read/Write or Transfer Control
scripts instructions. It is overwritten each time a script instruction is executed.
When a script interrupt is fetched, this register holds the interrupt vector.

Figure 18–34 DMA Scripts Pointer Save (DSPS)
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Table 18–39 DMA Scripts Pointer Save Description

Field Description

31:0 DMA SCRIPTS POINTER SAVE [read/write]

18.37 Scratch Register (SCRATCH)
This is a general-purpose, user-defined scratch pad register. Most scripts
operations do not destroy the contents of this register, only register read/write
and memory moves into the scratch register alter its contents.

The scratch register, combined with register-to-register move, AND, OR, and ADD
operations provides the capability to write a complete SCSI interface program in
scripts.

Figure 18–35 Scratch Register (SCRATCH)
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18.37 Scratch Register (SCRATCH)

Table 18–40 Scratch Register Description

Field Description

7:0 SCRATCH REGISTER [read/write]

18.38 DMA Mode (DMODE)

Figure 18–36 DMA Mode (DMODE)
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BURST LENGTH (RW)

FUNCTION CODE (RW)

PROGRAM/DATA (RW)

FIXED ADDRESS MODE (RW)

USER PROGRAMMABLE TRANSFER TYPE (RW)

MANUAL START MODE (RW)

Table 18–41 DMA Mode Description

Field Description

7:6 BURST LENGTH [read/write]

(BL1—BL0) These bits control the number of bus cycles performed per bus
ownership. The 53C710 asserts the Bus Request output when the DMA FIFO
can accommodate a transfer of at least one burst size of data. Bus Request is
also asserted during start-of-transfer/end-of-transfer cleanup & alignment, even
though less than a full burst of transfer may be performed.

To perform cache line bursts, these bits must be set to 4 or 8 transfers and cache
bursting must be enabled (CTEST7). Cache bursts are always four longword
transfers, regardless of the setting of these bits.

The 53C710 inserts a "fairness delay" of approximately 5 to 8 BCLKs between
bus ownership. This gives the CPU and other bus master devices the opportunity
to access memory between bursts.

BL1 BL0 Burst length
0 0 1-transfer
0 1 2-transfer
1 0 4-transfer
1 1 8-transfer

5:4 FUNCTION CODE [read/write]

(FC2—FC1) These bits are user defined. Their values are asserted onto the
corresponding device pins during bus mastership. These bits/pins are active in
both bus modes.

3 PROGRAM/DATA [read/write]

(continued on next page)
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18.38 DMA Mode (DMODE)

Table 18–41 (Cont.) DMA Mode Description

Field Description

(PD) This bit affects the function of the FC0 pin. Setting this bit causes the
53C710 to drive the FC0 signal low when fetching instructions from memory.
Clearing this bit causes the 53C710 to drive the FC0 signal high when fetching
instructions from memory.

The FC0 signal is always driven high when moving data to or from memory and
can only be driven low during instruction fetch cycles. This feature can be used
to allow scripts and data to be stored in separate memory banks.

2 FIXED ADDRESS MODE [read/write]

(FAM) Setting this bit disables the address pointer (DNAD register) so that
it does not increment after each data transfer. If this bit is clear, the pointer
increments after each data transfer. This bit is used to transfer data to or from a
fixed port address. The port width must equal 32-bits.

1 USER PROGRAMMABLE TRANSFER TYPE [read/write]

(U0/TT0) In both bus modes, UPSO-TT0 is a general-purpose output pin. The
value of this bit is asserted onto the UPSO-TT0 pin while the 53C710 is a bus
master, to indicate the type of access for the current bus transfer.

0 MANUAL START MODE [read/write]

(MAN) Clearing this bit causes the 53C710 to automatically fetch and execute
SCSI scripts after the DSP register is written. Setting this bit disables the
53C710 from automatically fetching and executing SCSI scripts after the DSP
register is written. When the Start DMA bit in the DCNTL register is cleared, it
controls the start time of the operation. Once the Start DMA bit in the DCNTL
register is set, the 53C710 automatically fetches and executes each instruction.

18.39 DMA Interrupt Enable (DIEN)
This register contains the interrupt mask bits corresponding to the interrupting
condition described in the DSTAT register. An interrupt is masked by clearing
the appropriate mask bit. Masking an interrupt prevents IR/Q from being
asserted for the corresponding interrupt, but the status bit is still set in the
DSTAT register. Masking an interrupt does not prevent the ISTAT DIP from
being set; all DMA interrupts are considered fatal. Setting a mask bit enables
the assertion of IRQ for the corresponding interrupt.

A masked nonfatal interrupt does not prevent unmasked or fatal interrupts from
getting through; interrupt stacking does not begin until either the ISTAT SIP or
DIP is set.

The 53C710 IRQ output is latched; once asserted, it remains asserted until the
interrupt is cleared by reading the appropriate status register. Masking an
interrupt after the IRQ output is asserted does not cause IRQ to be deasserted.
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18.39 DMA Interrupt Enable (DIEN)

Figure 18–37 DMA Interrupt Enable (DIEN)
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RESERVED (RW)

RESERVED (RW)

BUS FAULT (RW)

ABORTED (RW)

SCRIPT STEP INTERRUPT (RW)

SCRIPT INTERRUPT INSTRUCTION RECEIVED (RW)

WATCHDOG TIMEOUT DETECTED (RW)

ILLEGAL INSTRUCTION DETECTED (RW)

Table 18–42 DMA Interrupt Enable Description

Field Description

7 RESERVED [read/write]

6 RESERVED [read/write]

5 BUS FAULT [read/write]

4 ABORTED [read/write]

3 SCRIPT STEP INTERRUPT [read/write]

2 SCRIPT INTERRUPT INSTRUCTION RECEIVED [read/write]

1 WATCHDOG TIMEOUT DETECTED [read/write]

0 ILLEGAL INSTRUCTION DETECTED [read/write]

18.40 DMA Watchdog Timer (DWT)
The DMA watchdog timer register provides a timeout mechanism during data
transfers between the 53C710 and memory. This register determines the amount
of time that the 53C710 waits for the assertion of the transfer acknowledge
(TA) signal after starting a bus cycle. Write the timeout value to this register
during initialization. Every time that the 53C710 transfers data to/from memory,
the value stored in this register is loaded into the counter. Disable the timeout
feature by writing 0016 to this register.

The unit time base for this register is 16* BCLK input period. For example, at 50
MHz the time base for this register is 16 x 20 ns = 320 ns. If a timeout of 50 µs
is desired, this register should be loaded with a value of 9D16.

The minimum timeout value that should be loaded into this register is 0216; the
value of 0l16 does not provide a reliable timeout period.
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18.40 DMA Watchdog Timer (DWT)

Figure 18–38 DMA Watchdog Timer (DWT)
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WATCHDOG TIMER (RW)

Table 18–43 DMA Watchdog Timer Description

Field Description

7:6 WATCHDOG TIMER [read/write]

18.41 DMA Control Register (DCNTL)

Figure 18–39 DMA Control Register (DCNTL)
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CLOCK FREQUENCY (RW)

ENABLE ACK (RW)

SINGLE-STEP MODE (RW)

ENABLE SCSI LOW LEVEL MODE (RW)

START DMA OPERATION (RW)

FAST ARBITRATION (RW)

53C710 COMPATIBILITY (RW)

Table 18–44 DMA Control Register Description

Field Description

7:6 CLOCK FREQUENCY [read/write]

(continued on next page)
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18.41 DMA Control Register (DCNTL)

Table 18–44 (Cont.) DMA Control Register Description

Field Description

(CF1—CF0) These two bits determine the SCLK prescale factor used by the
53C710 SCSI core; the internal SCSI clock is derived from the externally applied
SCLK. These bits are programmed as follows:

CF1 CF0 SCSI Core SCLK
Clock Frequency

1 1 SCLK + 3 50.01 - 66.67 MHz
0 0 SCLK + 2 37.51 - 50.00 MHz
0 1 SCLK + 1.5 25.01 - 37.50 MHz
1 0 SCLK + 1 16.67 - 25.00 MHz

Note that it is important that these bits be set to the proper values to guarantee
that the 53C710 meets the SCSI timings as defined by the ANSI specification.
These bits affect both asynchronous and synchronous timings (unless the
synchronous clock is decoupled via the SBCL register).

5 ENABLE ACK [read/write]

(EA) Setting this bit causes the STERM-TA pin to become bidirectional. As a
result, the 53C710 generates STERM-TA during slave accesses. When this bit is
clear, the 53C710 monitors STERM-TA to determine the end of a cycle. This bit
takes effect during the cycle in which it is set; setting this bit must be the first
I/O performed to the 53C710 if this feature is desired.

4 SINGLE-STEP MODE [read/write]

(SSM) Setting this bit causes the 53C710 to stop after executing each scripts
instruction, and generate a scripts step interrupt. When this bit is clear the
53C710 does not stop after each instruction; instead it continues fetching
and executing instructions until an interrupt condition occurs. For normal
SCSI scripts operation, this bit should be clear. To restart the 53C710 after it
generates a script Step interrupt, the ISTAT and DSTAT registers should be read
to clear the interrupt and then the START DMA bit in this register should be set.

3 ENABLE SCSI LOW LEVEL MODE [read/write]

(LLM) Setting this bit places the 53C710 in low level mode. In this mode,
no DMA operations can occur, and no script instructions can be executed.
Arbitration and selection may be performed by setting the Start Sequence bit as
described in the SCNTL0 register. SCSI bus transfers are performed by manually
asserting and polling SCSI signals. Clearing this bit allows instructions to be
executed in SCSI scripts mode.

2 START DMA OPERATION [read/write]

(STD) The 53C710 fetches a SCSI scripts instruction from the address contained
in the DSP register when this bit is set. This bit is required if the 53C710 is in
one of the following modes:

1. Manual start mode - Bit <0> in the DMODE register is set

2. Single-step mode - Bit <4> in the DCNTL register is set

When the 53C710 is executing scripts in manual start mode, the Start DMA bit
needs to be set to start instruction fetches, but does not need to be set again until
an interrupt occurs. When the 53C710 is in single-step mode, the Start DMA bit
needs to be set to restart execution of scripts after each single-step interrupt.

1 FAST ARBITRATION [read/write]

(continued on next page)
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18.41 DMA Control Register (DCNTL)

Table 18–44 (Cont.) DMA Control Register Description

Field Description

(FA) When this bit is set, the 53C710 becomes bus master immediately after
receiving a bus grant, saving one clock cycle of arbitration time. When this bit is
clear, the 53C710 follows the normal arbitration sequence.

0 53C710 COMPATIBILITY [read/write]

(COM) When this bit is clear, the 53C710 behaves in a manner compatible with
the 53C700; selection/reselection IDs is stored in both the LCRC and SFBR
registers, and auto switching is enabled.

When this bit is set, the ID is stored only in the LCRC register, protecting
the SFBR from being overwritten if a selection/reselection occurs during DMA
register to register operations. The default condition of this bit (clear) causes
the 53C710 to act the same as the 53C700, which does not support register to
register operations. When this bit is set, auto switching is disabled.

18.42 Adder Sum Output (ADDER)
This 32-bit register contains the output of the internal adder, and is used
primarily for test purposes.

Figure 18–40 Adder Sum Output (ADDER)
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Table 18–45 Adder Sum Output Description

Field Description

31:0 ADDER SUM OUTPUT [read-only]

18.42.1 SCSI Script RAM Buffer
On the I/O module, 128 kbytes of buffer memory are provided as a shared
resource for the five SCSI/DSSI controllers. This memory is longword addressable
by the system processor using the mailbox mechanism for secondary bus access.
Bit <6> of the MAILBOX DATA STRUCTURE command field is used to select the
SCSI script RAM for access by the processor. Bits <16:2> of the secondary bus
address field are used to select an individual longword in the buffer for access.
Bits <3:0> in the mask field of the mailbox data structure are used to selectively
disable bytes within the longword. Setting a bit in the MASK field disables the
corresponding byte in the longword for writing.

During DMA operations by the SCSI controllers, bits <31> and <30> of the
address are used to select between main memory and SCSI script RAM. When bit
<31> is a 1 and bit <30> is a 0, the SCSI script RAM is selected as the source or
target of the DMA operation.
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18.42 Adder Sum Output (ADDER)

18.42.2 Ethernet Station Address ROM
The Ethernet station addresses for both network interfaces are contained in 64
bytes of read only memory. This ROM is organized as byte locations on longword
boundaries. The first 32 locations contain the network address for Ethernet
interface 0 and the second 32 locations contain the address for Ethernet interface
1.

Bit <10> in the Lbus mailbox data structure control field selects the Ethernet
Address ROM for access while bits <7:2> select the location within the ROM.
Data from the ROM appears on bits <7:0> of the mailbox data structure Read
Data field.

18.42.3 Serial Control Bus Interface
The Phillips PCD8584 provides an interrupt driven master interface to the serial
control bus. The DEC 4000 AXP CPU uses this interface to communicate with the
slave interfaces on the operator control panel (OCP) and power system controller
(PSC), and with the 256x8 error log EEPROM devices on the memory, I/O, and
CPU modules.

Bit <11> in the Lbus mailbox data structure control field selects the PCD8584
for access, while bit 2 of the Secondary Bus Address field selects one of the two
registers within the device. Bits <7:0> of the mailbox data structure Write Data
and Read Data fields are used for write and read operations respectively. The
mask field of the mailbox data structure has no effect. Figure 18–41 shows
the mapping of the mailbox data structure Secondary Bus Address field to the
PCD8584 registers. When the PCD8584 device interrupts, bit <35> in the LINT
register is set and the processor interrupt CIRQ_l(0) is asserted.

Figure 18–41 Serial Control Bus Interface Register Map
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18.42.4 FEPROM
The I/O module contains 512 kilobytes of flash-erase programmable read only
memory (FEPROM), organized as 128 K longword locations on the Lbus. The
FEPROM is for console firmware storage and provides the ability to erase and
reprogram this firmware in the field without the removal of the I/O module.
The FEPROM locations are accessible only through the mailbox mechanism. No
support for direct execution of instructions from the FEPROM is provided.

Bit <12> in the LBUS MAILBOX DATA STRUCTURE command field selects the
FEPROM for access, bits <18:2> select the longword location within the
FEPROM. FEPROM erase and program operations are accomplished using
the standard mailbox read and write operations.
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Part IV
The System Bus

This part contains a detailed functional description of the DEC 4000 system bus.



19
The DEC 4000 System Bus

The DEC 4000 system bus is a shared-memory, synchronous, multiplexed
bus designed to support the Digital Alpha AXP architecture. This bus is a
143-conductor parallel bus that is routed across the system backplane. It
connects up to two central processor modules, up to four memory modules, and
an I/O module .

Each module on the system bus contains a unique system bus interface unit
(BIU). The BIU on the I/O module interfaces the IO module to the system bus
through coherent cache line buffers. The BIU on the memory modules interface
the 128-bit wide system bus to the 280-bit wide error detection and correction
protected memory arrays.

Each processor module contains one DECchip™ 21064 CPU chip. In addition,
each processor module has a primary cache consisting of a write-through data
cache, and a virtual instruction cache. It also contains a secondary direct-mapped
write-back instruction and data cache (backup cache ) with a system bus
interface. Arbitration logic and the system bus clock generators are located on
the CPU0 module.

The memory connectors provide a unique slot identification code to each memory
which is used to configure the CSR registers address space. The connector
for CPU1 provides an identification code that disables the clock drivers and
configures the CSR address space.

19.1 Supported Transactions

• The bus supports four transaction types:

Null
Read
Write
Exchange

• Provides low latency service to the CPU’s cache miss transactions and I/O
module read transactions.

• Provides sufficient bandwidth to the I/O module to allow local I/O to operate
at full bandwidth and the Futurebus+ to operate at no less than 100 MB/s.

• The system bus protocol timing is capable of scaling with improvements in
memory performance.

19.2 Address Space
Noncacheable address space is partitioned into primary and secondary sections.
The primary sections are registers which are local to the system bus and respond
within 6 to 10 cycles. Secondary registers are accessible via a mailbox pointer
register and a system memory based mailbox data structure.
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19.3 System Bus Transactions
The system bus is a 128-bit, non-pended synchronous bus with multiplexed data
and address lines and centralized arbitration.

All the components that interface with the system bus use either PHI1 to PHI1
or PHI1 L to PHI1 L single phase edge to edge clock signals supplied by the CPU0
module to the backplane connectors for driving and receiving system bus signals.

19.3.1 Bus Arbiter
The CPU0 module is the arbiter and the default bus master. The following four
transactions are supported on the system bus:

• READ, data-stream or instruction-stream read

• WRITE, Write unmasked with good or bad data

• EXCHANGE, Write unmasked with good or bad data, with read data return

• NULL, Null Transaction

19.3.2 Transaction Process
Transactions begin with the arbitration controller selecting a current commander,
requesting use of CPU node’s backup caches, and asserting the address and
command cycle enable signal in cycle 0.

The commander drives a valid address, command, and parity in cycle 1.

Every system bus node checks address and command parity and logs a fault and
reports a fault via the hard error interrupt.

A commander may stall in cycle 2 before supplying write data and parity in cycles
2 and 3 along with an indication of the goodness of the write data. Read data is
received in cycles 5 and 6 along with an indication of the goodness of the data.

Bystanders do not check data parity, because the responder or commander will
confirm the data either through direct acknowledgment or a hard error interrupt.

The addressed responder confirms the cycle by asserting the acknowledge signal
two cycles later.

The commander checks for the acknowledgment and regardless of the presence or
absence, completes the number of cycles specified for the transaction.

Commanders do not abort transactions prior to the completion of the specified
number of cycles for each transaction type.

The following list gives non-stalled transaction cycle times. Allow for at least one
arbitration request cycle.

• READ, 7 cycles

• WRITE, 6 cycles

• EXCHANGE, 7 cycles

• NULL, 7 cycles

Cached nodes must provide probe results by cycle 3.5. A responder or bystander
may stall any transaction in cycle 4 by asserting a stall signal in cycle 3, at
the cycle 3.5 clock edge. The system bus will stall as long as the stall signal is
asserted. Arbitration is overlapped with the last cycle of a transaction, such that
tristate conflict is avoided.
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19.4 Cache Protocol

19.4 Cache Protocol
The cache protocol is termed to be write-update. A node may choose to write
invalidate by following the write transaction protocol. Memory is written on
every system bus write. Two system bus signals, CSHARED L and CDIRTY L, allow
a node to keep its cache coherent with all other nodes by following the policy
described in this chapter.

All nodes which implement caches, monitor the system bus and probe their tag
stores during all memory address space references. If the result of this probe
indicates that a given node has a valid copy of the referenced cache line, the node
must assert CSHARED L or, alternatively, can invalidate a line on writes that hit.

If the bus operation is a read and the target cache line is found to be dirty on a
given node’s cache, the CDIRTY L response must be provided. CPU nodes and/or
the I/O node may provide CSHARED L responses to a system bus transaction, but
the protocol ensures that only one CPU node can return a CDIRTY L response.
The CDIRTY L response obligates the responding node to supply the read data
to the system bus, because the memory copy is stale and the memory controller
aborts the return of the read data.

A CPU that wants to access its cache considers a tag probe for read satisfied if
the tag matches and the valid bit is set. A tag probe for write is satisfied if the
tag matches, the valid bit is set and the shared bit is clear. A line is considered
dirty if the dirty bit is set and considered clean if the dirty bit is clear.

Writes always clear the dirty bit of the referenced cache line in both the
commander node and all nodes that take the update.

System bus memory transaction addresses which hit in a lock address register
(which was loaded by a LDx_L instruction) must return a probe result of
SHARED, even if the line is not valid in the primary and backup cache. This
forces writes to the line to be broadcast, and STxC instructions to function
correctly.

A node has two options when a system bus transaction is a write and the block is
found to be valid in its cache. A node should either invalidate the line or accept
the line and update its copy, keeping the line valid.

If the commander node is the I/O module, the write is accepted only if the probe
of the backup cache tag results in a hit (I/O update always) or if the probe of
the backup cache tag and the primary cache duplicate tag hits (I/O conditional
update).

Each CPU node that implements caches stores the following (for each 32 byte
cache line):

• A tag consisting of some number of physical address bits

• A valid bit indicating whether or not this line can be considered

• A shared bit indicating whether or not this line may also be resident in
another node’s cache

• A dirty bit indicating whether or not this line has been written to by this
node

A CPU running transactions to its cache and to system memory will affect the
state of its cache line and the cache line on another CPU or I/O bystander node.
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19.4 Cache Protocol

This snooping protocol assumes that the processor’s primary cache is always
maintained as a subset of the backup cache by performing invalidation on
victimized lines and on I-stream reads that hit in the duplicate tag of the primary
cache. Nodes are required to perform system bus write transactions if a line is
valid and dirty but the tag does not match the address for the given request. In
this case the line must be written back to memory.

The exchange transaction is provided for this victim write. While a victim line
is pending system bus arbitration, the node must accept all read and write
references. The I/O node implements an invalidate on write policy, and will signal
shared status to reads which hit on a line it has buffered.

Figure 19–1 summarizes cache state transitions.
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19.4 Cache Protocol

Figure 19–1 Protocol Transition Summary
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19.5 System Bus Signals
A system bus interface includes a multiplexed address and data path, protocol
control signals, clocks, and system control signals. All system bus control signals
and parity signals are true in the low voltage state. All system bus address, and
data signals are true in the high voltage state. This section begins by listing all
the signals. The remainder of the section provides a description of all the pins
along with connector pinouts.

The maximum system bus cycle time is 24 ns. The system bus supports up to
seven nodes, data and parity signals are single stubbed with one stub per bus
node. Selected control signals are double stubbed on all system bus modules.

Table 19–1 shows the system bus signals and which nodes connect to each signal.
The driver type is defined as pull-pull (PP), open-drain terminated (OD), or PECL
(Positive ECL differential).

The connector pins are assigned to enable quadword partitioned gate arrays to be
accessed by the aligned quadword on a hexword boundary.
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19.5 System Bus Signals

Figure 19–2 Command-Address Cycle Format, Data Longword Shuffle
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Table 19–1 System Bus Signals (143 Total)

Total

Signal Number

Name P1,P2,M,IO Driver Function

CAD<127:0> 128 B , B , B , B PP Address and command or data

CA L 1 O , I , I , I PP Command cycle strobe

CSTALL0 L 1 B , B , B , B OD Responder or bystander stall, even slice

CSTALL1 L 1 B , B , B , B OD Responder or bystander stall, odd slice

CXACK L 1 B , B , B , B PP Responder command and address and write data
acknowledge

CDIRTY L 1 O , O , I , - OD Memory data is stale

(continued on next page)
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19.5 System Bus Signals

Table 19–1 (Cont.) System Bus Signals (143 Total)

Total

Signal Number

Name P1,P2,M,IO Driver Function

CSHARED L 1 B , B , - , O OD Memory data is cached

CPARITY
L<3:0>

4 B , B , B , B PP Odd longword parity for address and command or data

IOREQ L 1 I , - , - , O PP IO arbitration request

IOG L 1 O , - , - , I PP IO arbitration grant

CPUREQ L 1 I , O , - , - PP CPU1 arbitration request

CPUG L 1 O , I , - , - PP CPU1 arbitration grant

BCREQ L 1 O , I , - , - PP CPU0 to CPU1 backup cache arbitration request

Interrupt and Error Signals (6 total)

C_ERR L 1 B , B , O , O OD Interrupt for hard or soft errors in the memory, CPU, or
I/O subsystems

CIRQ L<1:0> 2 I , I , - , O PP I/O module interrupt requests

CINT_TIM 1 I , I , - , O PP 1MS interval timer clock, distributed from I/O to both
CPU connectors

CSYS_EVENT
L

1 I , I , - , O OD Non-maskable interrupt to force the processor to return
to console mode

CUCERR L 1 B , B , B , B OD Transaction hard error

Clocking and Initialization Signals(8 total)

PHI1 1 I , I , I , I PECL Clock, driven from the CPU0 clock connector

PHI3 1 I , I , I , I PECL Clock, driven from the CPU0 clock connector

PHI1 L 1 I , I , I , I PECL Clock, driven from the CPU0 clock connector

PHI3 L 1 I , I , I , I PECL Clock, driven from the CPU0 clock connector

CRESET L 1 B , I , I , I PP System RESET - return to a power-up state

CPU1ID L 1 - , I , - , - - CPU1 slot identification

MID<1:0> 2 - , - , I , - - Memory slot identification

CPU Clock Connector (1 total)

ASYNC_
RESET L

1 I , - , - , - - DC power unstable, supplied from the power subsystem
controller to the CPU0 clock connector

CHALT L 1 I , - , - , - - Operator control panel halt switch to the CPU0 node
clock connector

TOTAL
System Bus
Connector
Signal Pins

157
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19.5 System Bus Signals

19.5.1 Command and Address Format

Table 19–2 Command and Address Format

Signal Number Function

Command and Address Format

RESERVED<1:0> 2 Unassigned signals, must be driven high

ADDR<31:2> 30 Transaction aligned octaword address, corresponds to CPU address<33:4>

RESERVED<65:64> 2 Unassigned signals, must be driven high

ECHADR<81:66> 16 Exchange transaction cache line tag and index for write data address

TRANS<84:82> 3 Encodes transaction type

CID<87:85> 3 Encodes the identification of the commander

RESERVED<95:88> 8 Unassigned signals, must be driven high

RESERVED<33:32> 2 Unassigned signals, must be driven high

ADDR<63:34> 30 Transaction aligned octaword address, corresponds to CPU address<33:4>

RESERVED<97:96> 2 Unassigned signals, must be driven high

ECHADR<113:98> 16 Exchange transaction cache line tag and index for write data address

TRANS<116:114> 3 Encodes transaction type

CID<119:117> 3 Encodes the identification of the commander

RESERVED<127:120> 8 Unassigned signals, must be driven high

Total Address and
Command Pins:

128

Note

For each command cycle, CAD <95:64 and 31:0> and CPARITY L <2 and 0>
are replicated on CAD <127:96 and 63:32> and CPARITY L <3 and 1> by
the commander node. RESERVED fields carry no information during the
address and command cycle, but are SUSTAINED at a high voltage level
by backplane pull-up resistors and are included in the parity generation
and checking. Maintaining a high level on these reserved signals ensures
that they do not switch during the address and command cycle. The
pulled high state of CAD<127:0> has incorrect CPARITY L<3:0> signals.

19.5.2 Arbitration Signals
The system bus protocol can support three arbitrated nodes, which consist of two
processors on a CPU module and one I/O module. Memory modules cannot be
commanders and hence do not arbitrate for bus usage. The arbiter is built into
the CPU0 module so that the CPU0 can be a default commander of the system
bus. Arbitration cycles occur in parallel with data transfer cycles.

The following sections describe the system bus arbitration signals.
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19.5 System Bus Signals

IOREQ L
The I/O module asserts IOREQ L on any TPHI1 clock edge, when it wants to drive
the system bus. IOREQ L is a unidirectional signal from the I/O module to the
CPU0 module. This signal is sampled by a NOT TPHI1 edge 0.5 cycle before CPUG
L is asserted on the next TPHI1 edge. Once asserted, IOREQ L is not negated
until one cycle after an IOG L has deasserted. If IOREQ L is held asserted, IOG L
could assert in the next arbitration cycle or the second arbitration cycle.

IOG L
The signal IOG L asserts on a TPHI1 edge in the cycle before 0, 0.5 cycle after it
was sampled, to grant the system bus to the IO module, the arbiter asserts CA L
in cycle 0, and the I/O module drives the address in cycle 1. IOG L is negated on
the first cycle 2, to be sampled 0.5 cycle later. IOG L is a unidirectional signal
driven from CPU0 to the I/O module.

CPUREQ L
The CPU1 module asserts CPUREQ L on a TPHI1 edge when it wants to drive the
system bus. CPUREQ L is a unidirectional signal from the CPU1 module to the
CPU0 module. This signal is sampled by a NOT TPHI1 edge 0.5 cycle before CPUG
L is asserted on the next TPHI1 edge. Once asserted, CPUREQ L is not negated
until one cycle after CPUG L has deasserted. If CPUREQ L is held asserted, CPUG
L could assert in the next arbitration cycle or the second arbitration cycle.

CPUG L
The signal CPUG L asserts on a TPHI1 edge in the cycle before 0, 0.5 cycle after
it was sampled, to grant the system bus to the CPU1 module, the arbiter asserts
CA L in cycle 0, and the CPU1 module drives the address in cycle 1. CPUG
L is negated on the first cycle 2, to be sampled 0.5 cycle later. CPUG L is a
unidirectional signal from the CPU0 module to the CPU1 module.

For CPU0, the arbitration signals are not visible to the system bus. The default
state of the system bus is to be owned by the CPU0 module.

BCREQ L
This signal is sent from the CPU0 arbitration controller on a TPHI1 edge one
cycle prior to cycle 0 to the CPU0 and CPU1 nodes to cause the backup caches
to be requested for use by the probe address which is available two cycles later.
This signal is sampled .5 cycle after assertion. The arbiter negates this signal one
cycle after cycle 1, to allow a CPU node a choice of releasing its backup cache to
the processor if CSTALL L is asserted to cause multiple cycle 2(s), BCREQ L is to
be sampled .5 cycle later. This signal must be negated during assertion of CRESET
L.

19.5.3 Protocol Signals

CAD<127:0>
CAD <127:0> are multiplexed between address and data information. Starting
at cycle 0.5 to the end of cycle 1 CAD <127:0> represent address, command, and
commander identification information. For write cycles 2 and 3 and read cycles
5 and 6 they represent 128 bits of write or read data in each cycle, to complete a
256 bit data transfer.
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The system bus command and address cycle is used by a commander to initiate
a system bus transaction. During command and address cycles the address is
driven as shown in Figure 19–2. A commander drives the RESERVED fields high
(MBO - must be one) to ensure proper parity generation and to reduce switching
noise.

During write data cycles the commander drives data on CAD<127:0> twice. The
full 256 bits of data are written, because all memory and noncachable address
space write transactions are full hexword. During Read Data Return and Read
Data Error cycles the responder drives the data on CAD 127:0.

During data cycles the data is driven as shown in Figure 19–2. A commander
which does not receive acknowledgment to an initiated transaction will abort by
completing the system bus protocol in the specified number of transaction cycles.
The commander is responsible for reporting this fault to the processor via a hard
error interrupt.

19.5.4 Address Field
The address space supported by the system bus is divided into memory space and
noncacheable space. The 21064 CPU can generate 34-bit addresses. This system
uses the 34-bit address. CPU Address bit 33 (which is the same as system bus
CAD<31> and CAD<63>) distinguishes memory space from noncacheable space.

The most significant bit of this address (corresponding to lines CAD<31>) or
CAD<63> selects 8 GB noncacheable space (CAD<31,63> = 1) or 8 GB memory
space (CAD<31,63> = 0).

The low 2 GB of noncacheable space is called the primary I/O address space and
the other 6 GB space is reserved. The primary I/O address space contains all
registers which are immediately accessible to the system bus. Device registers on
the I/O module, called secondary registers, are accessed via hardware assist and
a system memory based mailbox data structure.

ECHADR<15:0>
The exchange address (ECHADR <15:0>) is the cache line tag address field for
the victim write address. This field corresponds to CPU address bits<33:18>
and system bus exchange address fields CAD<81:66> and <113:98> of the memory
address for the victim write data. This tag field is decoded to select a memory
CAS strobe. The concatenation of the tag and index fields form the unique victim
memory address as shown in Figure 19–3.

For the 1-MB cache configuration, physical address bits<19:5> are used to select
one of 32968 cache lines, requiring the tag address bits to include physical
address bits<33:20>, which correspond to ECHADR<15:2> and system bus fields
CAD<81:69> and <113:100>. ECHADR<1:0> are not used in this configuration, as
they duplicate the two high order index field bits.

For the 4-MB cache configuration, physical address bits<21:5> are used to select
one of 131872 cache lines, requiring the tag address bits to include physical
address bits<33:22>, which correspond to ECHADR <15:4> and system bus fields
CAD <81:70> and <113:102>. ECHADR <3:0> are not used in this configuration, as
they duplicate the four high order index field bits.
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Figure 19–3 Exchange Address Layout
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TRANS<2:0>
The TRANS<2:0> lines specify the current bus transaction type or command
type during the address and command cycle 1. The RESERVED code is not
acknowledged, but could be stalled and no errors shall be reported, and the
transaction is dismissed. The arbiter assumes a RESERVED transaction takes a
minimum of 7 cycles to complete before re-arbitrating. Table 19–3 shows how the
three bits are interpreted.

19–12 The DEC 4000 System Bus



19.5 System Bus Signals

Table 19–3 TRANS<2:0> Bit Interpretations

Levels Abbreviation
Bus
Transaction Type Function

000 RD READ READ Request a hexword read

001 TRD READ READ Request exclusive hexword read,
invalidate

010 XD EXCHANGED
WRITE - READ

WRITE-READ Write victim to memory and read a
replacement cache line

011 - Reserved Responders and bystanders perform
passive dismiss

100 WR WRITE WRITE Request a hexword write

101 - Reserved Responders and bystanders perform
passive dismiss

110 - Reserved Responders and bystanders perform
passive dismiss

111 NUT NULL
TRANSACTION

NO ACTION Dismiss bus arbitration

CID<2:0>
During the command and address cycle, CID<2:0> contain the commander’s
ID. This ID is used to identify the source of the request during cycle 1 and to
associate data errors with the commander which issued the request. The CPU
module backup cache write policy distinguishes processor nodes from an I/O node
to effect the write accept policy.

Each commander node on the system bus (memory modules are not commander
nodes) may have one transaction outstanding. The system bus does not support
more than three commander nodes.

The commander ID codes available for use by a node are shown in the following
table. CID<2:0> indicate which node originated the transaction. Table 19–4 lists
the commander CID assignments.

Table 19–4 Commander CID Assignments

Node Name CID<2:0>

CPU0_NODE 001

CPU1_NODE 010

IO_NODE 100

RESERVED all others

CPARITY L< 3:0>
The CPARITY L<3:0> is computed over each longword of the 128-bit system bus.
Odd parity is used, where the ‘‘exclusive OR’’ of all bits including the parity bit is
a ‘‘0’’.

When the bus is idle, the system bus backplane ensures that the bus defaults to a
pulled up level. The high levels cause incorrect parity to be guaranteed on an idle
bus. If a device is granted the bus but chooses not to use it during a given cycle,
it is responsible for driving the CAD<127:0> to valid levels and CPARITY L<3:0>
with correct parity. Table 19–5 shows the CAD parity coverage.

The DEC 4000 System Bus 19–13



19.5 System Bus Signals

Table 19–5 CAD Parity Coverage

Parity bit protected data parity_type

CPARITY L<3> CAD<127:96> odd parity

CPARITY L<2> CAD<95:64> odd parity

CPARITY L<1> CAD<63:32> odd parity

CPARITY L<0> CAD<31:0> odd parity

19.5.5 Response and Interrupt Signals

CA L
The CA L signal is driven only by the system bus arbiter. All nodes receive CA L
to identify cycle 0 as the start of a new transaction. The address and command
must be driven by the granted commander in cycle 1, following cycle 0. There are
cases where the next arbitration grant, which defines the next CA L assertion will
overlap the last cycle of a transaction. However tristate overlap is ensured to be
avoided by the transaction timing.

CSTALL0 L and CSTALL1 L
System bus transactions can be stalled an integral number of cycles by writing or
exchanging commanders to memory address space in cycle 2 or by responders or
bystanders in cycle 4 by asserting CSTALL0 L and CSTALL1 L in cycle 1.5 or cycle
3.5.

Commander driven stalls in cycle 2, with CSTALL L driven not later than cycle
1.5, allow a cached node to read data from the cache, merge it with processor
write data, and then continue the write to memory.

Stall is not asserted by a responder or bystander node later than cycle 3.5. A
bystanding node does not stall any noncacheable address space reference. This
provides per transaction flow control. The negation in cycle 2.5 or 4.5 enables
entry to cycle 3 or 5, 1.5 cycle later to continue a transaction. Arbitration request
signals may assert during stalled cycles.

The bus interface chips are quadword sliced. One copy is for the even slice and
the other copy is for the odd slice.

CXACK L
In response to each address and command cycle, a responder is required to
acknowledge it had received the command and address with good parity by
asserting CXACK L two cycles after cycle 1, regardless of the CSTALL L state, this
could be cycle 2 or cycle 3.

A bystander must check parity for all address and command cycles, and if an
error is detected, log the error and notify a CPU via the C_ERR L interrupt.
Bystanders should not check data parity.

Responders must also acknowledge the reception of write data with good parity,
by asserting CXACK L two cycles after the write data is received. That is in cycle
4 and cycle 5 in no CSTALL L assertion, or in the multiple cycle 4(s) if CSTALL L is
asserted.
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CXACK L is not used for flow control. Commanders must check for the CXACK L
response and complete the transaction cycle flow. If CXACK L assertion is not
detected in the correct cycles, the commander will complete the transaction, log
the failing event(s) and notify a CPU via the C_ERR L interrupt. Address and
command cycles to nondecoded address spaces are cycled through the transaction
by the commander without acknowledgment.

CDIRTY L
CDIRTY L is asserted by a CPU bystander from cycle 3.5 to 4.5 if it contains
the referenced valid memory line that has been modified but not yet written
back to memory. CDIRTY L does not assert during noncachable address space
transactions. CDIRTY L could change state in cycles 2 and 5. Drivers must not
be enabled in cycle 0. During a read, exclusive read, or exchange, a cache that
asserts CDIRTY L will supply the read data as a responder with at least one slip
cycle, and the target memory will, upon seeing CDIRTY L, abort the read data
return.

The target memory must be capable of disabling its driver in cycle 4 as the
responding cache enables its driver and returns data in cycle 5. CDIRTY L can
never assert during a write transaction. A commander which writes a shared
and dirty line to memory marks the line clean because memory updates on all
writes. The coherence protocol ensures that at most one cache can assert CDIRTY
L. The I/O module is not concerned with the dirty state of a cache line, due to its
invalidate on detected write policy.

CSHARED L
Based on the shared state of the cache line, the commander determines whether
it will do a write-through when the contents of the memory line are written.
CSHARED L is asserted from cycle 3.5 to 4.5 by a CPU or I/O bystander that
contains the referenced valid memory line during any transaction to be sampled
at the end of cycle 4.5. CDIRTY L does not assert during noncacheable address
space transactions.

CSHARED L could change state in cycles 2 and 5, drivers must not be enabled in
cycle 0. In addition, a CPU node must respond with shared status for a system
bus read of a cache line which has a valid lock address and lock flag. Both CPU
nodes may assert CSHARED Las the I/O node performs a transaction. During a
write transaction, the bystander CPU probe result may assert CSHARED L to
signal that it will accept the write, and the commander must retain the shared
state of the line. Alternatively, the bystander CPU must not assert the CSHARED
L signal if it invalidates the cache line. Hence, CPU nodes can either accept and
update writes or invalidate on writes.

The I/O node monitors transaction addresses and returns CSHARED L status
for read transactions to a line it has buffered for merging with write data. For
write transactions from another node to an I/O node buffered line, the line will be
invalidated and read from the system bus again to obtain the most recent copy.
This enables the I/O node to merge write data to a line which a CPU node may be
polling.

A CPU cache line may be in one of five states as shown in Table 19–6.
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Table 19–6 CPU Cache Line States

1. NOT
VALID

Cache line is
invalid, miss.

2. VALID NOT SHARED NOT DIRTY Valid for read or write. Cache line
contains the only cached copy of
the block which is identical to the
memory copy.

3. VALID NOT SHARED DIRTY Valid for read or write. Cache line
contains the only cached copy of the
block which has been modified more
recently than the memory copy.

4. VALID SHARED NOT DIRTY Valid for read or write, but write
must broadcast to system bus.
Cache line may be in some other
cache, but the memory copy is
identical.

5. VALID SHARED DIRTY Valid for read or write, but write
must broadcast to system bus.
Cache line may be in some other
cache, but the contents have been
modified more recently than the
memory copy. This is a transitional
state which occurs when arbitrating
for the bus to broadcast a write. It
is also a case when an unshared
dirty line is returned to a system
bus read transaction.

During all transactions other than noncacheable space transactions, all caches
inspect their tag stores. Each cache returns one of three responses on the shared
and dirty lines during cycle 3:

1 NOT
SHARED

NOT
DIRTY

Line not cached.

2 SHARED NOT
DIRTY

Line cached and clean.

3 SHARED DIRTY Line is cached and dirty. (Cannot occur for write
transactions)

The commander interpretation of these responses is :

1 NOT
SHARED

NOT
DIRTY

No other cache contains the line.

2 SHARED NOT
DIRTY

One or more caches contain the line, but the memory
copy is consistent.

3 SHARED DIRTY One or more caches contain the line, but the memory
copy is stale.

C_ERR L
This synchronous signal is asserted in cycle 0 by a CPU node or cycles 0 or 1
by an I/O or memory node of a transaction, or whenever the system bus is idle,
for a maximum of one cycle. The signal is sampled to cause an interrupt to both
processor nodes. This interrupt is asynchronous to a system bus transaction that
may have caused an error. This signal indicates a hard or soft error or a latent
error to a CPU from a CPU, memory, or an I/O node. A node provides a soft error
interrupt enable method in its CSRs if it is a source of soft errors. Latent errors
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are defined as being reported to the CPU nodes after the associated system bus
transaction has completed.

CIRQ L<1:0>
These level sensitive interrupt request lines assert asynchronously from the I/O
node to the CPU nodes. These are general device level interrupts. CIRQ L<1>is
associated with the Futurebus+ and CIRQ L<0> is associated with I/O module
resident device controllers. These interrupts are intended to have equivalent
priority. System software can decide which CPU node is responsible for either or
both of these signals.

CINT_TIM
This free running 1-ms interval timer clock signal is used to provide an interrupt
to the CPU0 and CPU1 nodes, and to supply a free running clock to the processor
chips for counting. It is driven from the I/O module, an edge is detected by the
CPU nodes which then request an interrupt to the processor. The CPU1 node
inverts this signal before detecting the edge to cause an interrupt.

CSYS_EVENT L
This edge sensitive asynchronous interrupt is nonmaskable at the CPU nodes
and indicates that one or more special action system events have occurred. These
events could be console halt request, front panel restart, power supply power
failure, etc. This signal is driven from the operator control panel, the I/O module,
and the power system controller. This signal has a minimum pulse width of 200
ns and a maximum pulse width of 500 ns.

CUCERR L
Per transaction unrecoverable data errors are reported via the CUCERR L signal.
For read transactions CUCERR L asserts in cycle 5 or 6 with the octaword of bad
data. For write transactions CUCERR L asserts in cycle 2 or 3 with the octaword
of bad data. Also, CUCERR L is used for flow control of store conditional writes to
the noncacheable address space mailbox pointer register and asserts in the first
cycle 4 to be sampled by the commander at the end of the first cycle 4. The I/O
responder may sustain the assertion of CUCERR L during multiple cycle 4 s, but
negates CUCERR L no later than the end of the last cycle 4. CUCERR L is sampled
by the commander to signify data errors at the end of cycle 5 or 6 for reads, and
to signify STxC noncacheable address space write failures at the end of the first
cycle 4. The responder samples CUCERR L to check the validity of the written data
at the end of cycles 2 or 3 for writes.

CPU Clock Connector Initialization signal
The power subsystem controller or the operator control panel notifies CPU0 that
DC system power is insufficient for normal operation or that a warm reset should
occur by asserting ASYNC_RESET L. This signal connects to CPU0 through the clock
connector.

ASYNC_RESET L
This asynchronous signal indicates that DC voltages are unstable for normal
system operation, negation means DC voltages have been stable for a minimum of
30 ms. Assertion indicates that normal operation is not possible or that CRESET L
should assert to perform a warm reset. To reset a powered system, the minimum
assertion time must be greater than 10 ms to ensure all state logic returns to an
initialized condition. DC voltages must be stable for 10 to 50 ms before ASYNC_
RESET L is negated, during a power-up sequence. The operator control panel
delivers a TTL signal, RESET L, minimum pulse of 10 ms to the power system
controller to cause a reset of the system. The power system control unit ensures
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that ASYNC_RESET L is negated 10 µs minimum before beginning to remove DC
voltages.

CHALT L
This asynchronous signal from the operator control panel halt switch is received
by a buffer on the CPU0 module and then OR tied to the non-maskable CSYS_
EVENT L interrupt to notify CPU0 and CPU1. This signal has a minimum pulse
width of 200 ns and a maximum pulse width of 500 ns.

19.5.6 Clocking and Initialization Signals
The clocks are generated from the CPU0 node and radially distributed to each
system bus node.

19.5.6.1 Synchronous Clock Signals

PHI1 and PHI1 L
These PECL level differential signals are one of two overlapping single phase
clocks. The receiver node receives this clock into a noninverting and inverting
PECL to CMOS converter to provide a clock (TPHI1 ) and not clock (TPHI1 L ) to the
system bus interface logic. This clock is used to time all system bus transactions.

PHI3 and PHI3 L
These PECL level differential signals are one of two overlapping single phase
clocks. It is a 3/4 phase (late) skewed copy of the PHI1 and PHI1 L signals.
Receiving this clock is optional at each node. A receiver node receives this clock
into a noninverting and inverting PECL to CMOS converter to provide a clock
(TPHI3 ) and not clock (TPHI3 L) to the system bus interface logic.

19.5.7 Initialization Signals

CRESET L
This signal returns the system to an initial state when asserted by
asynchronously forcing each node to disable its bus drivers. During a power-
up, CRESET L remains asserted until backplane +5 V and CPU +3.3 V power are
stable, system bus oscillators are running at full harmonic content and voltage
swing. These conditions are ANDed with the ASYNC_RESET L signal from the
power system controller, synchronized to the TPHI1 clock to negate CRESET L
synchronous to TPHI1.

Nodes have 4 ns minimum setup time of the negation of CRESET L to their TPHI1
clock edge. CRESET L may assert after the system has powered-up for a minimum
of 10 ms to force all system bus nodes to an initial state. CRESET L asserts 100 ns
maximum after the assertion of ASYNC_RESET L.

CPU 2ID L
This static signal is available to the CPU1 slot connector and is sampled on
power-up by negation of CRESET L to configure the CPU1 node. The CPU0 slot
senses this signal high during reset to select itself as the primary CPU node. The
I/O module ensures that it does not assert IOREQ L when CRESET L is asserted.
The backplane ensures that this signal is grounded in the CPU1 slot.
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MID<1:0>
These static signals supplied from the backplane are available to the memory
connectors to identify which slot, base CSR position, and NVRAM serial
control bus (I²C) address each memory module configures itself. The backplane
supplies either GROUND or NO-CONNECTION on the MID signals. The decoding is
summarized in Table 19–7:

Table 19–7 Memory Slot ID

MID<1:0>
Backplane
Connection

00 gnd gnd Memory 1 SLOT 4 - closest to CPU0 module slot

01 gnd NC Memory 2 SLOT 5

10 NC gnd Memory 3 SLOT 6

11 NC NC Memory 4 SLOT 7 - furthest from the CPU0
module slot

NC = no connection

Serial Control Bus Signals
The two signals for the serial control bus (I²C) bus are routed on the backplane in
the J1 power connector of CPU, I/O, and memory nodes. The SCL (serial clock)
signal and the SDA (serial data) signal are terminated on the backplane and the
operator control panel.

19.6 System Bus Transactions and Timing
This section describes system bus transactions and their logical timing diagrams.

The modules on the system bus can be classified as a commander, responder,
or bystander. Each module type must follow specific rules. A general rule is
that commanders are responsible for reporting errors to a CPU. Responders and
bystanders may provide further error information for a CPU to read, but they
must not send redundant hard error interrupts, except in the case of a detected
parity error during a address and command cycle. A soft error interrupt for
correctable memory or cache data errors could be reported by a responder. The
timing of transactions ensures that the system bus can never consume a CPU
node’s backup cache for consecutive transactions without allowing the CPU an
opportunity to have access to the backup cache.

Commanders, responders, and bystanders must always check address and
command cycle parity. Bystanders should not check data parity, but commanders
and responders always check data parity, and the protocol enables them to
acknowledge correct transfers.

A responder or bystander which detects a RESERVED transaction type in the
address and command cycle, disregards the transaction. The arbiter treats a
RESERVED transaction type as a 7 cycle transaction. CSTALL0 L and CSTALL1 L
could assert for a RESERVED transaction.

All transactions assume hexword data transfers, hence there is no transaction
length specifier. Responders which do not return a full hexword of valid data
must nevertheless drive the system bus with a full hexword of data with correct
parity. Commanders which do not write a full hexword of data must nevertheless
drive the system bus with a full hexword of data with correct parity.
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Commander reads and writes directly to primary noncachable address space must
restrict their addresses to hexword aligned quadwords or longwords. Hence all
registers appear on aligned hexword address boundaries as quadword or longword
data fields.

Commander reads and writes to secondary noncacheable address space are
accomplished using a system memory based mailbox data structure assisted by a
noncacheable address space mailbox address pointer register located on the I/O
module.

The following sections describe the entire set of system bus transactions.

19.6.1 Read and Read Exclusive Transactions
These transactions are used to move a hexword of data from the responder to the
commander. The read timing is shown in Figure 19–4. Two TRANS command
codes are used. The TRANS field distinguishes the read from the exclusive read.
The exclusive read differs from a read in that a CPU bystander and the I/O
node invalidates the line the CPU commander is reading. The read data may be
returned from a CPU or a memory node depending on the dirty response. A read
exclusive to noncacheable address space should be treated identically to a read,
however a node may not support this transaction type in noncacheable address
space. The read data address bit <4> specifies which octaword of the aligned
hexword is requested to return first. Hence data may be delivered in wraparound
order.

A read transaction is initiated by a commander requesting a system bus grant
from the arbiter which may be in any cycle. instruction-stream and data-stream
reads are not distinguished on the system bus. The arbiter follows a priority
based arbitration algorithm of I/O highest, CPU0 and CPU1 round robin with
CPU0 defaulted to current commander. The arbiter will ensure at least one idle
bus cycle before issuing a grant if it observes three contiguous transactions, to
avoid starving any processor chip from accessing its backup cache. The arbiter
asserts a node grant and a backup cache request (BCREQ L) in the cycle prior to
cycle 0, the arbiter asserts CA L during cycle 0 to signal the commander and
bystanders that a new transaction is starting, a bystander may be selected as a
responder. The commander drives its ID and address on the TPHI1 L edge in cycle
0, the transaction type and parity can be driven with ID and address or one half
cycle later on the TPHI1 H edge in cycle 1, through cycle 1.

Commanders do not stall in cycle 2 during read, noncacheable address space
write, or null transactions. Each commander is required to replicate the address
and command on each quadword of the 128-bit bus and supply longword parity
across the four longwords of the address and command cycle. The commander is
not obligated to drive meaningful information in the ECHADR address field. Other
nodes monitor the address and command, check parity, and decode the address to
determine if they are to be a responder or a bystander.

If the responder or bystander detect bad parity, they must log this fault in a
CSR and assert C_ERR L in the next cycle 0 or for at least one cycle if the bus
goes idle. The commander disables its C/A information by the end of cycle 1, and
could disable the CAD drivers or leave them enabled until the end of cycle 3. A
commander that drives in cycles 2 and 3 may supply valid parity with whatever
information is driven on CAD signals. The commander watches for the responder
to assert CXACK L in cycle 3, two cycles after CADwas driven.
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The arbiter deasserts grants at the end of cycle 1 and deasserts BCREQ L one
cycle after cycle 1 to condition the early release of the processor’s backup caches,
when the read is not a DIRTY hit. The granted node may deassert its request
one cycle after the arbiter negates the request. If CXACK L does not assert two
cycles after CAD was driven, the commander must complete the full transaction
sequence, it usually means an invalid address or a parity error fault occurred
and the read data and parity must be ignored. If the address is to noncachable
address space, responders must return a hexword of read data in cycles 5 and 6
with correct parity and the commander must ignore the state of CSHARED L and
CDIRTY L.

The responder may assert CSTALL0 L and CSTALL1 L to effect flow control by
stalling the transaction in cycle 4.

Stall Signals
There are two stall signals, one for each quadword sliced ASIC. Both stall signals
assert and deassert at the same time. If the address is to memory space, the
caches must return the results of the probe in cycle 3.5 to 4.5 to the bus on the
CSHARED L and CDIRTY L signals. If the read probes dirty the CPU node ensures
at least one stall cycle.

CSTALL0 L and CSTALL1 L are used to effect flow control to stall the transaction
in cycle 4. CSTALL0 L and CSTALL1 L are asserted in cycle 3.5 to stall the bus in
cycle 4, and negated in cycle 4.5 to allow cycle 4 to complete 1.5 cycles later and
the bus to resume in cycle 5. If the probe result is NOT CDIRTY L, the memory
responds by returning data in cycles 5 and 6 with correct parity, and if there is
an uncorrectable error in either octaword of the data, by asserting CUCERR L with
the corresponding returned data cycle. A responding node which asserts CUCERR
L in cycle 5 leaves the signal asserted through cycle 6. It is possible for one or
both CPU nodes to assert CSHARED L to indicate that it has that line valid. The
I/O module will never assert CDIRTY L, but will assert CSHARED L if the read
address matches a line it has buffered for performing an I/O write data merge.

Memories must abort the read data return by disabling their CAD drivers prior
to entry of cycle 5, if the probe results in assertion of CDIRTY L . The responding
cache node must not enable its CAD drivers until (NOT CSTALL0 L and NOT CSTALL1
L and cycle 4.5) or cycle 5. Only one cache node can respond with CDIRTY L, hence
that node must supply the read data in cycles 5 and 6 with correct parity and if
either octaword of the data is uncorrectable, signal such by asserting CUCERR
L with the corresponding data cycle. It is the commanders responsibility to
interrupt the CPU to report corrupted read data.

The responder may assist the commander and log the address and syndrome
with the commander CID code to help with fault management reporting. The
responding node must disable CAD and CPARITY L drivers at the end of cycle 6
if it is not being the next granted commander to avoid contention in cycle 0.5 of
the next transaction. However, a read transaction responder that is transitioning
to commander may leave its CAD and CPARITY drivers enabled from cycle 0 to
0.5 instead of trying to disable at the end of cycle 6 and enable at cycle 0.5. This
decision must be made based on the state of the grant signal as the responder
becomes a commander to avoid enabling during idle cycles.

CPU nodes may use this condition when transitioning from returning dirty or
CSR read data to commanding the next transaction. I/O nodes may use this
condition when transitioning from responding to a CSR read to commanding the
next transaction. If the responder returned correctable data, to the commander,
and if soft error interrupts are enabled in the responder, it should log this fault in
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a CSR and assert C_ERR L in the next cycle 0 or for at least one cycle if the bus
goes idle.

A CPU node must monitor read transactions for a target address which matches
the address in its lock-address register with its lock flag set. A match on this
condition forces the node to assert CSHARED L as the probe response in cycle 3.5
to 4.5. This ensures that subsequent writes remain visible to the bus even if the
cache block containing the locked address should become NOT SHARED.
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Figure 19–4 System Bus Read Timing
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19.6 System Bus Transactions and Timing

19.6.2 Null Transactions
A commander which requests the system bus for performing a read or write
transaction may need to abort the transaction, or ensure that it is granted the
system bus as a form of lock on a sharable resource in order to avoid contention.
See Figure 19–5 for the description of the 7 cycle NULL transaction. Because
the arbitration protocol does not permit negation of a request prior to a grant,
the granted commander can nullify the transaction by driving the command field
to all ones and sequencing through the transaction. The addressed responder
ignores the transaction. A CPU node may use this transaction, by driving the
CAD lines in cycles 2,3,5,6 to update the lock register and to complete a masked
write to a victimized line.

The cache probe results can be ignored. The commander should be aware that
CSHARED L , CDIRTY L, and CUCERR L could assert. Also, the transaction may
be stalled by a responder or a bystander in cycle 4 for memory transaction by
asserting CSTALL0 L and CSTALL1 L in cycle 3.5. A bystanding node does not stall
the read transaction to noncachable address space. BCREQ L negates one cycle
after cycle 1 to allow a processor backup cache to be returned from bus use to
processor use. The arbiter deasserts bus grant signals at the end of cycle 1 and
the granted node may deassert its request one cycle later.
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Figure 19–5 System Bus NULL Transaction Timing

:
:

:
:\

T
P
H
I
1
_
L

:
:

:
:

:/
T
P
H
I
1

:
:

:
:

:
:

:
:

:
:

C
I
R
Q
_
L

:
a
s
y
n
c
h
r
o
n
o
u
s
i
n
t
e
r
r
u
p
t

l
e
v
e
l

:
:

:
t
w
o

c
y
c
l
e

m
i
n
i
m
u
m
:

:
:

:
:

:
C
I
N
T
_
T
I
M

:
a
s
y
n
c
h
r
o
n
o
u
s
1
m
s

f
r
e
e

r
u
n
n
i
n
g

c
l
o
c
k

:
:

:
:

:
:

:
:

C
S
Y
S
_
E
V
E
N
T
_
L

:
a
s
y
n
c
h
r
o
n
o
u
s

i
n
t
e
r
r
u
p
t

-
2
0
0

-
5
0
0
n
S

p
u
l
s
e

:
:

:
:

:
:

:
C
_
E
R
R
_
L

:
:

:
:

:
:

d
a
t
a

e
r
r
o
r
s
a
r
e

i
g
n
o
r
e
d

:
:

C
U
C
E
R
R
_
L

:
:

:
:

:
:

c
a
c
h
e

p
r
o
b
e

r
e
s
u
l
t
s
a
r
e

i
n
v
a
l
i
d

:
:

C
D
I
R
T
Y
_
L

:
:

:
:

:
:

c
a
c
h
e

p
r
o
b
e

r
e
s
u
l
t
s
a
r
e

i
n
v
a
l
i
d

:
:

C
S
H
A
R
E
D
_
L

:
:

:
:

:
:

c
o
m
m
a
n
d
e
r
,

r
e
s
p
o
n
d
e
r
,

o
r

b
y
s
t
a
n
d
e
r

m
a
y
s
t
a
l
l

t
r
a
n
s
a
c
t
i
o
n
c
o
m
p
l
e
t
i
o
n

:
C
S
T
A
L
L
1
_
L

C
S
T
A
L
L
0
_
L

:
:

:
:

:
:

:
r
e
s
p
o
n
d
e
r

c
o
n
f
i
r
m
s

a
d
d
r
e
s
s
/
c
o
m
m
a
n
d

:
C
X
A
C
K
_
L

:
:

:
:

:
:

s
i
g
n
a
l
s
t
a
r
t

o
f
t
r
a
n
s
a
c
t
i
o
n

:
:

:
C
A
_
L

:
:

:
:

:
:

d
r
i
v
e

p
a
r
i
t
y

:
:

:
:

C
P
A
R
I
T
Y
_
L

:
:

p
u
l
l
u
p
:

r
e
s
p
o
n
d
e
r

s
h
a
l
l

i
g
n
o
r
e
t
r
a
n
s
a
c
t
i
o
n

:
:

d
r
i
v
e

a
d
d
r
e
s
s
/
c
o
m
m
a
n
d

(
c
o
m
m
a
n
d
e
r

c
o
u
l
d

d
r
i
v
e

d
a
t
a

i
n

c
y
c
l
e
s
2
,
3
,
5
,
6
)

:
C
A
D

:
:

p
u
l
l
u
p
:

:
:

:
:

:
g
r
a
n
t

b
e
f
o
r
e
a
s
s
e
r
t
i
n
g

C
A
_
L

:
C
P
U
G
_
L

I
O
G
_
L

:
:

:
:

:
:

:
:

:
:

B
C
R
E
Q
_
L

r
e
q
u
e
s
t

B
c
a
c
h
e

:
B
c
a
c
h
e

:
:

::
:
r
e
l
e
a
s
e

:
:

:
:

:
C
P
U
R
E
Q
_
L

I
O
R
E
Q
_
L

s
a
m
p
l
e

r
e
q
u
e
s
t
s

:
:

:
:

:

1
0

6
5

4
4

3
2

1
0

S
y
s
t
e
m
-

b
u

s
n
u
l
l

t
r
a
n
s
a
c
t
i
o
n

The DEC 4000 System Bus 19–25



19.6 System Bus Transactions and Timing

19.6.3 Memory Exchange Transactions
These transactions are used to move a hexword of victim data from a
commander’s write back cache to system memory and to replace the victim
by moving a hexword of data from the responder to the commander. Hence at a
given index, the exchange of a dirty cache line by writing it to memory with a
memory line with a different tag. This transaction is restricted to occur only to
memory space. If the octaword wrap function is used, the victim write and fill
read wraps or doesn’t wrap with identical octaword ordering.
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Figure 19–6 System Bus Memory Exchange Timing
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The exchange transaction begins in cycle 0 when the arbiter asserts CA L during
cycle 0. The commander drives its ID and address on the TPHI1 L edge in cycle
0. The transaction type and parity can be driven with ID and address or one half
cycle later on the TPHI1 H edge in cycle 1, through cycle 1. The ECHADR fields
must be driven with valid tag content to tell the memory node where to write
the data. The exchanging commander may stall in cycle 2 by asserting CSTALL1 L
and CSTALL2 L in cycle 1.5 to 2.5. Bystanding or responding nodes do not attempt
to stall in cycle 2. The exchanging commander continues to drive the CAD signals
during stalled cycle 2(s) with unspecified data and good parity until it drives
write data and parity in nonstalled cycles 2 and 3 sequence. The commander
drives the victim write data and parity in the nonstalled cycles 2 and 3, along
with an indication of the goodness of the data on CUCERR L .

All exchanged victim writes update memory, but are not accepted by backup
caches. If the victim data has an uncorrectable error the commander asserts
CUCERR L with the data in non-stalled cycles 2 or 3, to signal memory to mark
the data bad. If CUCERR L is asserted with the first write data, it remains
asserted through cycle 3. The commander releases CUCERR L at the end of cycle
3. The commander disables its CAD and CPARITY L drivers at the end of cycle 3.
The responder confirms the address and command and each portion of the write
data by asserting CXACK L two cycles after command/address cycle 1 and two
cycles after the non-stalled cycle 2 and 3 regardless of cycle 4 stalls.

If the commander does not receive command/address CXACK L two cycles after
it was driven, it must complete the transaction sequence, ignore CXACK L and
CUCERR L responses to the write data and ignore the read data, parity, and
CUCERR L in cycles 5 and 6. If CXACK L is received two cycles after cycle 1,
the commander continues to check confirmation of the write data two cycles
after valid data was driven via CXACK L. The responder, which could be the
memory responder of the read or the write or both, or a bystander may stall the
transaction in cycle 4 by asserting CSTALL0 L and CSTALL1 L in cycle 3.5. Note
that CXACK L data responses are not delayed by cycle 4 stalls.

Cache nodes return their probe results of the read address in cycle 3.5 to 4.5.
Only the read address need be probed; it is not necessary to probe the victim
write address. The remainder of the transaction, the read response, is identical
to that described above in Figure 19–4. BCREQ L negates one cycle after cycle 1
regardless of cycle 2 stalls to allow a processor backup cache to be returned from
bus use to processor use. The arbiter deasserts bus grant signals at the end of
cycle 1 and the granted node may deassert its request one cycle later.

19.6.4 Memory Write Transactions
These transactions are used to move a hexword of data from a commander to a
memory address space responder. Figure 19–7 is a timing diagram of the system
bus write cycle.
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Figure 19–7 System Bus Write Timing
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The transaction begins in cycle 0 when the arbiter asserts CA L during cycle
0. The commander drives its ID and address on the TPHI1 L edge in cycle 0.
The transaction type and parity can be driven with ID and address or one half
cycle later on the TPHI1 H edge in cycle 1, through cycle 1. The commander does
not have to drive a meaningful address in the ECHADR CAD fields. The writing
commander may stall in cycle 2 by asserting CSTALL1 L and CSTALL2 L in cycle
1.5 to 2.5. Bystanding or responding nodes do not attempt to stall in cycle 2.
The writing commander does not stall in cycle 2 of read, null, and noncacheable
address space write transactions. The writing commander continues to drive
the CAD signals during stalled cycle 2(s) with unspecified data and good parity
until it drives write data and parity in non-stalled cycles 2 and 3 sequence. The
commander drives the write data and parity in the non-stalled cycle 2 and 3,
along with an indication of the goodness of the data on CUCERR L . All write
transactions update memory.

If the write data has an uncorrectable error, the commander asserts CUCERR L
with the data in non-stalled cycles 2 or 3, to signal memory and CPU nodes to
mark the data bad. If CUCERR L is asserted with the first write data, it remains
asserted through cycle 3. The commander releases CUCERR L at the end of cycle
3. The commander disables its CAD and CPARITY L drivers at the end of cycle 3.
The responder confirms the address and command and each portion of the write
data by asserting CXACK L two cycles after command/address cycle 1 and two
cycles after the non-stalled cycle 2 and 3 regardless of cycle 4 stalls.

If the commander does not receive command/address CXACK L two cycles after it
was driven, it must complete the transaction sequence and ignore CXACK L and
CUCERR L responses. A node may assert CSTALL0 L and CSTALL1 L in cycle 3.5 to
effect flow control over the transaction by stalling it in cycle 4. CDIRTY L never
asserts during this transaction. CSHARED L may assert in cycle 3.5 to 4.5 by a
CPU node which chooses to accept the line. A CPU node does not assert CSHARED
L if it chooses to invalidate the line.

If a cache node decides to accept the write, it must mark the line SHARED and
NOT DIRTY. BCREQ L negates one cycle after cycle 1 regardless of cycle 2 stalls,
to allow a processor’s backup cache to be returned from bus use to processor use.
The arbiter deasserts bus grant signals at the end of cycle 1 and the granted node
may deassert its request one cycle later.

Latent write errors may be reported by responder nodes via the C_ERR L signal.
If the memory nodes detect bad write data parity, they complete the write with
the check field forced to identify the line with an uncorrectable error.

19.6.5 Noncacheable Address Space Write Transactions
This transaction is used to move a hexword of data from a CPU commander to
a CSR in a responder. This transaction is restricted to noncacheable address
space. The transaction is similar to the memory write transaction, except for the
behavior of the CUCERR L and CSHARED L signals, and a CSTALL0,1 L assertion
restriction. The responding node may inform the CPU commanding node that it
can not accept this CSR write by asserting the CUCERR L signal during the first
cycle 4 and optionally all other cycle 4(s), to be sampled by the commander at
the end of the first cycle 4, to fail the STxC transaction. Figure 19–8 shows the
timing diagram for a system bus noncacheable address space write.
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Figure 19–8 System Bus Noncacheable Address Space Write Timing
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19.6 System Bus Transactions and Timing

CSHARED L does not assert because this is a transaction in noncacheable
address space and is not probed by CPU nodes. The noncacheable address
space responder fails the store or store conditional by asserting CUCERR L in the
first cycle 4. This store failure is used for CSR flow control from a CPU to the I/O
node. Hence a write to the mailbox CSR or to remote noncacheable address space
should be a STxC type instruction.

If the responder node detects a write data parity error in the first octaword of
write data, it does not complete the write to the destination. If the responder
detects a write data parity error in either octaword, it indicates the error to the
CPU node with the C_ERR L . A bystanding node does not stall the noncacheable
address space write transaction.
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Part V
The Firmware

This part contains a detailed functional description of the system firmware.
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The DEC 4000 can be in one of six states as listed below:

1. Powered off

2. Powering-up and Initializing

3. Bootstrapping

4. Halted

5. Restarting

6. Running

The transition between the major states are determined by the current state and
a number of variables and events including the following:

• Whether power is available to the system

• The console AUTO_ACTION environment variable

• The bootstrap in progress (BIP) flags

• The start-capable (RC) flags

• Processor error halts

• The CAL_PAL HALT instruction

• Console commands

Figure 20–1 shows the state transitions for the DEC 4000 system.
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Figure 20–1 DEC 4000 System State Transitions
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This chapter explains the behavior of the DEC 4000 system under power-up and initialization as
well as reset and halt.

21.1 The Powered Off State
For the purposes of this discussion, the beginning state of the system is defined
as powered off. No power is flowing to the system processors.

• The AC power cord is connected from the DEC 4000 system to a power main
outlet.

• The AC present LED is illuminated (on the FEU).

• The AC breaker switch is in the off position (on the FEU).

• The DC On/Off switch is in the off position (on the OCP).

• The 48 volt BUS_DIRECT line is energized and the 48 volt BUS_SWITCHED line is
deenergized.

21.2 The Power-up Process
Power-up is the term given to a process that starts the flow of electrical current to
a device or system. The power-up sequence requires that the AC power supplies
energize and stabilize first, allowing the DC power to be requested via the OCP.
On DC request, the logic circuits are energized and the DC logic initialization
process takes place. There are several components that participate in the power-
up and initialization process. These components and the hardware interconnects
between them must be operating correctly in order for the firmware to load and
execute and provide status indicatior to the operator control panel. Figure 21–1
shows a diagram of the required hardware interconnects for system initialization.

• +5 volts DC voltage

• System bus clocks

• System bus reset logic

• DECchip™ 21064 CPU chip

• DECchip™ CPU’s SROMs and 87C652 D-bus microcontroller for the serial
control bus

• Operator control panel
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21.2 The Power-up Process

Figure 21–1 Initialization Block Diagram
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21.2 The Power-up Process

21.2.1 AC Power-Up
When AC power is applied to the system, either when the AC circuit breaker in
the back of the system is turned to the on position or when the electricity returns
after a power outage, the following sequence is followed:

1. The front end unit (FEU) begins operation and energizes the BUS_DIRECT
output. The BUS_SWTCHD and BUS_SWITCHD_RTN lines are held off. The fan
power converter is also held off.

2. The bias supply on the power system controller (PSC) starts operation when
energized by the BUS_DIRECT supply. Once the PSC bias supply output voltage
is valid, the microprocessor on the PSC begins its self-check.

If the self-check fails, the PSC FAILURE LED is illuminated and the system
latches off. If the self check is successful, the PSC OK LED is illuminated
and power-up proceeds.

3. The PSC then checks for the DC power to be commanded on. If the OCP is
requesting DC power to be turned on and the system is not configured as a
slave on the power bus, the DC power up proceeds. If the system is configured
as a slave on the DEC 4000 power bus, the slave-in input to the PSC must
also be requesting DC power to be turned on in order for the DC power-up to
proceed. The OCP requests DC power to be energized via the DC_ON_OCP L
signal. If these conditions are not met, the PSC idles, monitoring for DC to be
requested.

21.2.2 DC Power-Up
It makes no difference in the following sequence whether the system is powering
up from the application of AC power or from a DC off condition.

1. If DC has been requested, the PSC checks for an overtemperature condition.
If overtemperature is detected, the PSC aborts the power-up and reports the
overtemperature failure.

2. The PSC then starts the fans (at full speed) by asserting FAN_POWER_ENABLE
H to the FEU. If the fans fail to start, the PSC aborts the power-up and
responds to the fan failure.

3. With fan rotation established, ASYNC_RESET L is asserted and POK H negated.
See Section 21.2.3 for detailed information about the ASYNC_RESET L and
CRESET signals.

4. The power system control unit delivers a ASYNC_RESET_L signal to CPU0 30 to
50 ms after the DC voltages are stable.

As a side effect of the assertion of CRESET, the OCP will have both CPU LEDs
lit.

5. ASYNC_RESET_L holds CRESET_L while the system bus clocks stabilize to
constant frequency and duty cycle.

6. The 48 VOLT_SWITCHED bus is energized by asserting the BUS_REQUEST H
signal to the FEU.

If the BUS_SWTCHD_OK L signal is not asserted within approximately 100 ms,
the power-up is aborted. The fans are turned off, the FEU_FAILURE LED is
illuminated, and the PSC enters latching-shutdown mode.
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21.2 The Power-up Process

7. Once the 48 VOLT_SWITCHED bus is stable, the 3.3V output is energized by
asserting V3_ENABLE H. If the 3.3V output does not come into regulation within
approximately 100 ms, the power-up is aborted. The 48 VOLT_SWITCHED
bus and fans are turned off, the failure LED on the DC3 converter unit, is
illuminated, and the PSC enters the latching-shutdown mode.

8. Once the 3.3V bus is in regulation, the 5V output is energized by asserting
V5_ENABLE H.

If the 5V output does not come into regulation within approximately 100 ms,
the power-up is aborted. The 3.3V and 48 VOLT_SWITCHED buses and fans are
turned off, the failure LED on the DC5 converter unit is illuminated, and the
PSC enters the latching-shutdown mode.

9. Once the 5V bus is in regulation, the 2.1V output is energized by asserting
V2_ENABLE H and the DC5 OK LED illuminated.

If the 2.1V output does not come into regulation within approximately 20 ms,
the power-up is aborted. The 5V bus, 3.3V bus, 48 VOLT_SWITCHED bus and
fans are turned off, the failure LED on the DC3 converter unit is illuminated,
and the PSC enters the latching-shutdown mode.

10. Once the 2.1V bus is in regulation, the 12V output is energized by asserting
V12_ENABLE H .

If the 12V output does not come into regulation within approximately 100 ms,
the power-up is aborted. The 2.1V, 5V, 3.3V, and 48 VOLT_SWITCHED buses and
fans are turned off, the failure LED on the DC3 converter unit is illuminated,
and the PSC enters the latching-shutdown mode.

11. Once the 12V bus is in regulation, DC3 OK LED is illuminated.

12. At this point the entire system is energized. The PSC checks the status of the
entire power system.

13. If everything is still functioning after a delay of 10 ms minimum (50 ms
maximum), ASYNC_RESET_L is deasserted by the PSC and logically ANDed
on the CPU0 module with a signal that indicates that the clock has run for
20 ms. This ANDed signal is then synchronized to the PHI1 clock and TPHI1
clock to cause the synchronous deassertion of CRESET_L.

21.2.3 ASYNC_RESET_L and CRESET_L
The term reset refers to a hardware condition whereby a switch is pushed that
causes the CPU to reset. The reset causes the system to invoke the initialization
sequence and return to a power-up hardware state. The operator control
panel has a reset button which causes the system to reset the CPU. Software
initialization routines must manage devices which must be returned to initial
conditions after the system was powered-up. To reset a system which has been
powered-up, the operator control panel reset switch generates a 10 ms minimum
pulse that is directly gated to the ASYNC_RESET_L signal on the power-controller
module.

The reset switch asynchronously returns the system bus nodes to a power-up
state via the ASYNC_RESET_L and CRESET_L signals.

The following happens asynchronously on the assertion of CRESET_L :

• CAD(127:0), CXACK_L , and CPARITY(3:0) are tri-stated and pulled up.

• CSYS_EVENT_L, C_ERR_L, CUCERR_L, CDIRTY_L, CSHARED_L, CSTALL0_L and
CSTALL1_L are released and pulled up by their termination pullups.
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21.2 The Power-up Process

• CALL, CPUG_L, IOG_L, IOREQ_L, CPUREQ_L, CIRQ_L(1:0), BCREQ_L and CINT_TIM
are driven deasserted. These signals do not have backplane pullups.

• PHI1, PHI1_L, PHI3, and PHI3_L free run 10 ms after stable +5v supply.

All nodes asynchronously tri-state, release, and negate all system bus signals
within 100 ns of the reception of CRESET_L.

ASYNC_RESET_L asynchronously causes CRESET_L to assert 100 ns maximum later.

The negation of the operator control panel reset causes ASYNC_RESET_L to negate.

The CPU0 module synchronizes ASYNC_RESET_L to the TPHI1 rising edge and
negates CRESET_L with a minimum of 4 ns setup time to TPHI1 at the receiver
nodes.

CRESET_L is asserted for not less than 10 ms.

The PHI clocks continue to run during this reset sequence to ensure that all logic
returns to the initial state.

21.3 System Initialization
Initialization is the term given to the sequence of steps that prepares the system
to start. A system initialization occurs following power-up and operator control
panel initiated reset. During initialization, the console is initialized and all of the
subsystem’s logic circuits receive the message that they are getting ready to start.

Most of the initialization process is controlled by the primary processor (CPU0).
Each processor module contains one 21064 CPU chip and one 87C652 D-bus
microcontroller chip. For this discussion, the naming conventions will be repeated
here.

• CPU0 and CPU1 refer to the two processor modules.

CPU0 is the primary processor.

• P0 and P1 refer to the 21064 CPU chips, one on CPU0 and one on CPU1
respectively. In some cases where the text refers to both CPU chips, the term
21064 is used.

• Micro0 and Micro1 refer to the two 87C652 D-bus microcontrollers on
CPU0 and CPU1 respectively.

The startup of the 21064 CPU chip (P0 or P1) is controlled by serial ROM (SROM)
code that is loaded into the 21064’s instruction cache. The startup of the 87C652
D-bus microcontroller (Micro0 or Micro1) is controlled by firmware contained
inside the D-bus microcontroller chip. On initialization, all four of these devices
start in parallel after the deassertion of ASYN_RESET_L.

There are several synchronization points throughout the initialization process.
One being the synchronization of the 21064 chip and its accompanying D-bus
microcontroller, the other being the synchronization of the two processor modules.

Control is shared at first by 21064 and the D-bus microcontroller. Control is then
passed to the D-bus microcontroller and later to the FEPROM firmware code.
When the D-bus microcontroller is in control, testing is achieved by directing
commands from the D-bus microcontroller to the 21064 CPU chip. The 21064,
in general, waits in an idle loop for commands to be issued to it from the D-bus
microcontroller. This is true on both modules.
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By the time the testing begins, CPU0 has determined that it is the primary
CPU. The 21064 CPUs are in command/response mode. Each of these tests are
initiated by the D-bus microcontroller by sending a command to the processor.
That command initiates a test on the processor and returns either its success
or an error status which then starts the next test. The initialization flow is
described in Figure 21–2 through Figure 21–4.

The initialization flow is detailed in the following list. Callout numbers in the list
correspond to callout numbers in Figure 21–2 through Figure 21–4 .

! The deassertion of ASYNC_RESET_L by the power system controller marks
the start of code execution for the 21064 processor chips and the D-bus
microcontrollers on both processor modules.

The D-bus microcontrollers work in conjunction with the serial control bus
and the 21064 CPUs to test basic features of the processor modules. P0 and
P1 load their respective SROM code into their instruction caches and start
execution. At the same time Micro0 and Micro1 read their internal firmware
code and start. These operations happen exactly in parallel and all four
devices are shown positioned on the same starting line in Figure 21–2.

" Both P0 and P1, under the direction of their respective SROM code,
simultaneously initialize themselves and their backup caches. After each
21064 chip completes its initialization, it waits for a synchronization byte
from its D-bus microcontroller indicating that the D-bus microcontroller has
completed its initialization. The D-bus microcontrollers have a significantly
greater number of steps to perform before synchronizing with the 21064 chips.

The D-bus microcontrollers determine the configuration of the system.

• The D-bus microcontrollers determine which processor they are on, via a
hardware bit BCPU2_ID L which is latched from IOREQ L from the backplane
(J5 pin 161).

• They determine speed bits, and auto unload configuration by reading the
EEROM on the serial control bus bus.

• They determine how many memory modules are configured in the system
and the configuration byte for the memory modules by attempting to read
the EEROMs on the memory boards.

• CPU0 determines whether or not CPU1 is present by attempting to read
CPU1’s EEROM. If that READ fails it is assumed that CPU1 is not
present in the system and the CPU1 LED on the operator control panel is
turned off.

# When the D-bus microcontrollers complete the system configuration, they
send a synchronization byte to their respective CPU chips and wait for the
corresponding synchronization byte from the CPU in a handshake fashion.
A 5516 byte is sent to the to CPU chip because this piece of data has the
property of having alternate one and zero bits.

$ Once the 21064 receives the 55, it calculates the bit rate by counting the time
that it takes to get the first 9 edges, and dividing by 8. It calculates a very
accurate measurement of the bit time.
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Figure 21–2 Initialization Flow Diagram
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% The 21064 sends back a countdown byte of 47 if its on CPU0 and a 48 if
CPU1. At this point the D-bus microcontrollers on each processor module are
in control and operating in parallel.
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& The D-bus microcontroller initiates a sequence of backup cache tests and
waits at the end of the testing. CPU and system bus test the backup cache’s
ability to access itself on the system bus and I/O module on system bus.
Memory is not tested at all at this point. There is a synchronization point
between the two CPUs at the end of the first block of test.

' When CPU1 finishes the test sequence, it sends a message to CPU0 indicating
it has completed the test and enters an idle loop. The message sent to CPU0
allows CPU0 continuing its testing.

CPU0 waits for completion of its own test sequence, completion of CPU1
test sequence, or CPU1 not present and the assurance of a couple of control
character bits being set (AUTO_UNLOAD and AUTO_TEST). This is the
default case.

While any tests are being executed, LEDs on the operator control panel
change to indicate which device is being tested. For example, when the
backup cache is being tested, the CPU LED will be lit. When the system bus
is being tested, the I/O LED is lit and the CPU LEDs are left lit.

( CPU0’s D-bus microcontroller issues a command to the P0 to perform a test
on the largest memory module in the system.

) P0 tests 2 megabytes of memory. It is not a complete module test. It is a
simple test for the most basic failure modes. It does not test all of the memory
modules. Full testing of the system memory modules occurs in the FEPROM
code and occurs later in the initialization process. When this test is complete,
one memory module is enabled and 2 megabytes of it have been tested. This
is done to minimize initialization time. The D-bus microcontroller determines
which memory is the largest.

When CPU0 gets that command, it issues a request packet back to the micro0
to get the configuration bits for the memories.

CPU0 configures all of the memory boards. CPU0 runs a memory test on the
largest memory board and enables the largest memory board that has not
failed.

If it fails, the D-bus microcontroller determines if there are additional memory
modules in the system. It marks the failing module as having failed by
writing to its EEROM and it reissues the test. It will loop on this memory
test command until it runs out of memory modules to try.

+> Once the complete memory test competes successfully, CPU0 sends a packet
to CPU1 requesting that CPU1 reinitialize its backup cache.

+? CPU1 reinitializes its backup cache and sends as a packet to CPU0 saying it
is finished.

CPU1 backup cache is now in a clean state.

Micro0 issues an unload command to its 21064, which then resets the LBUS,
unloads the FEPROMs, verifies the checksum, byte lanes, and byte lane
consistency.
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Figure 21–3 Initialization Flow Diagram
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21.3.1 FEPROM Unloading

+@ P0 unloads the FEPROM code. The FEPROM code for P0 starts at location
800016.
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+A P0 checks the checksum of the FEPROM code to make sure that code in the
FEPROMS is correct. It checks a byte across all 4 byte lanes to see that it is
all the same code. It also checks an additional byte which has the byte lane
number in it to see that the FEPROMS are in the correct socket locations.
Because the checksums are byte-length only, they are not the full width. So
it is possible to have all 4 parts mismatched and not detect it. During this
process, a set of countdowns are being sent back to the D-bus microcontroller,
on CPU0.

+B CPU0 jumps to the start of the FEPROM code.

When the micro0 receives the last (01) countdown byte, it sends a message to
the micro1 asking the D-bus microcontroller to start a special test that forces
the P1 to spin on its processor mailbox. P1 monitors the mailbox waiting for a
non-zero value, then jumps to the location contained in the mailbox.

What this achieves is it commands the P1 to wait for a command from P0
via the P1 processor mailbox. This is how Symmetric MutiProcessing (SMP)
capability is established.

P1 is actually running an instruction cache based loop. Because the
instruction cache is not invalidated, the location can be overwritten. If
the instruction cache is running for example, at location 1000, and location
1000 is written to, it has no effect on the instruction cache. So it is possible to
read and write freely through all of memory running a loop in the instruction
cache and have absolutely no effect on the instructions.

+C FEPROM code assumes control.

The FEPROM code decompress itself because the bulk of the FEPROM code
is stored in a condensed, unexecutable format. Only the very beginning of
FEPROM code is directly executable.

To decompress, FEPROM code copies itself out of its current location and into
"higher memory". The intent of this process is that the FEPROM code must
get itself out of the place where it will be decompressing to. The entire image
is decompressed down to 800016. The first 8000 is the Palcode. The fact
that the FEPROM code is compressed is irrelevant to the transfer operation
performed by the SROM code.) Note that up to this point only 1 memory
module is enabled and 8 megabytes of it have been briefly tested. The
complex memory testing is done by the firmware console which has been
unloaded from the FEPROMS.

+D After the decompress is complete, control is transferred to the P0 and it jumps
to location 800016. At some point further on, PALcode determines whether or
not the operating system software is OSF/1, VMS, or Microsoft NTTM.

At part of the PAL init, the arbitration mask for P1 is disabled so P1 is at this
point stalled waiting to get access to the system bus. This is done to minimize
the performance impact of P1. Part of the PAL init, disables P1 arbitration
ability so the next time P1 attempts to get. attempts to go read its mailbox
which requires a system bus access it will stall waiting for the system bus
grant.

+E Once PAL is initialized and its data structure is in state it calls the DEC 4000
console.
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Figure 21–4 Initialization Flow Diagram
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21.3.2 Console Initialization

+F The console starts its initialization process in order to enable it to aquire
control of the processor.
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During console initialization, the console code builds the HWRPB and
establishes a mere minimal environment.

+G It sets up its initial stack space, and initial heap, which is simply a block of
memory used by the console routines. Stack space for the console is set up
there.

,> It sets up the initial data structures for file names, and process context.
Some of this happens before memory, some happen after memory testing and
configuration. Several data structures are established at the console base
in some portion of memory. This procedure is done prior to memory testing
and is executed out of 1 Meg, essentially out of the backup cache. The data
structures in this heap are file headers, file descriptors data structures, and
device driver data structures.

,? It then starts the the initial drivers. The driver initialization sequence is as
follows:

• Phase 0 - TTY and serial control bus drivers

• Phase 1 - Software Drivers

• Phase 2 - Device Drivers

The driver startup RAM disk driver sequence is defined below:

• The Lbus driver is started and eventually communication to the console is
available.

• The serial control bus is initialized so that the memory EEPROM may be
access. This also uses the Lbus driver.

• The serial control bus driver causes the Lbus driver to test its mailboxes.

,@ The serial control bus driver must be initialized for the memory test.
To initialize the serial control bus driver, several other drivers must be
functioning. The intent is to test the memory and eventually invoke the
console. By initializing the serial control bus, the memory error log may be
accessed. The serial control bus initialization sequence is as follows:

• Driver initialization

• Float 0 and 1 across three CSRs in the 8584 chip

• Driver detected errors

21.3.3 Memory Testing

,A Full memory diagnostics are performed. The memory diagnostics, in general,
first test the CMIC operation and then perform full tests on the DRAMS
making sure that there is enough memory to operate at a very basic level.

Up to this point instructions have been executed out of 1 Meg of backup
cache. There exists a 100 Kb used in heap space. The first 800 Kbytes of code
are the console. This is the deviceless state, the "software-only" state is set
up initially. Memory cell testing is performed by banking all four memory
modules together and testing in parallel.

During any and all memory testing, errors that are detected are logged in the
memory module’s EEPROM that sits on the serial control bus. All errors are
considered hard. When a certain threshold is reached, the board is removed
from the configuration. The event logger uses a FIFO algorithm to capture
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128 lines of text. Because it uses a FIFO algorithm, the user must transfer
the error data into a file if it is to be used more than once.

The initial memory module test sequence follows:

• CSR tests

• Stream buffer tests

• Address line tests

• Bank uniqueness tests

• EDC correctable errors

• EDC uncorrectable errors

• EDC odd slice/even slice errors

The full DRAM testing includes

• Three pass gray code

• EDC used for error detection

• Modules tested in parallel mode

First, the error logs from the EPROMS on each memory module are extracted
and used to precede the memory failure tables.

Unlike past consoles, this console will detect and mark out any pages that
were previously marked in the EEPROM error logs on the subsequent reboot
from some prior operation. Any failures that these tests detect will be written
in to those EPROMS. The concept is any or less detected failures will also be
written into those EEROMS so if the system has been up and running and
the operating system detects a bad memory location it will be recorded in the
EPROMS and at the same point the next time the system is booted, it will be
marked out of the bit map.

This also provides a way of getting around those soft correctable errors in
places like VMS kernal where they can not get remapped or the next time
around they get remapped because they are taken out before VMS gets there
so that precedes the table.

,B Once the testing is complete, a combination of environment variables and
module size are checked to determine interboard interleaving. In the absence
of a user specified interleave, the default interleave for the fastest operation
possible is used. To accomplish the interleaving requires that the console fit
in one megabyte of memory executed out of backup cache. If the user has
specified a set of interleave constraints, they will be validated to assure that
they are achievable within the current module set and if they are achievable,
then that is the interleaving that will be done.

,C Once memory testing is complete, the heap is expanded to its final size (which
is about 2 Meg) and the rest of the drivers are started. Here, a memory heap
structure be used by the diagnostics for the rest of memory is established.
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21.3.3.1 Memory Testing and the Bitmap
The console must test enough memory to allocate memory for its own image
and data structures, the HWRPB, PALcode, scratch areas, page tables, memory
descriptors, and system software.

A hard error is defined as one which is uncorrectable by memory hardware, like
a double-bit error. A correctable error (single bit error) is also considered a hard
error in the context of the console powerup. Pages containing any errors are
marked as unusable. The bitmap will also reflect errors logged in the EEPROM
error log by the operating system. The pages will be mark unusable during the
next console initialization.

21.3.4 Driver Initialization

,D Then the rest of the drivers are started. Their hardware is tested as each
driver is initialized. For example, when the driver for the NCR port is
activated, the NCR chip is tested, The DSSI/SCSI initialization test sequence
is as follows:

• Script RAM data/address lines, memory cells

• Data lines on the Lbus sides of each NCR chip

• Driver startup detects subsystem failures

• Diagnostic script testing of remaining components

When the TGEC’s are brought up, the bus termination is checked. All
the function testing that is done by the console is done as the drivers are
initialized by the driver initialization routines.

Once all the drivers initialize, the power-on script is invoked which checks
some other functions on the I/O module. It checks to make sure that the TOY
clock batteries have never gone dead.

It checks jumpers in the SCSI only port to make sure the continuity cards are
in place.

Access to the power subsystem is initialized. A series of basic network
loopback tests is run and then a series of memory exercisers is run.

The Futurebus+ drivers are initialized.

• Size the system—The initial configuration of Profile B I/O devices on
Digital systems is split between the console code and the device drivers.
Following power-on the console configures the various registers on the
system bus bridge and then probes the Futurebus+ to determine which
devices are present. The probing of each node is begun when all nodes
on the bus have released the reset line. The IEEE Futurebus+ standard
allows up to two nodes on each module (sides 0 and 1). Modules that have
only one node are required to place the node on side 0. An empty slot will
not acknowledge either node address of the module.

• Set Configuration—The configuration routine performs the following
operations on each module after power-up, system reset, and bus
initialization.

• Check TEST_STATUS CSR for successful completion of initialization
and initialization test.
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• Read MODULE_VENDOR_ID and MODULE_SW_VERSION to
determine the device driver associated with the module.

• Concatenate MODULE_VENDOR_ID and MODULE_SW_VERSION
to form a unique number that relates a device to a driver, The IEEE
1212 CSR standard supports other ROM entries for this purpose if the
module has more than one type of node or unit.

• Write the BUS_PROPAGATION_DELAY CSR in each node to properly
set the glitch filters.

• Read the MODULE_LOGICAL_CAPABILITY ROM CSR of each node
to determine the module capabilities for address and data width.

• Read the NODE_CAPABILITIES_EXT_ROM CSR of each node to
determine the node address and data width capabilities.

• Read the NODE_CAPABILITIES_EXT_ROM CSR of each node to
verify that the node is capable of extended test.

• Write the NODE_IDS SCR to update the bus number, if applicable
(the default value is 1023).

• Write the SPLIT_TIMEOUT, TRANSITION_TIMEOUT, BUSY_
RETRY_DELAY, BUSY_RETRY_COUNTER,ERROR_RETRY_DELAY,
and ERROR_RETRY_COUNTER CSRs to the correct value for the
system.

• Write the LOGICAL_MODULE_CONTROL CSR to set the corret
values for the 64_BIT_ADDRESS bit, DATA_WIDTH field, MASTER_
ENABLE bit, and COMPELLED_DATA_LENGTH field (PARITY_
REPORT_ENABLE bit clear). The values written to these fields
are determined by the module’s capabilities CSRs. There is no need
to write the LOGICAL_COMMON_CONTROL CSR on Profile B
modules.

• If the node has implemented extended tests (as determined earlier by
the read of the NODE_CAPABILITEIS ROM), then the ARGUMENT
CSRs will be written with the starting address of the 4-Kbyte block of
memory for use by extended diagnostics.

• Write the TEST_START CSR to initiate the default extended test
suite.

• Check the TEST_STATUS for successful completion of extended tests.

• Enable parity error reporting on the node by rewriting the LOGICAL_
MODULE_CONTROL CSR with the correct values for PARITY_
REPORT_ENABLE, 64_BIT_ADDRESS bit, DATA_WIDTH field,
MASTER_ENABLE bit, and COMPELLED_DATA_LENGTH field.

The device driver is responsible for configuring and MEMORY_BASE,
MEMORY_BOUNDS, UNIT_BASE, UNIT_BOUNDS and any initial unit
space CSRs.

,E Once console initialization is complete, auto action flags, auto boot flags, are
read. (Auto action flags are all SRM defined.) Here console initialization
is complete and the next action is either to boot, restart, or remain at the
console level, depending on the state of autoboot.
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21.3.4.1 I/O Adapter Configuration
The console performs only minimal initialization of the I/O bus adapters following
Self test.

At this point the 21064 SROM code and the D-bus microcontroller are
synchronized. The console display shown system status.
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Halt is the term given to the action of stopping the processor from normal
processing.

Halt can occur in one of several ways:

• The HALT switch on the OCP

• A system error

• A HALT command entered at the console on a multiprocessor system.

22.1 The HALT command
Internal system error or halt button operation on the operator control panel. A
HALT command entered at the console terminal, has no effect on single processor
systems because it is assumed that the CPU is already halted if the firmware
code has been invoked. However on a dual processor system, the second processor
can be halted. If a processor is halted via an error detection, processor control is
typically passed to the firmware code.

22.2 The HALT Switch on the OCP
The operator control panel halt switch causes CSYS_EVENT_L to assert and the
state of the switch can be read by a CPU via the serial control bus. The CHALT_L
pulse generated by the operator control panel is 200 to 500 ns. The switch is
latched, so that software can use the switch state to decide to reboot. The switch
may be in either state during power-up, reset, or power-down sequences, however
the CHALT_L signal is normally negated.

22.3 System Error
A system error will cause a system halt and force the processor into console IO
mode.
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Bootstrapping is the process of locating and loading primary program image
and transferring control to it. The system firmware uses a bootstrap procedure
defined by the Alpha AXP Architecture. On a DEC 4000 AXP system, bootstrap
can be attempted only by the primary processor, commonly referred to as the
"boot processor". The firmware uses device and optional filename information
specified either on the command line or in appropriate environment variables.
There are only three conditions where the boot processor attempts to bootstrap
the operating system:

1. The BOOT command is typed on the console terminal.

2. The system is reset and AUTO_ACTION = BOOT.

3. An operating system restart is attempted and fails.

The function of the firmware in the bootstrap state is to load a program into
memory and begin its execution. This program may be a primary bootstrap
program such as Alpha Primary Boot (APB), Ultrixboot, or any other applicable
program specified by the user or residing in the boot block.

23.1 DEC 4000 Bootstrap Algorithm
The console maintains a "bootstrap in progress" flag (BIP). This cold start flag
is used to prevent repeated attempts to automatically bootstrap a failed system.
The following algorithm is used to perform the system bootstrap:

1. Build a valid restart parameter block.

2. If this boot attempt is a result of a console BOOT command (an expected
entry), skip to step 3 and clear the expected entry flag.

3. If the BIP flag is set, the boot fails.

4. Set the BIP flag.

5. Search the device database for a callback that matches the specified boot
device. If none is found, the boot fails.

6. Load the boot parameters into the HWRPB.

7. Load the boot image from the boot device.

8. Transfer control to the boot device.

If the bootstrap fails, the console will display a message on the console terminal
and return to the console prompt. If bootstrap succeeds, the operating system is
responsible for clearing the BIP flag.

23.2 Environment Variables
An Alpha AXP system console uses environment variables. Environment
variables provide a mechanism for defining console state and controlling console
operation. Environmemt variables may be changed with system software, may
change as a result of console state changes, and may be modified at the console.
They may be read, written, or saved depending on the variable attribute. Each
variable consists of an identifier (ID) and a value maintained by the console.
There are three classes of environment variable.

1. Common to all Alpha AXP implementations

2. Specific to a given console
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3. Specific to system software

The DEC 4000 system uses the Alpha defined variables as well as variables
specific to its console (class 2). Appendix E lists all the environment variables,
their attributes, their function, and identifies the environment variables that are
specific to the DEC 4000 system.

23.3 Hardware Restart Parameter Block
Following successful completion of the power-up script, the firmware initializes a
data structure called the Hardware Restart Parameter Block or simply HWRPB.
The HWRPB is a page-aligned data structure that serves as a communications
area between the console and the operating system, as well as between CPUs
in a multiprocessor system. The HWRPB is a critical resource during powerfail
recoveries and other machine restart situations.

The HWRPB is created by the primary processor following a system reset. The
HWRPB is not affected by a node reset of any device. Further information
and status may be written into the HWRPB by software during and after
bootstrapping. To speed the search for the HWRPB during CPU restarts and to
ensure that only the real HWRPB is found, the HWRPB must be located in the
lowest physical addresses of good memory. The console ensures that the HWRPB
is both physically and virtually contiguous.

The console stores the physical address of the HWRPB in the non-volatile
HWRPB_ADDR environment variable during console initialization. When
attempting a restart operation in a system where the contents of memory
are backed up by battery, the console examines the memory pointed to by the
environment variable for a valid HWRPB. System software must never move the
HWRPB to a different memory location; operation of the system is UNDEFINED
if such an attempt is made.

During the boot process, the console virtually maps the entire HWRPB. The total
length of the HWRPB is dependent on the number of per-CPU slots supported.
DEC 4000 allocates space for the maximum of 2 CPU slots, regardless of whether
the slots are actually filled.

23.4 Console Callback Routines
The firmware uses a set of minimal device handler routines, called "call backs", to
read the bootblock and, subsequently the primary bootstrap program into memory
from the boot device. This technique is called "bootblock" booting. A pre-defined
interface to these routines allows them to also be used by the primary bootstrap
to load a secondary bootstrap or system image. The callback routines are defined
by the Alpha AXP Architecture.

To begin a bootstrap, the firmware writes boot device information to the HWRPB
and appropriate environment variables to be used by the boot callbacks and
secondary bootstrap programs. The console locates a boot callback for the
specified device. If a suitable callback is found, control is transferred to it.

If the target device is a disk, the callback loads logical block zero (the "bootblock")
into memory. Unlike the VAX bootblock, the Alpha bootblock contains no code for
loading the primary bootstrap. Rather, it contains descriptors that point to the
logical block numbers (LBN) where the primary bootstrap program can be found.
Initially, the LBN descriptor will point to the first of multiple contiguous blocks
containing the primary bootstrap program. However, the architecture allows for
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the primary bootstrap program to be stored on discontinuous blocks, which would
all be loaded into memory by the boot callback to form a single program.

The structure of the Alpha bootblock is given in Figure 23–1. The Alpha LBN
descriptor information is located at the end of the block. The VAX bootblock
structure remains in the beginning of the block. This permits a VAX and Alpha
to share a single, combined bootblock.

23.5 Boot Block Calling Interface
THe CPU loads the primary bootstrap program by invoking a boot callback
located in ROM. The boot callback initializes the boot device and reads the first
logical block from the device into the first page of good memory. This "boot block"
shown in Figure 23–1 contains information about the location of the primary
bootstrap on the device. The boot callback uses this information to then load the
primary bootstrap program.

The callbacks may use one or more pages at the top of the first 256Kb block of
good memory to hold data structures required by the I/O adapters. Data read by
the boot callback should not overwrite these structures.

Figure 23–1 Alpha AXP Boot Block
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Table 23–1 Alpha AXP Boot Block Field Definitions

Field Name Description

Block Count if Flag<0> is 0, this is the size, in blocks, of the
primary bootstrap program. If Flag<0> is 1, then this
is the number of additional boot blocks.

Start LBN If Flag<0> is 0, then this is the starting LBN of the
primary bootstrap program. If Flag<0> is 1, then this
is the starting LBN of the additional boot blocks.

Flags If bit 0 of the flag field is a 0, then the primary
bootstrap program is contiguous and is completely
described by the Block Count and Start LBN. If
bit <0> is a 1, then the primary bootstrap program
is discontiguous, and Block Count and Start LBN
describe the additional boot blocks. Bits <63:1> are
reserved.

Checksum Checksum of bytes 0-1F7. Algorithm is a 64 bit 2’s
complement sum, ignoring overflows.

If the target device is not a disk, the boot callback must know how to locate the
bootblock or the primary bootstrap program. Once the primary bootstrap program
has been loaded, the console passes control to it.

23.6 Boot Devices
The boot devices supported are determined by the boot callbacks stored in ROM,
and by the devices supported by the primary bootstrap program.

Table 23–2 Supported Boot Devices

Adapter Bus Device Name

IO module Ethernet TGEC EZAn

IO module DSSI/SCSI Disk DIan

IO module DSSI/SCSI Tape MIan

Futurebus+ FDDI tbd tbd

23.7 Boot Parameters
The console is responsible for loading various parameters into the HWRPB before
transferring control to the primary bootstrap. These parameters are used to pass
information to the operating system. Other information is passed to the operating
system via environment variables. The boot parameters passed from the console
to the operating system are described in Table 23–3.

Table 23–3 Boot Parameters

Parameter Passed By

Boot device specification BOOTED_DEV environment variable

(continued on next page)
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Table 23–3 (Cont.) Boot Parameters

Parameter Passed By

Boot control flags BOOTED_OSFLAGS environment
variable

Boot filename BOOTED_FILE environment variable

Physical address of HWRPB HWRPB_ADDR environment variable

Halt PC Per-CPU Slot of HWRPB

Halt PS Per-CPU Slot of HWRPB

Halt code Per-CPU Slot of HWRPB

Address of good memory Memory Data Descriptor Block

23.8 Disk and Tape Booting
Each tape boot callback rewinds the tape before it performs the first read, and
before transferring control to the loaded image. The boot callback for a tape
device checks the length of the first block read from the tape. If the block is 80
bytes long, the tape is assumed to be ANSI labeled and the console is assumed
to be the first file on the tape. In this case, the boot callback skips to the first
tapemark, and reads blocks into memory, storing them beginning at the address
passed in SP.

Blocks are loaded until a tapemark is encountered, and then control is passed to
the first byte in the loaded image. If the first block of the tape is not 80 bytes
long, the remaining contents of the first file are loaded and control is transferred
to the loaded image at offset 12 from the base of good memory.

23.9 Ethernet Booting
The local Ethernet device is the TGEC which resides on the I/O module. The
DEC 4000 supports up to two local Ethernet ports, referenced by the firmware as
devices, "eza0" and "ezb0".

Whenever a network bootstrap is selected on a DEC 4000 system, the bootstrap
routine makes continuous attempts to boot from the network. The network
bootstrap continues, until either a successful boot occurs, a fatal controller error
occurs, or the boot is terminated with a Control-C.

Two Ethernet protocols are supported for network bootstraps, DECNET MOP
and TCP/IP BOOTP. The environment variables, "eza0_protocols" and "ezb0_
protocols", are used to define the default protocols to be used for booting from
each port. These variables can be set to either "mop" or "bootp". By default, these
variables are set to "mop bootp", enabling both boot protocols. Alternately, MOP
and BOOTP attempts are made until the boot succeeds.

When the bootstrap succeeds control is passed to the loaded image.
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23.9.1 MOP Booting
Whenever the environment variables, "eza0_protocols" and "ezb0_protocols",
contain the string "mop"; the DEC 4000 bootstrap uses the DECNET MOP
program load sequence for bootstrapping the system and the MOP "dump/load"
protocol type for load related message exchanges.

The bootstrap routine, the requester, starts by sending a REQ_PROGRAM
message in the appropriate envelope to the MOP "dump/load" multicast address.
In order to support both DECNET Phase VI and Phase V servers, the messages
are sent in both formats, first four MOP V3 messages, then four MOP V4
messages at one second intervals. It then waits for a response in the form of
a VOLUNTEER message from another node on the network, the MOP load
server. If a response is received, then the destination address is changed from the
multicast address to the node address of the server. The same REQ_PROGRAM
message is retransmitted to the server as an acknowledge which initiates the
load.

Next, the console begins sending REQ_MEM_LOAD messages in response to
either:

A MEM_LOAD message, while there is still more to load,
A MEM_LOAD_w_XFER, if it is the end of the image, or
A PARAM_LOAD_w_XFER, if it is the end of the image and operating system
parameters are required.

The "load number" field in the load messages is used to synchronize the load
sequence. At the beginning of the exchange, both the requester and server
initialize the load number. The requester only increments the load number
if a load packet has been successfully received and loaded. This forms the
acknowledge to each exchange. The server will resend a packet with a specific
load number, until it sees a request with the load number incremented. The final
acknowledge is sent by the requester and has a load number equivalent to the
load number of the appropriate PARAM_LOAD_w_XFER message + 1.

Because the request for load assistance is a MOP "must transact" operation,
the network bootstrap continues indefinitely until a volunteer is found. The
REQ_PROGRAM message is sent out in bursts of eight at four second intervals,
the first four in MOP Version 4 IEEE 802.3 format and the last four in MOP
Version 3 Ethernet format. The backoff period between bursts doubles each cycle
from an initial value of four seconds, to eight seconds,... up to a maximum of five
minutes. However, to reduce the likelihood of many nodes posting requests in
lock-step, a random "jitter" is applied to the backoff period. The actual backoff
time is computed as (.75+(.5*RND(x)))*BACKOFF, where 0<=x<1.

23.9.1.1 MOP Network "Listening"
Whenever the DEC 4000 console is running, it "listens" on each of its ports for
other maintenance messages directed to the node and periodically identifies
itself at the end of each 8 to 12 minute interval, prior to a bootstrap retry. In
particular, this "listener" supplements the MOP functions of the console load
requester typically found in bootstrap firmware and supports:

• A remote console server that generates COUNTERS messages in response to
REQ_COUNTERS messages, unsolicited SYSTEM_ID messages every 8 to 12
minutes and solicited SYSTEM_ID messages in response to REQUEST_ID
messages, as well as, recognition of BOOT messages.

• A loopback server that responds to Ethernet LOOPBACK messages by
echoing the message to the requester.
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• An IEEE 802.2 responder which replies to both XID and TEST messages.

23.9.2 BOOTP booting
Whenever the environment variables, "eza0_protocols" and "ezb0_protocols", are
set to "bootp"; the DEC 4000 attempts a Internet boot. The console implements
TFTP and BOOTP client protocols for network bootstrapping in an Internet
environment. Supporting these TFTP and BOOTP requires pieces of UDP, IP and
ARP.

Note that behavior of this firmware depends in part upon behavior of the software
running on the server host, which varies from server to server. For example, the
exact format of the file path name specification used with TFTP depends on
the server: the Ultrix TFTP server requires a partial path name, and the OSF
server requires a complete path name. Unix systems frequently name the TFTP
server "tftpd" and the BOOTP server "bootpd". (See the appropriate system
documentation for server details. )

23.9.2.1 Setting up the Console for BOOTP Boots
For BOOTP and TFTP to operate reliably, several network parameters, contained
in environment variables, must be properly configured. The Internet protocols are
robust and thus may work intermittently if the parameters are misconfigured,
which can make debugging a misconfiguration difficult. The next few paragraphs
define what you need to know to get the BOOTP software working.

Note

Each network port has a set of environment variables prefixed with the
port device name, either "eza0_" or "eza0_". To examine the current
network port environment variables use the console "show" command, for
instance:

>>>show eza0*
>>>show ezb0*

In the following discussion only the port "eza0" is configured, however the
same procedure would apply to "ezb0" for BOOTP configuration.

First, the environment variable "eza0_protocols" should include the string "bootp"
to enable BOOTP, TFTP, etc. (The variable may also include "mop" to enable MOP
booting.) In particular, if not enabled the BOOTP software will not be invoked for
booting. Also, the network driver may not enable reception of broadcast packets,
which breaks ARP.

Each interface has a small database of information required to operate the
BOOTP software on that interface. Internally the database is kept in a 300
byte structure having the same format as a BOOTP packet. This database can
be directly read and written in binary form through the BOOTP protocol driver;
more on that later. The four most important fields of the database can be accessed
in a friendlier fashion through the environment variables "eza0_inetaddr", "eza0_
sinetaddr", "eza0_ginetaddr", "eza0_inetfile". The first three are the Internet
addresses for the interface (eza0), the remote server host, and remote gateway
host, respectively. These variables use Internet standard dotted decimal notation;
e.g., "16.123.16.53". "Eza0_inetfile" contains a file to be booted and is formatted
simply as a string.
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The most important of these four is the local address, "eza0_inetaddr". TFTP and
ARP will not operate properly without the correct address. "Eza0_ginetaddr"
is the address of an Internet gateway on the local network. TFTP cannot
communicate beyond the local network if this gateway address is not correct.
"Eza0_sinetaddr" is the address of a server, which may or may not be on the
local network. Ordinarily this is the server from which to boot. This is the
default remote host contacted by TFTP. "Eza0_inetfile" is ordinarily the file to be
booted. This should be a fully qualified file name, according to whatever rules are
specified by the TFTP server on the remote host. This is the default file name
requested by TFTP.

The interface database must be initialized somehow before TFTP can be used.
The database can be initialized by manually setting the four database variables,
by explicitly invoking BOOTP, or automatically on the first invocation of TFTP.
Whether initialization occurs on the first TFTP depends on whether the database
has been marked as initialized. The database will be marked as initialized on the
first occurrence of any of three events: the invocation of TFTP, the invocation of
BOOTP, or the setting of any of the four database environment variables.

The most common case is the invocation of TFTP. When TFTP is invoked and the
database has not been marked initialized then the database will be automatically
initialized by one of two methods, as specified by the environment variable "eza0_
inet_init". If "eza0_inet_init" is set to "bootp" (the default) the BOOTP protocol
driver will be invoked to initialize the database by broadcasting a BOOTP request
and storing the response in the database. If "eza0_inet_init" is set to "NVRAM"
then the database will be initialized by copying the contents of four nonvolatile
default variables into the four database variables. The four nonvolatile default
variables are "eza0_def_inetaddr", "eza0_def_sinetaddr", "eza0_def_ginetaddr"
and "eza0_def_inetfile". These variables obviously must be set in advance, for
example:

>>>set eza0_def_inetaddr 16.123.16.53
>>>set eza0_def_sinetaddr 16.123.16.242
>>>set eza0_def_ginetaddr 16.123.16.242
>>>set eza0_def_inetfile bootfiles/vmunix
>>>set eza0_inet_init NVRAM

When BOOTP is invoked (either explicitly or via the automatic initialization
discussed above) the database is marked as initialized. In the usual case where
BOOTP is successfully invoked without the "nobroadcast" parameter (ie, as
"bootp/eza0" or "bootp:broadcast/eza0") the received reply packet is copied into
the database, thus initializing it. If the "nobroadcast" parameter is specified
(ie, "bootp:nobroadcast/eza0") then no request is broadcast and thus no reply
is received to copy into the database. However, the database is still marked
initialized, so a following TFTP will not automatically initialize the database.

When one of the four database environment variables is set the database is
marked as initialized. Thus a following TFTP will not automatically initialize the
database, regardless of whether the environment variables were set to sensible
values.

TFTP, BOOTP, and ARP all use retransmission to improve robustness. If
an initial transmission is not answered appropriately, the protocol software
will retransmit. Each protocol has an environment variable which controls
the number of retries before giving up. The variables are named "eza0_arp_
tries", "eza0_bootp_tries", and "eza0_tftp_tries". The default value of these is 3,
which translates to an average of 12 seconds before failing (see the discussion of
retransmission timing below). If the value of one of these variables is less than

The Bootstrap State 23–9



23.9 Ethernet Booting

1, the protocol will fail immediately. Machines located on very busy networks or
associated with heavily loaded servers may need these variables set higher.

The retransmission algorithms use a randomized exponential backoff delay. If the
first try fails a second try will occur about 4 seconds later. A third try would come
after another 8 seconds, a fourth after 16 seconds, and so forth up to 64 seconds.
These times are actually averages, however, since random jitter of about +/- 50%
is added to each delay. This implies that with "eza0_arp_tries" set to 3 ARP will
fail if it doesn’t get a response within about 12 seconds on average, but the actual
timeout will be somewhere between 6 and 18 seconds.

23.9.2.2 Using BOOTP bootstrap
The normal use of BOOTP and TFTP is for bootstrapping across a network.
However, they may be explicitly invoked as protocol drivers. The BOOTP and
TFTP protocols must be followed by a network in the protocol tower.

Reading from the BOOTP protocol driver reads the 300 byte binary database
associated with the network. If the parameter "broadcast" is specified, or if no
parameter is specified, the protocol will first broadcast a BOOTP request and
update the data base with the reply. If the parameter "nobroadcast" is specified
then the broadcast and update are omitted, and the existing content of the
database is read. Writing to the protocol will overwrite the database. (When
manipulating the database by hand it is usually easier to use the database
environment variables.) Some examples follow. Note that the "hd" (hex dump)
command is used to display the binary data.

>>># Examine the current contents of eza0’s database:
>>>hd bootp:nobroadcast/eza0
>>># Update the database from a BOOTP server and examine the result:
>>>hd bootp/eza0
>>># Update the database from a BOOTP server but don’t look at the result
>>>cat bootp/eza0 >nl
>>># Copy the contents of (binary) file foo into eza0’s database:
>>>cat foo >bootp/eza0

When a BOOTP request is broadcast, the environment variable "eza0_bootp_
server" is copied into the "sname" field of the request packet and the variable
"eza0_bootp_file" is copied into the "file" field of the request packet. The exact
interpretation of these fields depends on the BOOTP server. The "sname" field
should be the name of a specific host which the local machine wants to boot from.
If it doesn’t matter which server answers, then the variable "eza0_bootp_server"
should be left empty. The server should use the "file" field in the request to decide
which boot file to specify in the response. For example, the client could supply
a generic name like "unix" or "lat", and the server would respond with the fully
qualified file path to be used with TFTP. If a machine will always be booting the
same file then "eza0_bootp_file" can be left empty.

The TFTP protocol driver is used to read files across the network. Writes
are currently unimplimented. TFTP accepts one parameter, the host address
concatenated to the file name of the remote file to be read. The host address is
specified in dotted decimal notation and is separated from the file name by ’:’.
If the file name includes ’/’ they must be doubled to ’//’. The following example
displays the file ’/usr/foo/bar’ from the host whose address is 16.123.16.242:

>>>cat tftp:16.123.16.242://usr//foo//bar/eza0
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For convenience the address could be saved in an environment variable:

>>>set ktrose 16.123.16.242
>>>cat tftp:$ktrose://usr//foo//bar/eza0

If no parameter is specified TFTP uses the file name and server address from the
interface database (ie, "eza0_sinetaddr" and "eza0_inetfile").

Note that when booting with TFTP, the boot command passes the contents of the
environment variable "boot_file" as the parameter to tftp. If "boot_file" does not
have the correct format TFTP will fail. The most common use is probably to leave
"boot_file" empty in which case TFTP will default to using "eza0_sinetaddr" and
"eza0_inetfile", as above.
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On DEC 4000 system, a processor will attempt to restart the operating system
only when it has halted after encountering an error halt condition. DEC 4000
does not implement "warm start" or power-fail restart, because the battery
backup supports the entire system cabinet.

If the AUTO_ACTION environment variable is clear, then any CPU that is in
need of a restart will remain halted. Specifically, on an error halt on any one
CPU, that CPU remains halted. Conversely, if AUTO_ACTION is enabled, then
that state is true for all CPUs. For any one CPU that incurs an error halt, that
CPU will be restarted whether or not it is a primary CPU. In other words, the
environment variable dictates a system wide behavior.

Restart of the operating system is controlled by information contained in the
hardware restart parameter block. The HWRPB$Q_RESTART field of the
HWRPB contains the virtual address of the processor restart routine. This field
is filled in by the operating system. The console also uses flags in the Per-CPU
Slot of the HWRPB to indicate that a restart is in progress (RIP). The console
code checks this flag to avoid repeatedly attempting to restart a failing system.
The operating system is responsible for clearing the flag following the successful
restart of a processor.

24.1 Restart Failure
If the restart of a primary processor fails, a message is displayed on the
console terminal, and a bootstrap is attempted. A failed restart is considered
a sufficiently serious condition to warrant abandoning whatever might still be
running on the other processors.

A restart failure on a secondary processor is handled differently. The console will
examine the BIP flag. If the bit corresponding to the failing processor is clear, the
console will force a bootstrap. If the corresponding bit is set, the console will not
force a bootstrap and the failing processor will enter console I/O mode.

The BIP flag for secondary processors is set by the operating system when it
attempts to start a secondary processor. The operating system clears these
bits when it is satisfied that the secondary processor has successfully started
executing.

The purpose of this extra state is to avoid the following scenario peculiar to
multiprocessors where:

1. A secondary processor encounters an error halt and then fails to restart.
2. The console forces a bootstrap.
3. The primary processor boots and begins running the operating system.
4. The primary processor starts the defective secondary processor (this
sequence assumes that the secondary passes selftest).
5. The secondary repeats its error halt and failed restart.
6. The console again forces a bootstrap, causing the cycle to repeat.

Note

A secondary processor cannot directly perform a reboot, because it cannot
notify the other secondary processors that an expected entry is planned.
Should the location of the primary change during the system reset, the
fact that a boot was in progress could be lost. To avoid this problem,
a secondary must force the primary into console mode (via NHALT)
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and then signal that a boot is needed. The primary then performs the
bootstrap.

24.2 Restart Parameters
The console will transfer control to the restart address specified in the HWRPB.
The Per-CPU Slot in the HWRPB also contains all of the halt parameters needed
to restart by the restart routine. These parameters include:

SLOT$T_HWPCB SLOT$Q_HALT_PCBB SLOT$Q_HALT_SP

SLOT$Q_HALT_PC SLOT$Q_HALT_PS SLOT$Q_HALTCODE
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To maintain a consistent user interface across Alpha AXP platforms, the
DEC 4000 console command syntax was designed to be common across Alpha
platforms. The DEC 4000 console supports a set of common commands useful for
system configuration and operating system bootstrap. Additionally, the DEC 4000
console provides services commonly found in VAX consoles and also implements
many "U*x-style" commands. This optional set of commands has been provided
for development, manufacturing, repair, and support personnel; and are not
necessary for normal system operation.

25.1 Console Prompt
DEC 4000 is by definition "halted" or in "console mode", whenever the firmware
is executing. When halted, the firmware communicates with an operator through
the device that is designated as the system console. The firmware delivers the
following prompt on the console terminal indicating that it is awaiting command
input.

>>>

In certain cases, the following line continuation prompt may appear.

_>

In general, the continuation prompt indicates that the operator has either
explicitly requested line continuation using the "\", backslash or has implicitly
invoked line continuation by not completing a console command. The console will
return to the standard prompt when the command has been properly terminated.

25.2 Command Conventions
The DEC 4000 console accepts commands of lengths up to 255 characters,
excluding the terminating carriage-return or deleted characters. Longer
commands cause an error message to be issued. A command line with no
characters is considered a valid, null command. No action is taken, but the
console redisplays the prompt.

White space is any contiguous sequence of spaces or tabs and is treated as
a single space. White space is required to separate command line elements.
However, leading and trailing white space is ignored.

Command keywords may be abbreviated to the smallest number of characters
to unambiguously identify the keyword. Certain frequently used commands
have single character abbreviations, which uniquely identify the command. For
instance, "E" is always interpreted as "EXAMINE".
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Command "qualifiers" or "options" are prefixed with a dash "-", which in turn
must be preceded by at least one space. Options may be placed anywhere after
the command keyword. However, any option arguments must follow the option
designator and be preceded by at least one space.

Note

The terms "qualifiers" and "options" in this document are synonymous.

All numbers are in hexadecimal unless otherwise specified. Note that the register
names (R0, R1, etc.) are not considered numbers, and use decimal notation.
The console commands are not case-sensitive, and may be invoked by entering
characters in either case. Characters are echoed in the case that they are input.

The console supports command line recall and editing.

25.3 Console Special Characters
Control characters are entered by holding down the Control key and then hitting
the desired KEY. The following is a summary of the control characters and other
special characters which the DEC 4000 console supports.

Table 25–1 Console Special Characters

Return Terminates command line input. No action is taken on a command
until after it is terminated by a carriage return. A null line terminated
by a carriage return is treated as a valid, null command. No action is
taken, and the console re-prompts for input. Carriage return is echoed
as carriage return, line feed.

<x When the operator hits DELETE key, the console deletes the character
that the operator previously typed. The console does not delete
characters past the beginning of a command line. If the operator
types more DELETEs than there are characters on the line, the extra
DELETEs are ignored. If a DELETE is typed on a blank line, it is
ignored.

Ctrl A Toggle insertion/overstrike mode for command line editing. By default,
the console powers up to overstrike mode.

Ctrl B or
up-arrow or
down-arrow

Recall previous command(s). The last sixteen commands are stored in
the recall buffer.

Ctrl C Echo "^C" and to terminate foreground command process. The Control-C
function will terminate any command running in the foreground and
return control to the command shell which invoked it. On the command
line, Control-C behaves the same as Control-U. Control-C has no effect as part
of a binary data stream. Control-C clears control-S, and reenables output
stopped by control-O.

Ctrl D or
left-arrow

Moves the cursor left one position.

Ctrl E Moves the cursor to the end of the line.

(continued on next page)
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Table 25–1 (Cont.) Console Special Characters

Ctrl F or
right-arrow

Moves the cursor right one position.

Ctrl H Moves the cursor to the beginning of the line.

Ctrl O Suppress output to the console terminal until the next Control-O is
entered. Control-O is echoed as "^O" when it disables output, but is not
echoed when it reenables output. Output is reenabled if the console
prints an error message, or if it prompts for a command from the
terminal. Displaying a REPEAT command does not reenable output.
When output is reenabled for reading a command, the console prompt is
displayed. Output is also enabled Control-S.

Ctrl Q Resumes output to the console terminal. Additional Control-Q strokes are
ignored. Control-Q is not echoed.

Ctrl S Stops output to the console terminal, until Control-Q is typed. Control-S is
not echoed.

Ctrl U Echoes "^U" and deletes the entire line. If Control-U is typed on an empty
line, it is echoed, and the console prompts for another command.

Ctrl R Echoes Return and Linefeed followed by the current command line.

Ctrl P When in console mode, Control-P is ignored. When in operating system
mode and "tta*_halts" is set to 2, Control-P is enabled and causes the
processor to halt and enter console mode. When in operating system
mode and "tta*_halts" is set to 0, Control-P is disabled.

BREAK When in console mode, BREAK is ignored. When in operating system
mode and "tta*_halts" is set to 4, BREAK is enabled and causes the
processor to halt and enter console mode. When in operating system
mode and "tta*_halts" is set to 0, BREAK is disabled.

25.4 Environment Variables
An environment variable is a name and value association maintained by the
console program. These variables control various console features, and are used
to pass console information to the operating system. The value associated with
an environment variable is either an ASCII string or an integer.

Environment variables may be modified, displayed, and deleted (if possible) using
the SET, SHOW, and CLEAR commands. The SET command also allows the user
to create new environment variables. Certain environment variables are typically
modified by a user to tailor the recovery behavior of the system on power-ups and
other fatal system failures. Additional environment variables are used to control
execution of diagnostics.

The environment variables which are defined by the console program are
summarized in Appendix E. A default value is associated with any variables
which are stored in NVRAM. This default is used if the variable is not set, or if
NVRAM is unreadable.

25.5 Command Overview
The DEC 4000 console is a hybrid of a VAX console and U*X shell. Although
the command line parser expects U*X style commands, many commands are
very similar to VAX console commands. Some commands are unique to this
console. Table 25–2 lists frequently used commands from each of these groups.
Appendix D is an alphabetized command reference section containing complete
descriptions of the each of the console commands.
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By cloning certain U*X functions and carrying along some VAX console functions,
we have taken advantage of existing paradigms, rather than reinventing or
renaming similar functions. Due to popular demand, however, the prompt has
remained the same as VAX consoles, the triple angle prompt, ">>>".

Instead of VAX-like /qualifiers, the DEC 4000 console uses U*X-like -options.
For example, a VAX console command, such as e/b 0, must be typed e -b 0,
because you must use a space to separate the option from the command. If you
type e-b 0, the console issues an error message.

Once you are familiar with console operation, use the command summary
in Table 25–4 and shell operators in Table 25–3 as a quick reference guide.
A complete description of all the commands is provided the repository in
Appendix D. Below are a few of the frequently used console commands.

Table 25–2 Frequently Used Commands

VAX-like Commands U*X-like Commands
Unique
Commands

boot cat cbcc

examine echo cdp

deposit eval edit

help grep exer

set hd memexer

show ls memtest

test man nettest

ps sa

sleep

25.6 Getting Information About the System
The following commands may be used to provide information about resident
software and hardware in the system.
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>>>show version
version V2.5-5744 Oct 28 1992 09:08:24
>>>show pal
pal VMS PALcode X5.25A, OSF PALcode X1.14A

>>>show device
dka200.2.0.0.0 DKA200 RZ57
dkd0.0.0.3.0 DKD0 RZ35
dkd100.1.0.3.0 DKD100 RZ35
dkd200.2.0.3.0 DKD200 RZ35
dkd300.3.0.3.0 DKD300 RZ35
duc1.1.0.2.0 $1$DIA1 (RF0201) RF72
mke100.1.0.4.0 MKE100 TLZ04
eza0.0.0.6.0 EZA0 08-00-2B-1D-02-8F
ezb0.0.0.7.0 EZB0 08-00-2B-1D-02-90
fbc0.0.0.6.1 FBC0 Fbus+ Profile_B Exercis
p_b0.7.0.1.0 Bus ID 7
pka0.7.0.0.0 PKA0 SCSI Bus ID 7
pkd0.7.0.3.0 PKD0 SCSI Bus ID 7
pke0.7.0.4.0 PKE0 SCSI Bus ID 7
puc0.7.0.2.0 PIC0 DSSI Bus ID 7

>>>show config

Console V2.5-5744 VMS PALcode X5.25A, OSF PALcode X1.14A

CPU 0 P B2001-AA DECchip (tm) 21064-2
CPU 1 -
Memory 0 P B2002-BA 32 MB
Memory 1 -
Memory 2 -
Memory 3 P B2002-CA 64 MB
Ethernet 0 P 08-00-2B-1D-02-8F
Ethernet 1 P 08-00-2B-1D-02-90

ID 0 ID 1 ID 2 ID 3 ID 4 ID 5 ID 6 ID 7
A SCSI P RZ57 Host
B P
C DSSI P RF72 Host
D SCSI P RZ35 RZ35 RZ35 RZ35 Host
E SCSI P TLZ04 Host
Futurebus+ P FBC0

System Status Pass Type b to boot

>>>

25.7 Online HELP
The DEC 4000 console also provides online help. In ROM-based images of the
console, brief help is supplied for each command. The brief help displays a one-
line description and the syntax for command. The syntax line lists all possible
options and arguments for the command. For instance, in the following example,
the command requests help on help:
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>>>help help
NAME

help or man
FUNCTION

Display information about console commands.
SYNOPSIS

help or man [<command>...]
Command synopsis conventions:
<item> Implies a placeholder for user specified item.
<item>... Implies an item or list of items.
[] Implies optional keyword or item.
{a,b,c} Implies any one of a, b, c.
{a|b|c} Implies any combination of a, b, c. )

>>>

The console also supports the U*x alias man for on-line help. If you do not
specify a help topic when invoking the help or man command, a complete list of
commands is displayed in addition to the help help brief text.

>>>man
NAME

help or man
FUNCTION

Display information about console commands.
SYNOPSIS

help or man [<command>...]
Command synopsis conventions:
<item> Implies a placeholder for user specified item.
<item>... Implies an item or list of items.
[] Implies optional keyword or item.
{a,b,c} Implies any one of a, b, c.
{a|b|c} Implies any combination of a, b, c. )

The following help topics are available:
alloc bin boot build cat
cbcc cdp check chmod chown
clear cmp continue crc date
deposit dynamic echo edit eval
examine exer exer_read exer_write exit
fbus_diag find_field free grep hd
help/man Init io_test kill kill_diags
line ls memexer memexer_mp memtest
net netexer nettest ntlpex ps
psc rm sa semaphore set
set host show show cluster show config show device
show error show fru show hwrpb show map show memory
show_status sleep sort sp start
stop sw test tr uniq
update wc
>>>

You can specify multiple topics with the help command, as shown below. Type a
space between topics to keep them separate from each other:
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>>>help examine deposit
NAME

examine
FUNCTION

Display data at a specified address.
SYNOPSIS

examine [-{b,w,l,q,o,h,d}] [-{physical,virtual,gpr,fpr,ipr}]
[-n <count>] [-s <step>]
[<device>:]<address>

NAME
deposit

FUNCTION
Write data to a specified address.

SYNOPSIS
deposit [-{b,w,l,q,o,h}] [-{physical,virtual,gpr,fpr,ipr}]

[-n <count>] [-s <step>]
[<device>:]<address> <data>

>>>

The help command also supports a type of wildcarding. In the following example,
help on any command beginning with the letters da will be displayed.

>>>help da
NAME

date
FUNCTION

Set or display the current time and date.
SYNOPSIS

date [<yymmddhhmm.ss>]

>>>

To display help for all commands, type help *.

>>>help *

25.8 Examining and Depositing
In the DEC 4000 console (as is true in U*x) many commands act on byte streams.
A byte stream is similar in concept to a VAX console address space and may
represent an extent of memory, a set of registers, a device or a file. The console
manipulates these byte streams by performing typical device operations—open,
read, write, close. Therefore, throughout this document the term device will be
used to refer to any such byte stream or address space regardless of its actual
physical implementation. With this understood a traditional VAX address space,
/P, can be accessed as a device, PMEM.

Hence, the examine and deposit commands manipulate devices when accessing
data within the system. The default device is physical memory, which sticks (all
subsequent implicit references access that device) until explicitly changed. When
another device is specified, that device becomes the default.

Internally, the console uses drivers as the access mechanism for referencing
different devices. Specifically, the console provides drivers for the following Alpha
devices.

pmem: - physical memory
vmem: - virtual memory
gpr: - general purpose registers
fpr: - floating point registers
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ipr: - internal processor registers

On DEC 4000 the following platform specific devices are also available.

ferom: - Intel 28F010 firmware FEPROM
eerom: - Environment variable NVRAM
nisa: - Ethernet station address ROM
iic: - PCD8584 registers I2Cbus controller
ncr0(1,2,3,4): - NCR53710 registers DSSI/SCSI (ports 0-4)
scram: - Script RAM
tgec0(1): - TGEC registers Ethernet (ports 0,1)
toy: - DS1287A registers clock chip and NVRAM
uart: - Z8530 registers Console serial port

In this paradigm the address argument of a VAX console command becomes
a byte offset within a device in a DEC 4000 console command. For example,
pmem:0 explicitly refers to the location in physical memory at offset zero, i.e.
physical address 0. If no device name is supplied, the offset implicitly applies
to the last device referenced (pmem by default). In the remaining discussions,
however, the terms address and offset will be used synonymously.

In the console there is also the notion of a last referenced address. An examine
or deposit command without an explicit address will always reference the next
address (computed as the last referenced address plus the current data size). The
characters +, *, and - are symbolic addresses for the next, current, and previous
addresses, respectively.

Data width options are analogous to the corresponding VAX qualifiers. That is,
-b, -w, -l, -q, -o, -h options correspond to the size of the accessed data—byte,
word, longword, quadword, octaword, and hexaword.

25.8.1 Accessing Memory
Before randomly experimenting with memory, it is important to find a "safe" area
in memory to alter. Since the console itself and other critical data structures
reside in memory, care should be taken not to alter them. The alloc command
may be used to allocate a 1000 byte block of memory, as shown in the following
example.

>>>alloc 1000
03FFF000
>>>

The alloc command returns the address of the allocated block, in this case,
03FFF000. Hence, in the following examples this block will be used for
experimentation.

The next example shows the examine and deposit commands to the pmem:
device (physical memory) at the allocated address.

>>>deposit pmem:3fff000 1 # Deposit a 1 at address 3fff000.
>>>examine pmem:3fff000 # Examine the location.
pmem: 3FFF000 00000001
>>>

The next example shows the use of the abbreviated form of the commands, e and
d. Abbreviations for commands are permitted and typically also, as in this case,
the device specifier is absent. Assuming the state left by the previous example,
the current device is still physical memory (or pmem: ).
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>>>d 3fff000 deadbeef # Deposit new data there.
>>>e 3fff000 # Check it out.
pmem: 3FFF000 DEADBEEF

Below is an example using a console command option.

Note

Remember, the console uses U*X-like -options, not VAX-like /qualifiers.
Also notice the inconspicuous use of white space.

In this example the -n option is used to specify a repeat count. Each command is
executed over "n+1" successive addresses.

>>>d 3fff000 aaaa5555 -n 3 # Write to 4 locations, yes 4!
>>>e 3fff000 -n 3 # Notice that -n 3 yields n+1 or 4!
pmem: 3FFF000 AAAA5555
pmem: 3FFF004 AAAA5555
pmem: 3FFF008 AAAA5555
pmem: 3FFF00C AAAA5555
>>>

The console provides a hex dump command, hd, as an alternate method for
dumping memory (or other devices or files). Here the -l option specifies the
number of bytes to display. (Why -l for hd and -n for examine? Because
examine is a VMS-like command and hd is a U*X cloned command.)

>>>hd pmem:3fff000 -l 10 # Dump the allocated memory.
00000000 55 55 aa aa 55 55 aa aa 55 55 aa aa 55 55 aa aa UUªªUUªªUUªªUUªª
>>>hd -l 20 show_status # Dump part of SHOW_STATUS script.
00000000 65 63 68 6f 20 27 64 2f 53 27 20 3e 24 24 73 73 echo ’d/S’ >$$ss
00000010 0a 65 63 68 6f 20 27 2d 2d 2d 27 20 3e 3e 24 24 .echo ’---’ >>$$
>>>

25.8.2 Examining registers
The following examples show the examine and deposit commands used to
reference registers. Registers may be addressed:

• Symbolically, for instance r0 or ksp

• Explicitly, as offsets within device address space; for instance, gpr:0 or ipr:0

• Implicitly, as offsets within the current device address space; for instance 0

Also notice the usage of the symbolic relative addresses +, *, -, and the implied
address increment (no address specified):
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>>>e r0 # Examine R0 symbolically,...
gpr: 0 ( R0) 0000000000000002
>>>e gpr:0 # explicitly as device offset,...
gpr: 0 ( R0) 0000000000000002
>>>e 0 # or implicitly as device offset.
gpr: 0 ( R0) 0000000000000002
>>>e 8 # R1,
gpr: 8 ( R1) 000000000000C408
>>>e # and the next R2.
gpr: 10 ( R2) 0000000000000000
>>>e ipr:0 # Try an IPR...
ipr: 0 ( ASN) 0000000000000000
>>>e # and the next...
ipr: 1 ( ASTEN) 0000000000000000
>>>e + # and the next...
ipr: 2 ( ASTSR) 0000000000000000
>>>e * # and the current...
ipr: 2 ( ASTSR) 0000000000000000
>>>e - # and the previous.
ipr: 1 ( ASTEN) 0000000000000000
>>>e ksp # One by name...
ipr: 12 ( KSP) 0000000000000F30
>>>e # and the next.
ipr: 13 ( ESP) 0000000000000000
>>>

The examine and deposit commands support symbolic representation of certain
processor registers. In the following example, pc, sp, ps, are abbreviations for
program counter, stack pointer, and process status longword.

>>>e pc # Program Counter
PC psr: 0 ( PC) 0000000000000D30
>>>e ps # Process Status
ipr: 17 ( PS) 0000000000001F00
>>>e sp # Stack Pointer
gpr: F0 ( R30) 0000000000000F30
>>>

25.9 Using Pipes ( | ) and grep to Filter Output
The grep command is a convenient means of searching for information by
filtering an input according to the expression argument supplied. A pipe ( | )
enables the output of one command to be the input to the next command, without
creating an intermediate file. Because the grep command requires input, a pipe
is used to channel the output of the examine command into the grep command.

In the following example, grep is used to search for a pattern in memory. In
this case grep parses all the output lines from the examine command, but only
permits lines which contain deadbeef to reach the display. The grep command
can also can be used to search for patterns that don’t match the model provided;
that is, search for every line that does not contain the input pattern.
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>>>d pmem:3fff000 0 -n 8 # Clear some memory.
>>>d 3fff020 deadbeef # Drop in a target.
>>>e 3fff000 -n 8 # Display memory.
pmem: 3FFF000 0000000000000000
pmem: 3FFF008 0000000000000000
pmem: 3FFF010 0000000000000000
pmem: 3FFF018 0000000000000000
pmem: 3FFF020 00000000DEADBEEF
pmem: 3FFF028 0000000000000000
pmem: 3FFF030 0000000000000000
pmem: 3FFF038 0000000000000000
pmem: 3FFF040 0000000000000000
>>>e 3fff000 -n 8 | grep DEADBEEF # Display only lines with DEADBEEF.
pmem: 3FFF020 00000000DEADBEEF
>>>

25.10 Using I/O Redirection (>)
Although default output goes to the console, you can redirect output to other
devices or files by using the redirection operator >. In the following example,
the output of an examine command is redirected to a file foo, which is created
dynamically out of the console’s memory heap. The console cat command, similar
to the VMS copy command, is used in this example to display the contents of the
created file foo. The rm command, similar to the VMS delete command, is used
to delete foo.

>>>ls foo # Check to see if foo exists.
foo no such file
>>>e 3fff000 -n 1 > foo # Redirect examine output to file foo.
>>>ls foo # Does foo exist now?
foo
>>>cat foo # Yes! List foo.
pmem: 3FFF000 0000000000000000
pmem: 3FFF008 0000000000000000
>>>rm foo # Remove (delete) file foo.
>>>ls foo # Does foo exist now?
foo no such file
>>> # No.

25.11 Running Commands in the Background "&"
In a design verification testing (DVT) environment, the ability to run tasks in the
background is an especially helpful feature. You can execute any command in the
background by placing the background operator & at the end of the command.
This capability alone makes it extremely easy to generate random activity in a
system.

In the following example, three processes are started in the background. The first
process, invoked with the console exer command, performs reads to block 0 of
disk dub2, which you determine by using the console show device command).
Next, two instantiations of the console memory test are created, using the
memtest command. In all three cases, the console immediately returns with the
console prompt and awaits further commands.
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>>>show device # See what devices are available.
dub2.2.0.1.0 RF0102$DIA2 RF72
eza0.0.0.0.0 EZA0 08-00-2B-1D-02-91
ezb0.0.0.1.0 EZB0 08-00-2B-1D-02-92
pka0.7.0.0.0 PKA0 SCSI Bus ID 7
pkc0.7.0.2.0 PKC0 SCSI Bus ID 7
pkd0.7.0.3.0 PKD0 SCSI Bus ID 7
pke0.7.0.4.0 PKE0 SCSI Bus ID 7
pub0.7.0.1.0 PIB0 DSSI Bus ID 7
>>>exer dub2 -sb 0 -p 0 & # Read block 0 forever.
>>>memtest -p 0 & # Start up the memory test forever.
>>>memtest -p 0 & # Startup another memory test task.
>>>

25.12 Monitoring Status
The console monitors process status in several ways. The ps command is similar
to the VMS show system command, as shown below. And grep can be used here
to avoid unnecessary output.

>>>ps # Display complete process status.
ID PCB Pri CPU Time Affinity CPU Program State

-------- -------- --- -------- -------- --- ---------- ------------------------
0000006c 001423a0 3 2 00000001 0 ps running
0000005c 00144b40 2 19253 00000001 0 memtest ready
0000005b 00147a60 2 9 00000001 0 sh_bg waiting on 00144B40
00000059 0014c060 2 21750 00000001 0 memtest ready
00000058 0014edc0 2 5 00000001 0 sh_bg waiting on 0014C060
00000056 00152860 2 3 00000001 0 exer_kid waiting on mscp_rsp
00000055 00153ae0 2 2 00000001 0 exer waiting on exer_tqe
00000054 00181580 2 6 00000001 0 sh_bg waiting on 00153AE0
0000004f 00154d60 5 38 ffffffff 0 pke0_poll waiting on tqe
.
.
.
>>>ps | grep exer # Check exer.
00000056 00152860 2 6 00000001 0 exer_kid waiting on mscp_rsp
00000055 00153ae0 2 2 00000001 0 exer waiting on exer_tqe
>>>

Another method for monitoring diagnostic status is the show_status command
that lists the status of diagnostics or exercisers, such as exer or memtest. Note
that the show_status command is actually implemented as a built-in script,
which you can execute by typing its name. You can easily list the contents of this
script, other scripts or any other file by using the cat command.
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>>>show_status # Monitor diagnostics.
ID Program Device Pass Hard/Soft Bytes Written Bytes Read

-------- ------------ ------------ ------ --------- ------------- -------------
00000001 idle system 0 0 0 0 0
00000056 exer_kid dub2.2.0.1.0 0 0 0 0 3807232
00000059 memtest mem 47451 0 0 388710400 388710400
0000005c memtest mem 46370 0 0 379854848 379854848
>>>
>>>cat show_status # Sample built-in script.
echo ’d/S’ >$$include
echo ’---’ >>$$include
echo system >>$$include
echo cpu >>$$include
echo memtest >>$$include
echo exer_k >>$$include
echo nettest >>$$include
echo cbcc >>$$include
echo io_test >>$$include
echo fbus_diag >>$$include

echo bg_N >$$exclude
echo ’ nl ’ >>$$exclude
echo ’ tt ’ >>$$exclude
echo tta0 >>$$exclude
echo ntlpex >>$$exclude
show_iobq|grep -f $$include|grep -v -f $$exclude
rm $$include
rm $$exclude
>>>

25.13 Killing a Process
To stop a process just use the process id from a ps command as the argument of
the kill command.

>>>ps | grep memtest # Find a process to kill.
0000005c 00144b40 2 135733 00000001 0 memtest ready
00000059 0014c060 2 138258 00000001 0 memtest ready
>>>kill 59 # Kill one of the memtests.
>>>ps | grep memtest # Display our background tasks.
0000005c 00144b40 2 135733 00000001 0 memtest ready
>>>

25.14 Creating Scripts
A script is a file which contains console commands. The console contains many
built-in scripts which you may execute by simply typing the name of the script
file. The show_status command describe earlier is an example of such a built-in
script.

The console also provides a crude means of creating scripts. In the following
example, the echo command is used to write characters to file foo using the
output creation operator, >. The script foo is then displayed and executed.

>>>echo e pmem:3fff000 > foo # Write "e 0" to file foo.
>>>cat foo # List foo.
e pmem:3fff000
>>>foo # Execute script foo.
pmem: 3FFF000 0000000000000000
>>>
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In the next example, addition characters are appended to foo. Note the usage of
the single quote ’ grouping character which encloses the desired text. The use of
single quotes in the command line prevents the command-separator character ;
from prematurely terminating the echo command. Also notice that the output
append operator >> is used to extend foo.

>>>echo ’d 3fff000 5 ; e 3fff000’ >> foo # Append "d 0 5 ; e 0" to foo.
>>>cat foo # List foo.
e pmem:3fff000
d 3fff000 5 ; e 3fff000
>>>foo # Execute foo.
pmem: 3FFF000 0000000000000000
pmem: 3FFF000 0000000000000005
>>>

You may enter a much longer script by reordering the command. Open a string
with the single quote ’, then enter the script (on several lines), then close the
string with a second single quote ’. For example,

>>>echo > foo ’ex 3fff000
_>d 3fff000 7
_>e 3fff000
_>d 3fff000 5
_>e 3fff000’
>>>cat foo
ex 3fff000
d 3fff000 7
e 3fff000
d 3fff000 5
e 3fff000
>>>foo
pmem: 3FFF000 0000000000000000
pmem: 3FFF000 0000000000000007
pmem: 3FFF000 0000000000000005
>>>

25.15 Using Flow Control
The console supports a limited number of flow control structures at the shell
command level. The syntax for these constructs is as follows:

• while command_sequence done

• while command_sequence do command_sequence done

• until command_sequence done

• until command_sequence do command_sequence done

• for name do command_sequence done

• for name in list do command_sequence done

• case word in case_part_list
pattern ) command_sequence ;;
[ pattern ) command_sequence ;; ]
esac
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• if command_sequence
then command_sequence
[ elif command_sequence then command_sequence ]
[ else command_sequence ]
fi

Conditional Branching
Conditional branching in if, while, until loops is determined by the exit status
of the command sequence following the control structure. In general, an exit
status of zero indicates success and results in the execution of the true path.

In the following example, the eval command is used to extract an exit status
from variable junk. The variable is initialized with the console set command.

>>>set junk 0
>>>show junk
junk 0
>>>eval junk
0
>>>if (eval junk) then (echo true) else (echo false) fi
0
true
>>>set junk 1
>>>if (eval junk) then (echo true) else (echo false) fi
1
false
>>>set junk 2
>>>if (eval junk)
_>then (echo true)
_>else (echo false) fi
2
false
>>>

Loop Constructs
Byte swapping is a useful function when dealing with foreign bus architectures,
such as Futurebus+. Byte swapping is the transposition of bytes in a bus address.
A simple script called bswap is created here which will transform a longword
value by swapping most significant bytes to least significant bytes.

Here the for..do..done construct is used in conjunction with some arbitrary
environment variables aa and bb pass arguments to the script. The for
variable aa takes on the values of all the arguments on the command line at
the invocation of bswap. The set command is used to create bb, which is simply
aa with 0x prepended to it. (This permits the user to enter hexidecimal numbers
without having to specify the radix prefix 0x.)

In following example, the eval command is used to perform the transformation.
The eval command uses:

• & operator for logical "and" function

• | operator for logical "or" function

• >> operator for logical shift right function

• << operator for logical shift left function.
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A close inspection of the postfix expression should reveal how it works.

>>>echo > bswap ’for aa; do
_>set bb 0x$aa
_>eval -x "$bb 0xff & 24 << $bb 0xff00 & 8 << $bb 0xff0000 & 8 >> $bb 0xff000000 & 24 >> | | |
_>done’
>>>bswap 12345678
78563412
>>>bswap 12 1234 123456 12345678
12000000
34120000
56341200
78563412
>>>

In the following example, a simple for loop is used to create a more generic
process status command:

>>>echo > stat ’for i
_>do ps | grep $i
_>done’
>>>cat stat
for i
do ps | grep $i
done
>>>stat memtest
00000131 00114e80 2 0 00000001 0 memtest ready
>>>stat memtest ps
00000131 00114e80 2 0 00000001 0 memtest ready
00000167 00108ea0 3 0 00000001 0 ps running
>>>

25.16 Console Shell
The DEC 4000 console is similar to a U*X shell. A shell is a command line
interpreter, an interface between the operator and the firmware. The lexical
analyzer and parser for the DEC 4000 console implement a subset of the Bourne
Shell with some minor modifications.

Note

The article, An Introduction to the UNIX Shell , by S.R. Bourne describes
the use of the shell. This article can be found in Part 4 of ULTRIX-32
Supplementary Documentation Volume 1 User .

An integral part of the console is its set of shell operators. These operators
qualify the operation of commands, permit redirection of I/O, and allow for
sequencing of operations. These operators are described in Table 25–3.

The DEC 4000 console command set consists of many U*X-like commands,
several VAX-like commands, and a unique set of commands specifically developed
for diagnostics and design verification environments. Table 25–4 provides a quick
lookup facility for the supported console commands.

Note

For a complete description of all console commands refer to Appendix D.
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Table 25–3 Console Shell Operators

Operator Name Form Description

> Output creation >destination Write output to destination.

>> Output append >>destination Append output to destination.

< Input redirection <source Read input from source.

<< Here document <<string... Read input from standard input,
until string is seen at the beginning
of a line.

| Pipe cmd1 | cmd2 Pipe output of first command to
input of second command.

; Sequence cmd1 ; cmd2 Run first command to completion
before running second command.

\ Line continuation cmd1 \
_> cmd2

Continue command on the next
line. The command line prompt
changes to "_>", until the command
is completed.

# Line comment # text The text following the number
sign is ignored. This is useful for
imbedding comments in command
scripts or logs.

& Background cmd & Run command in background, don’t
wait for command to complete.

&a Affinity &a m Sets the processor affinity mask
to allow this process to run on the
CPU’s defined by mask m. Multiple
processors may also be specified as
a list or range.

( ),{} Grouping Used to override precedence of
pipe, sequence, and background
operators.

*,?,[...] Pattern specifiers Characters used to form a regular
expression for pattern matching.
Where "*" matches on any character
or characters or none, "?" matches
on any single character, and "[...]"
matches on any of the enclosed
characters.

$string Environment variable substitution The string is treated as a
legal environment variable and
translated.

’xxx’ String with no substitution The string is passed untouched.

"String" String with substitution The string is passed after wildcards
and environment variables are
expanded.

‘cmd‘ Command substitution Treat the string as a command
string, execute it, and substitute in
the resulting output.

In addition to shell operators, the console uses the following reserved words:
if then else elif fi case in esac for while until do done
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Table 25–4 DEC 4000 Console Command Summary

Command Options Parameters

VAX-like Console Commands

boot [-file filename] [-flags root,bitmap] [-halt] [ boot_device ]

continue

deposit [-{b,w,l,q,o,h}] [-n val] [-s val] [device:]address data

examine [-{b,w,l,q,o,h,d}] [-n val] [-s val] [device:]address

help [command]

man [command]

initialize [-c] [-d device_path] [slot-id]

set host [-dup] [-task t] node

show {envar, config, device,
error, fru, hwrpb,
memory}

start address

U*X-like Console Commands

cat file...

check [-{f | r | w}] inode

chmod [{- | + | =}{r | w | x | b | z}] file...

clear envar

cmp [-s val] [-e val] [-l val] [-b val] file1 file2

crc [-s val] [-e val] [-l val] file

dynamic [-h] [-v] [-c] [-z ha]

echo [-n] args...

eval postfix_expression

exit exit_value

grep [-{v | c | n | y | x}] [-f filename] expression [file...]

hd [-s val] [-e val] [-l val] file...

kill pid...

ls [-l] [file...]

more [-n pagesize] file...

ps

rm file...

set envar value

In this summary, the following conventions are used:

[item] - indicates the item is optional.
{a,b,c} - indicates any one of a, b, or c.
{a | b | c} - indicates any combination of a, b, or c.
device: specifies the name of the driver for a "device" address space and is one of:
pmem:, vmem:, gpr:, fpr:, ipr:, pio:,
eerom:, enet:, ferom:, iic:, ncr0(1,2,3,4):, scram:, tgec0(1): toy:, uart:
envar: specifies the name of an "environment variable", for example, boot_device .

(continued on next page)
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Table 25–4 (Cont.) DEC 4000 Console Command Summary

Command Options Parameters

U*X-like Console Commands

sleep time

sort file...

tr [-{c | d | s}] string1 [string2]

uniq file...

wc [-{l | w | c}] file...

Unique Console Commands

alloc [-z heap_address] size [modulus]
[remainder]

cdp [-{i,n,a,u,o}] [-sn] [-sa val] [-su val] [dssi_device]

exer [-sb startblock] [-eb endblock] [-p passcount]
[-l blocks] [-bs blocksize] [-bc block_per_io]
[-d1 buf1_string] [-d2 buf2_string]
[-a action_string] [-sec seconds] [-m] [-v]

[device]...

find_field field_no

free address...

memtest [-sa address] [-ea address] [-l length] [-bs block
size] [-i inc] [-p n] [-f] [-m] [-z] [-h] [-rs n] [-rb]
[-mb]

net [-sa] [-s] [-i] [-ri] [-ic] [-se] [-re] [-rc] [-l1] [-l2]
[-els] [-kls] [-l file_name] [-id node_address]
[-lc number] [-l0 node_address]
[-bd burst_interval] [-cm mode_string]
[-sv mop_version]

[port]

nettest [-f filename] [-mode string] [-p n]
[-sv mop_version] [-to loop_time] [-w number]

[port]

sa process_id affinity_
mask

semaphore

show_status

sp process_id new_
priority

stop device_path
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Diagnostics

26.1 Diagnostic Overview
The strategy used for the DEC 4000 system diagnostics is to detect and isolate
failures contained within the CPU for the engineering debug, design verification
test (DVT), manufacturing, and customer services environments. The specific
nature of these environments and the diagnostics supplied for each is different.
This document identifies the diagnostics for the DEC 4000 system and notes the
environment each test is targeted toward.

26.1.1 Diagnostic Classes
The diagnostic support for the DEC 4000 system is provided by two classes of
diagnostic: tests and exercisers.

Diagnostic Tests are modules that determine the functionality of the system.
The tests perform by generating a stimulus and comparing the measured
response to an expected value. Any deviation from expected functional behavior
is reported as an error. Each DEC 4000 test module is targeted at a single
functional or physical component of the system. These modules are not intended
for concurrent execution. The diagnostic tests for the DEC 4000 system consist of
two groups of tests as follows:

• The first group is the initial power-up tests which verify that sufficient
functionality exists within the system to load and execute the FEPROM-based
console program kernel.

• The second group runs under the FEPROM-based console program kernel and
tests all of the Kernel system including all boot path devices. These tests are
intended to detect and isolate structural faults within the system and do not
provide system or device exerciser functions.

Diagnostic exercisers are modules that are intended to run concurrently to
force the manifestation of nonlogical defects within the system. Each module is
designed to provide a controllable degree of physical activity within the target
subsystem. These modules are supplied to address the following failure model
which is difficult to support with diagnostic tests.

• An interconnect that fails intermittently, which can be aggravated by
mechanical or thermal means

• Design bugs whereby devices can not obtain enough bandwidth or whose
latency requirements are not met

• Hard failures that require too much context for a test directed approach

Diagnostics 26–1



26.1 Diagnostic Overview

The design of the exerciser modules allows simultaneous execution of independent
modules targeted at different devices within the system. These modules use the
existing console device drivers to support access to the target devices. Testing is
focused on providing the maximum bus interaction possible.

26.1.2 Diagnostic User Interface
26.1.2.1 Starting Diagnostic Tests and Exercisers

Diagnostic modules may be run as either foreground or background processes. To
invoke a diagnostic test module, the user may do one of two things:

1. Enter the TEST command with or without a test target argument.

Entering the TEST command without a test target argument concurrently
tests (exercises) most devices in the system.

2. Enter the actual name of the desired diagnostic module.

The diagnostic modules that may be executed are enumerated below. Some
of these modules run a single test on one device and other modules are
exercisers which run concurrent tests on multiple devices. Some of these
modules are scripts which execute other diagnostic modules.

• memtest

• memexer

• memexer_mp

• nettest

• netexer

• ntlpex

• ntlpex1

• ntlpex2

• fbus_diag

• exer_read

• exer_write

• exer

Refer to Appendix D for specific information about the syntax of these commands.

26.1.2.2 Diagnostic Control Flags
The DEC 4000 console uses environment variables and command qualifiers
to control the execution of individual diagnostic tests and exercisers.
Section 26.1.2.2.1 describes the global environment variables and command
qualifiers that are used to control all diagnostic test and exerciser modules.
Each individual diagnostic module description describes any module specific
environment variables or command qualifiers used to control that module. Refer
to the SET and SHOW commands in Appendix D for information on setting or
displaying the current state of an environment variable.
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26.1.2.2.1 Global Diagnostic Environment Variables The following global
environment variables are available to the user for control of diagnostics. These
environment variables are global to all diagnostic programs that are executing,
and thus affect all diagnostic programs.

Refer to Table E–1 for a complete description of these and all other environment
variables.

>>>show d_*
d_bell off
d_cleanup on
d_complete off
d_eop off
d_group field
d_harderr halt
d_oper off
d_passes 1
d_report summary
d_softerr continue
d_startup off
d_trace off
>>>

26.1.2.2.2 Local Diagnostic Command Qualifiers for most diagnostics The
following command qualifiers affect the operation of an invocation a diagnostic
test module by overriding the corresponding global diagnostic environment
variable for the duration of that test. These command qualifiers may be used
with most diagnostics.

Refer to Appendix D for a description of the diagnostic commands and their
respective command qualifiers.

Qualifier Definition

-p n Value of n overrides "diag_passes" as the number of passcounts
to run

-g "group_name" The specified group name overrides d_group.

26.1.2.2.3 Local Diagnostic Command Qualifiers for specific diagnostics
In addition to the global command qualifiers that control all diagnostics each
diagnostic module has its own set of command qualifiers to control the execution
of that diagnostic module.

Refer to Appendix D for a description of the diagnostic commands and their
respective command qualifiers.

26.1.2.3 Monitoring the Exerciser Status
Status monitoring of one or more diagnostic tests is provided by a separate
process called show_status. This process uses the status block within the PCB to
display the current runtime status for each diagnostic process currently executing
within the console. show_status must be invoked as a shell command so it
can only be executed when the diagnostic modules are running as background
processes. The format of the status display is shown below:
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Figure 26–1 Diagnostic Status Display
>>>show_status

ID Program Device Pass Hard/Soft Bytes Written Bytes Read
-------- ------------ ------------ ------ --------- ------------- -------------
00000001 idle ! system 0 0 0 0 0
00000056 exer_kid dub2.2.0.1.0 0 0 0 0 3807232
00000059 memtest mem 47451 0 0 388710400 388710400
0000005c " memtest # mem$ 46370 % 0 & 0 ' 379854848 ( 379854848

In Figure 26–1, the fields are defined as follows.

! idle process - Errors not attributable to a specific device or process are listed
on this line of the display so this line is always displayed.

" ID - Unique process ID within the life of the system for each process found

# Program - Program name for this diagnostic process, normally the module
name

$ Device - Device being tested by this process

% Pass - Number of passes completed by this process

& Hard Errors - Number of hard errors detected by this process

' Soft Errors - Number of soft errors detected by this process

( Bytes Written - Number of bytes written by this process

) Bytes Read - Number of bytes read by this process

26.1.2.4 Terminating Diagnostic Tests and Exercisers
Diagnostic modules normally terminate after completing all device tests. If it is
desirable to terminate a diagnostic before it has completed it is often possible
to do so. If the diagnostic is running as a foreground process then a control-C,
^C, will usually terminate the diagnostic module. If one or more diagnostics are
running as background processes then the kill_diags command will terminate all
diagnostics.

26.1.3 Diagnostic Output Displays
26.1.3.1 Operator Control Panel LED Displays

The DEC 4000 system operator control panel (OCP) contains eight yellow fault
LED’s to indicate that a system component is being tested or has failed. The
eight LEDs are shown in Figure 1–4 in <REFERENCE>(OCP_SECTION) and
listed below.

• FBUS - One of the Futurebus+ modules in the system

• MEM3 - Memory Module 3

• MEM2 - Memory Module 2

• MEM1 - Memory Module 1

• MEM0 - Memory Module 0

• CPU0 - CPU Module 0

• CPU1 - CPU Module 1

• I/O - I/O Module
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On system power-up, the two CPU fault/testing LEDs illuminate and the
remaining memory, I/O, and Futurebus+ LEDs stay extinguished. Successful
completion of the power-up testing extinguishes all of the LEDs.

26.1.3.2 Console Terminal Error Messages
Error messages are broken into 3 levels. These levels are referred to as the device
driver level, the SUMMARY level and the FULL level. The device driver level is
quite often absent. It consists of one or more lines of error messages describing
the reason for a low level device driver operation failure. When a device driver
operation succeeds but the diagnostic code detects a failure symptom then the
device driver doesn’t issue any error messages. When errors are issued by a
device driver during a diagnostic test failure the device driver message(s), if any,
will appear in the following example at ! .

The SUMMARY level consists of information at the top header portion of the
screen ( fields " through +@ in the following example, and the FULL level
consists of information in field in the bottom half of the message (+A. Selection
of the SUMMARY and FULL levels displayed is controlled with the D_REPORT
environment variable.

• If D_REPORT is set to SUMMARY, then the FULL level information is not
displayed.

• If D_REPORT is set to FULL, then the FULL level information is displayed
as well as the SUMMARY level information.

• D_REPORT can also be set to OFF to disable display of both SUMMARY and
FULL error information. By default, D_REPORT is set to SUMMARY.

Figure 26–2 gives an example of an error message.

Figure 26–2 Example Error Message

!

*** Hard " Error - Error #15 # - External loopback error, no packet received $ ***

Diagnostic Name ID Device Pass Test Hard/Soft 01-JAN-1990
nettest % 23 & eza0.0.0.6.0 ' 5 ( 2 ) 1 +> 9 +? 12:00:01 +@

Buffer contents are as follows: +A

Expected Received
-------- --------

20150000: AAAAAAAA 00000000
20150004: 55555555 00000000
20150008: CCCCCCCC 00000000
2015000C: 33333333 00000000
20150010: 88888888 00000000
20150014: 77777777 00000000
20150018: FFFFFFFF 00000000

*** End of Error *** +B

In Figure 26–2, the fields are explained as follows:

! Zero or more lines of device driver error messages may appear here

" Error type. Possible values are:

• HARD - Hard error
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• SOFT - Soft error

• FATAL - Fatal error

• NONE - No error type will be displayed.

# Error number

$ Summary Level Error message

% Diagnostic/module name

& ID—Unique process ID of the diagnostic test program

' Target device

( Current pass count

) Current test number

+> Current hard error count

+? Current soft error count

+@ Time stamp

+A Full-level error message information may appear here

+B Error message delimiter

26.1.4 Startup Message
The display of the diagnostic startup message is controlled by the D_STARTUP
environment variable. If D_STARTUP is set to ON, the startup message is
displayed. By default, D_STARTUP is set to OFF.

A startup message consists of two lines of information used to indicate that the
diagnostic has started execution. An example is as follows.

Figure 26–3 Startup Message

Diagnostic Name ID Device Pass Test Hard/Soft 01-JAN-1990 !

nettest " 23 # eza0.0.0.6.0 $ 0 % 0 & 0 ' 12:00:01 (

In Figure 26–3, the fields are expained as follows.

! Startup message header

" Diagnostic name

# Target device

$ Pass count of 0

% Hard error count of 0

& Soft error count of 0

' Time stamp
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26.1.5 Completion Message
The display of the diagnostic completion message is controlled by the D_
COMPLETE environment variable. If D_COMPLETE is set to ON, then the
completion message is displayed when the diagnostic process is terminated. By
default, D_COMPLETE is set to OFF.

A completion message consists of summary information on the run of the
diagnostic. An example follows.

Figure 26–4 Completion Message

Testing Complete !

Diagnostic Name ID Device Pass Test Hard/Soft 01-JAN-1990
nettest " 23 # eza0.0.0.6.0 $ 1 % 1 & 9 ' 12:00:01 (

* End of Run ) - Failed +> *

In Figure 26–4, the fields are expained as follows.

! Completion message indicator

" Diagnostic name

# ID—Unique process ID of the diagnostic test program

$ Target device

% Final pass count

& Final hard error count

' Final soft error count

( Time stamp

) Completion message delimiter

+> Pass/fail indicator. One of:

• Passed - No hard/fatal errors were reported (if a soft error occurs the
diagnostic will still ’pass’)

• Failed - One or more hard/fatal errors were reported

26.1.6 End-of-pass Message
The display of the diagnostic end-of-pass message is controlled by the D_EOP
environment variable. If D_EOP is set to ON, the end-of-pass message is
displayed. By default, D_EOP is set to OFF.

An end-of-pass message consists of one line of information used to indicate that
the diagnostic has completed one pass. Current error totals are also given. An
example of the standard end-of-pass message follows.

Figure 26–5 End of Pass Message

Diagnostic Name ID Device Pass Test Hard/Soft 01-JAN-1990 !

nettest " 88 # eza0.0.0.6.0 $ 1 % 1 & 9 ' 12:30:10 (
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In Figure 26–5, the fields are defined as follows.

! Header will exist from previous error callout (or startup message if no error)

" Diagnostic name

# ID—Unique process ID of the diagnostic test program

$ Target device

% Pass count

& Hard error count

' Soft error count

( Time stamp

26.1.7 Test Trace Message
The display of the diagnostic test trace message is controlled by the D_TRACE
environment variable. If D_TRACE is set to ON, then the test trace message is
displayed. By default, D_TRACE is set to OFF.

A test trace message consists of one line of information used to indicate that the
diagnostic is starting a test. Some diagnostic modules have multiple tests, each
with a different test number. An example of the test trace message follows.

Figure 26–6 Test Trace Message

Diagnostic Name ID Device Pass Test Hard/Soft 01-JAN-1990 !

nettest " 88 # eza0.0.0.6.0 $ 1 % 3 & 1 ' 9 ( 12:00:01 )

In Figure 26–6, the fields are defined as follows.

! Header exists from previous error callout (or startup message if no error)

" Diagnostic name

# ID—Unique process ID of the diagnostic test program

$ Target device

% Current pass count

& Current test number

' Current hard error count

( Current soft error count

) Time stamp

26.1.8 Diagnostic Power-up Flow
When the DEC 4000 system is powered-up, a series of diagnostic tests are
executed to ensure the proper operation of the system. These tests consist of
initial power-up tests and FEPROM-based tests. In addition, the power-up
sequence runs exercisers on all configured system devices.
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26.2 CPU/Cache Subsystem
The diagnostics in this section test all of the major functional blocks found on the
CPU module. These include the backup cache RAMs, the system bus gate arrays
and the paths from these two areas to the 21064 (EV4).

26.2.1 Diagnostic Strategy
This section of tests verifies several aspects of the CPU module. Several pieces
of logic must be working properly before the contents of the FEPROMs (located
on the I/O module) can be copied into the backup cache RAMs. The 21064
microprocessor must be able to communicate with the backup cache and the
system bus gate arrays. The functionality of the backup cache must also be
verified. The diagnostics that verify the hardware, prior to the loading of the
FEPROMs, are located in the SROMs (labeled below as ’serial-ROM group’). More
extensive testing of the CPU subsystem is performed by diagnostics stored in the
FEPROMs (labeled below as ’FEPROM group’). These tests are executed after
code stored in the the FEPROMs is successfully loaded into the backup cache
RAMs.

26.2.2 Power-up Strategy
On assertion of C RESERT_L, the first "I-cache size" worth of code will be loaded
from the SROM into the I-cache. Once the D-cache is disabled, SROM tests
insure the basic functionality of the CPU subsystem. The address and data lines
from the 21064 microprocessor to the backup cache are tested first, followed by
the data RAMs, the TAG RAMs and the ECC logic. Some reads of CSRs are then
performed in the ASICs to ensure access to the system bus.

At this point CPU1 determines if CPU0 failed. If CPU0 does not fail, CPU1 will
stall so that only one CPU attempts to configure memory. Next, the address and
data lines on the system bus are tested, using the I/O module. The first memory
module is found and its configuration data is extracted from the serial control
bus. The memory module is then configured and its first 8 MB is tested.

The backup cache is disabled and the code from the FEPROMs is loaded into
main memory. The backup cache testing continues with tag, tag-parity and
control flag tests. Finally the FEPROM code is moved from the ROMs to memory
and control is passed to location 800016.

26.2.3 Fault Architecture

The current fault strategy is to place as much error information as possible into
the EEPROMs on the CPU board a failure occurs during the power-up sequence.
This is accomplished with the 87C652 microprocessor. The micro is programmed
in such a way that it allows communication between the 21064 microprocessor to
the serial control bus (and thus the EEPROMs).

26.2.4 Interpreting Error Printouts
This section describes how to interpret the serial ROM diagnostic printouts.

26.2.5 Error Message Display
The following is an example of an error report. Any errors that are detected by
the serial ROM diagnostics are visible ony when the SHOW ERROR command is
used from the firmware console.
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Examples

Error Number: 01 Subtest Number: 01
Address: 12345678
Expected Data: 12345678,12345678
Received Data: 12345678,12345678

In the following paragraphs, each section that describes a serial ROM diagnostic
that detects errors, is followed by a sample error printout.

26.2.6 Test name: B-Cache init
Test number: 01

Overview: This is not a test. Running test 1 reinitializes the backup cache

Description:

1. Initialize every block in the cache with a tag of 0 and Valid, Shared and Dirty
values of 0-0-0.

2. Clears all error registers in the CPU ASICs.

3. Enables the B-Cache for normal operation, that is, B-Cache probing is enabled
from the processor side and allocation and all checking is turned on from the
gate array side.

Errors:

The backup cache initialization routine does not detect errors.

Operator Control Panel LEDs:

does not affect LEDs

26.2.7 Test name: SROM Address Test
Test number: 02

Overview: This test verifies the B-cache data RAMs on the CPU module.

Description:

1. Every block of memory in the area to be tested is written with a quadword
(QW) of a graycode pattern and a QW of an inverse graycode pattern.

2. Every quadword is verified and if correct written back with its inverse.

3. The entire test area is flooded with zeros.

Note

The first memory module tested is the largest module with the lowest slot
number. If the module fails the next ranking module is tested. This is
done until the test finds 8 Meg of good memory.

Errors: This test uses the subtest field in the error printout. It indicates the
number of the failing quadword within the cache block under test.

00 Failure on verifying data from QW0

01 Failure on verifying data from QW1

02 Failure on verifying data from QW2
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03 Failure on verifying data from QW3

Figure 26–7 Test 02 sample printout
Test Number: 02 Subtest Number: 02
Address: 00000000,00000010
Expected: ffffffff,ffffffff
Received: fffffeff,ffffffff

Operator Control Panel LEDs:

0 0001 00 0 for memory module #0
0 0010 00 0 for memory module #1
0 0100 00 0 for memory module #2
0 1000 00 0 for memory module #3

26.2.8 Test name: SROM Tag Store Test
Test number: 03

Overview: This test verifies the tag store and tag control RAMs on the CPU
module.

Description:

1. The gate arrays on the CPU module are put into B-cache init mode allowing
each B-cache block to be written with various tag and tag control bit patterns.
Each cache block is written with an incrementing pattern in its tag field.

2. The 21064 microprocessor (Ev) is caused to probe each block and latch the
corresponding tag/tag control values in one of its internal registers. The
values are then compared to the initialization values for that particular cache
block.

3. The cache is then re-written with a decrementing pattern in the tags and a
new pattern in the tag control field.

4. Again, the 21064 probes the entire cache and verifies the tag and tag control
fields of every block in the cache.

Errors:

For this test the following subtests are possible.

01 Failure while verifying the tag_ADDR bits during the routine which increments the
tags from 0 (first pass)

02 Failure while verifying the tag_ADDR bits during the routine which decrements the
tags to 0 (second pass)

03 Failure while verifying the tag_CTRL bits during the routine which increments the
tags from 0

04 Failure while verifying the tag_CTRL bits during the routine which decrements the
tags to 0 (second pass)

The failing address which is printed out is the address that was used to trigger
the last B-cache probe (the one that had an incorrect tag or control field bit(s)).

The expected data reflects only the control bits or tag bits that were being
checked for.

The received data has the entire contents of 21064’s BC_TAG IPR.
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When comparing expected to received, you should look only at the field in the
received quadword that corresponds to the particular subtest.

Sample printouts:

1.

Test Number: 03 Subtest Number: 03
Address: 00000000,00000020
Expected: 00000000,00000004
Received: 00000000,00000100

Subtest 03 means that the tag control bits were being verified when the
failure occurred. This means that only bits <2:4> of the received field need
to be looked at (disregard the tag field). In this example the dirty bit was
expected to be set but was not.

2.

Test Number: 03 Subtest Number: 01
Address: 00000000,00000020
Expected: 00000000,00000200
Received: 00000000,00000304

Subtest 01 means that the tag field was being verified when the failure
occurred. This means that only bits <5:18> of the received field need to be
looked at (disregard the control bit field). In this example only one tag bit
was expected to be set.

3.

Test Number: 03 Subtest Number: 03 or 04
Address: 00000000,00000000
Expected: 00000000,00000003
Received: 00000000,00000004

In the case of subtest 03 or 04, there was a control bit error. The expected
data ignores the hit bit in the bc_tag IPR so the value that should have been
in bc_tag is actually the expected data, shifted left once. In this case, a 3
means that it was expected tah both the parity bit and the dirty bit be set.
Because the 4 is the actual value returned from bc_tag, it indicates that only
the dirty bit was set. Therefore the first bit that should be suspected is the
parity bit.

Operator Control Panel LEDs:

0 0000 10 0 for CPU 0
0 0000 01 0 for CPU 1

26.2.9 Test name: SROM B-Cache Data Line Test
Test number: 04

Overview: This test verifies the data bus between 21064 and the B-cache.

Description:

1. Set a bit in a cache block.

2. Verify that only that bit is a one.

3. Shift to the next bit and verify again.

This is done for all 128 bits on the 21064 data bus.
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Errors:

This test does not use the subtest field in the error printout (it will always be 00).
The point at which the test failed will be obvious just by looking at the expected
data pattern.

Sample printout:

Test Number: 04 Subtest Number: 00
Address: 00000000,00000000
Expected: 00010000,00000000
Received: 00000000,00000000

Operator Control Panel LEDs:

0 0000 10 0 for CPU 0
0 0000 01 0 for CPU 1

26.2.10 Test name: SROM ECC test
Test number: 05

Overview: This test verifies ECC generation by the 21064 (Ev).

Description:

1. The entire cache is written with 10010029. This pattern’s ECC is 2A (there
are only 7 check bits, not 8).

2. Every longword is read out of the cache and BIU_STAT is checked for an ECC
error.

3. Now each longword is written with 1000012d, which has an ECC of 55.

4. Every longword is read out of the cache and BIU_STAT is checked for an ECC
error.

Errors:

The Subtest number is not used (always 00). If the expected pattern is 10010029,
the check bits were expected to be all A’s. If the expected data is 1000012d, the
check bits were expected to be all 5’s. The received data may match the expected
data because an ECC error may not necessarily be associated with a data error.
Also, the ECC bits generated by 21064 cannot be read directly, so they must be
checked using an analyzer.

Sample printout:

Test Number: 05 Subtest Number: 00
Address: 00000000,00010080
Expected: 00000000,1001002d
Received: 00000000,1001002d

Operator Control Panel LEDs:

0 0000 10 0 for CPU 0
0 0000 01 0 for CPU 1
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26.2.11 Test name: CPU Spin on Processor Mailbox
Test number: 06

Overview:

This is not a test. Running test 6 causes a CPU to read its PMBX in a loop. This
test is useful only in an SMP scenario.

Description:

1. The CPU from which the test command is issued begins reading its processor
mailbox in anticipation of an address. It reads its PMBX approximately once
every millisecond.

2. The firmware console can then be loaded from the other CPU. At some point
the firmware console writes an address to the secondary CPU’s mailbox. The
CPU that is spinning on its mailbox reads that address and jumps to it.

Errors:

The CPU spin on mailbox is used only for multiprocessor initialization. It does
not detect any errors.

Operator Control Panel LEDs:

does not affect LEDs

26.2.12 Test name: Cbus (System Bus) test
Test number: 07

Overview: This test does a quick verification of the system bus.

Description:

1. A 1 and a 0 are floated across the processor mailbox and four different I/O
module CSRs. The following registers are tested by CPU0/1:

CPU0 CPU0

DLCA0 DLCB0

DLCA1 DLCB1

DLCA2 DLCB2

DLCA3 DLCB3

Errors:

An error is detected if there is a stuck bit on the system bus. This includes
detecting bad backplane connections. The subtest field is not used in this test.
The address field will identify the failing CSR.

Sample printout:

Test Number: 07 Subtest Number: 00
Address: 00000002,00000140
Expected: 00000000,80000000
Received: 00000000,00000000

Operator Control Panel LEDs:

0 0000 00 1 for I/O module
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26.2.13 Test name: Disable failing CPU
Test number: 08

Overview:

This is not a test. Running test 8 causes the other CPU to be disabled. This test
is used on power-on to disable a CPU that has failed its power up.

Description:

1. First, the other CPU’s arbitration mask is turned off. This prohibits that
CPU from accessing the system bus.

2. That CPU’s lock register (CSR13) is then cleared.

3. Finally, the CPU to be turned off has its BCC written with x000.1000. This
disables parity checking in the duplicate tag, disables ECC checking and
correction in the backup cache, forces the tag control bits to valid = 0, and
disables backup cache allocation. This is so any system bus references that
coincidentally hit in this "disabled" CPU will update the backup cache to
invalidate the block so that it will not hit again.

Errors:

This test is used only in multiprocessor initialization. It does not detect any
errors.

Operator Control Panel LEDs:

does not affect LEDs

26.2.14 Test name: Memory test
Test number: 99

Overview: This test finds and tests 2 MB of good memory.

Description:

1. The configuration information from the 652 is parsed to figure out which is
the largest memory module in the system.

2. All present modules are written with the correct size bits but only the largest
module is enabled. This module is also written with a refresh value of ^xE7
and its refresh is enabled.

3. EDC reporting is then disabled and the graycode test (test 2) is called to
test the first 8 Meg on this module. Because the state of the EDC bits is
undefined at power-up, EDC reporting is disabled to eliminate seeing any
errors. These errors would cause machine checks which cannot be handled
while executing SROM code.

4. If the test passes, the EDC RAMs on the memory module being tested are put
into swap mode (they are used for data instead of EDC) and the graycode test
is called a second time. Swap mode causes the EDC RAMs to be used as data
RAMs, corresponding to data bits <0:11>.

Errors:

The definitions of the subtest numbers are the same as those for test number 2,
with two exceptions.

• If the memory test fails during the first pass, the test number will be 99.
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• If the memory test fails during the second pass (while testing the EDC
RAMs),the test number will be 98.

Sample printout:

Test Number: 99 Subtest Number: 00
Address: 00000000,00000040
Expected: 00000000,00000003
Received: 00000000,80000003

In this case data bit 30 seems to be stuck high. If the Cbus test (test 7) has been
run successfully the problem can be either in the cache or the memory module. If
tests 2 and 4 also pass, then the memory should be looked at.

Test Number: 98 Subtest Number: 00
Address: 00000000,00000040
Expected: 00000000,00000003
Received: 00000000,80000003

In this example, the same error occurred but during the second pass of the
memory test, while testing the EDC RAMs. A good way to find this problem is
to put the EDC RAMs in and out of swap mode and try to examine/deposit some
locations manually.

Operator Control Panel LEDs:

0 0001 00 0 for memory module #0
0 0010 00 0 for memory module #1
0 0100 00 0 for memory module #2
0 1000 00 0 for memory module #3

26.2.15 Test name: Unload
Test number: 00

This is the command that unloads the firmware console from the I/O FEPROMs.
Description:

Although this command does not have a test number, it is mentioned here
because it can print out several different errors during its execution. The basic
algorithm for unloading the flash ROMs is the following.

1. Reset the L-bus on the I/O module.

2. Write the data structure base address to the L-bus Mailbox Pointer Register
(LMBPR).

3. Wait for the I/O module to respond with the data from the FEPROMs then
write it to memory.

4. Once the entire contents of the FEPROMs have been written to memory
re-read all of the data from memory and calculate the checksum.

5. Compare this to the correct checksum stored in the FEPROMs and if correct
pass control to the Palcode.

6. Verify that all four FEPROMs have the same value in the firmware console
revision field.

7. Verify that the FEPROMS are in the correct locations.

Errors:

There are four ways in which the unload may fail:

• If the 21064 CPU (Ev) times out waiting for the I/O module to set the done
bit in the data structure
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• If the checksum calculation returns the incorrect result

• If the FEPROM revision fields are inconsistant

• If one or more of the FEPROMS are in the wrong location on the I/O module.

Sample printouts;

Several different subtests are possible.
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Subtest
Number Meaning Possible cause

02 Time out waiting for done bit
from I/O module

The I/O module may be unplugged or poorly
seated. There may be a problem accessing
the L-bus. Try reading the FEPROMs
manually. See the instructions in the I/O
spec.

03 Bad Checksum in byte 0 For subtests 03 through 06, starting with
the most likely cause:

04 Bad Checksum in byte 1 The memory module may be missing.

05 Bad Checksum in byte 2 The memory module may have an
incorrectly programmed EEROM.

06 Bad Checksum in byte 3 Was test 99 run first ? It has to be.

There is a problem with one or more of the
FEROMs.

There may be a problem with the memory
module.

07 Revision Error One or more of the FEPROMS is of the
wrong revision.

08 Lane Error One or more the FEPROMs is in the wrong
location.

Note: Only the first FEPROM that is bad will be flagged.

Test Number: 00 Subtest Number: 02
Address: 00000000,00001000
Expected: 00038080,00038080
Received: 00000a00,00000a00

Both the expected and received values in this case are meaningless. The address
corresponds to the base address of the data structure in memory (always 1000).

Test Number: 00 Subtest Number: 03/04/05/06
Address: 00000000,00000000
Expected: 00000000,fa34bc16
Received: 00000000,fcfcfcfc

A failure occured while verifying the checksum for byte lane 0, but it appears
as though all of the bytes came up in error. The first component that can be
suspected is memory.

Test Number: 00 Subtest Number: 03
Address: 00000000,00000000
Expected: 00000000,fa34bc16
Received: 00000000,fa34bc00

In this example, the combination of the subtest number and the received data tell
us to look at the FEPROM for byte 0.
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Test Number: 00 Subtest Number: 07
Address: 00000000,00087fec
Expected: 00000000,43434343
Received: 00000000,43432943

In this example, the FEPROM 1 is of the wrong revision.

Test Number: 00 Subtest Number: 03
Address: 00000000,00087fe8
Expected: 00000000,03020100
Received: 00000000,03000102

In this example, FEPROMS 0 and 2 are in the wrong location.

Operator Control Panel LEDs:

0 0000 00 1 for I/O module

26.3 Memory Subsystem
The DEC 4000 memory module provides between 16 MB and 128 MB of high-
performance storage, depending on the technology of the DRAMs used and the
number of banks installed, with error detection and correction capabilities. A pair
of application-specific integrated circuits (CMOS gate arrays) provides the DEC
4000 system interconnect data interface and transaction control, DRAM interface
and control, EDC generate, error detection/correction and error syndrome
generation, and diagnostic/self test functions.

26.3.1 Initialization

26.3.1.1 Initialization Tests
This test sizes the memory subsystem both for presence of modules and board
size. The DEC 4000 memory module configuration CSR is setup. For each
memory module, one at a time, basic data, address and bank uniqueness is tested.
Major functionality of the CMOS gate arrays is also verified, including Error
Detection and Correction(EDC) logic and stream buffer storage. The DRAMs are
verified in parallel utilizing diagnostic mode. The modules are configured using
interleave functionality by default or in a user specified configuation. Failing
modules are not configured into the system. All errors are reported and logged
into the modules EEROM.

Description
Verify the Memory integrated circuit (CMIC):

CMIC register storage - Float a one and a zero across all bits in one CMIC
register.

CMIC stream buffer - Write/read/verify all stream buffer storage cells with a one
and zero.

Bank uniqueness (across banks) - Write/read/verify locations on all banks using a
graycode/inverse graycode algorithm.

Chip/bank address uniqueness(within bank) - Float a one and a zero across all
address lines for each bank.
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CMIC EDC logic - Force correctable and uncorrectable errors and verify correct
reorting and CSR logging.

Verify all DRAMS on available Modules:

Write every cell of the DRAMs with a 1 and a 0 using a graycode/ inverse
graycode algorithm.

All EDC bits are tested because a complement of a data pattern forces the
complement of the EDC bits.

Use of dignostic mode function during testing allows access to multiple memory
modules in the same address range.

Use of EDC logic to detect and report all errors decreases test time by eliminating
explict verification of data.

26.3.1.2 Memory Configuration

Description
Memory is configured, by default, using full interleave capability. All non-failing
modules are configured largest to smallest. Two like modules are configured using
2-way interleaving and four like modules are configured using 4-way interleave.
Multiple smaller modules may also be logically combined to be interleaved with a
larger module of like size. For example, two 64MB modules can be combained to
form a logical 128MB module and be interleaved with a 128MB module.

The interleave evironment variable may be used to control the memory
configuation and force a custom interleave. The interleave environment variable
my be set to "none" which will configure the memory largest to smallest in a
non-interleaved setup.

Special interleave syntax can be used to define specific configuations.

Note

The interleave environment variable is nonvolatile, it will be preserved
across a power cycle. The new, specified, memory configuation will not
take affect until the "init" command is typed or the system is reset.

Table 26–1 Interleave environment variable syntax

Syntax Function Description

0,1,2,3 Board number used to identify memory board

, Interleave set used to separate groups of boards that will be
interleaved

: Combine board used to designate multiple memory modules to
appear as one logical interleave unit

+ Interleave Unit used to identify modules that are to be
interleaved

For example, in a system with memory modules of 128MB, 32MB, 32MB, 64MB in slots 0
through 3. Interleave could be set to:
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Table 26–2 Interleave environment variable examples

Command Syntax Memory Configuration

>>>set interleave 0+3:1:2 Interleave the 128MB with a logical 128MB made up
of the 64MB, and the two 32MB modules. Same as
"default" interleave.

>>>set interleave 0,3+1:2 Configure the 128MB alone, then interleave the 64MB
with a logical 64MB made up of two 32MB modules.

>>>set interleave 0,3,1+2 Configure the 128MB and 64MB alone, then interleave
the two 32MB modules.

>>>set interleave 0,3,1,2 Configure all modules with no interleaving. Same as
"none" interleave.

>>>set interleave 0,3,1 Configure the 128MB, 64MB and one 32MB alone. Do
not configure the 32MB module in slot 2.

26.3.1.3 Failure Reporting and Logging

Description
Failure information is reported and logged after the initialization tests are
completed. All errors are logged into the IIC EEROM error structure. Refer to
chapter on IIC EEPROM error structure for complete details. All new, unique
errors are also reported to the console terminal and the event logger(el) during
powerup.

26.3.2 Exerciser Tests

Description
The exerciser uses a system wide memory exerciser service available from the
shell. This allows the memory subsystem to be run in a resource competing
environment. Multiple exercisers may be started to test different sections of
memory.

Other exercisers may also be started to produce more activity. A system-wide
exerciser status reporting program is used to report the state of all exercisers
currently executing

For a complete description of the memory exercisers refer to the command
Appendix sections for memtest, memexer, and test.

26.4 SCSI/DSSI Subsystem
The SCSI/DSSI (mass storage) subsystem is part of the I/O module in a DEC
4000 system and consists of the following:

• Five NCR 53C710 controller chips

• 128 Kbytes of buffer memory shared by the NCR chips (Script RAM)

• Associated logic to communicate with four SCSI/DSSI and one SCSI-only port
on the I/O module backplane

• The disk and tape units

• The CPU and host memory
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The four NCR chips can serve as either DSSI or SCSI adapters. Each has a PAL
and a transceiver chip on the SCSI side of the NCR chip. The fifth NCR chip has
its SCSI side routed directly to the SCSI bus connector.

26.4.1 Expected Failures
The four major areas in the mass storage subsystem for failure are:

• Mechanical and electrical connections

• Chip failures (both NCR and associated logic)

• Disk controllers or tape units

• System interaction including latency and bandwidth issues

26.4.2 Diagnostic Strategy
The diagnostic strategy falls into three basic categories: power-up, functional,
and exerciser.

Power-up diagnostics test most of the NCR pin connections, the script RAM,
and some of the NCR chip internals. The emphasis is on testing as many of
the NCR chip pin connections as possible. Lesser emphasis is given to testing
all of the internals of the NCR chips themselves. These diagnostics run before
the SCSI/DSSI drivers complete their initialization code and cannot be repeated
without doing a hardware reset. Disk and tape units perform self-tests and those
units that fail their self tests do not appear in the system device list.

Functional tests perform reads and writes of data to/from the disk and tape
units. They also test some of the pin connections not previously tested during the
driver initialization. Functional tests are executed after the driver processes have
successfully completing driver initialization.

Exerciser tests are performed while running in a resource competing
environment. The goal of the exerciser tests is to detect interaction faults.

26.4.3 Power-up Tests
These tests are subdivided into three categories:

• I/O module self tests

• Driver startup/sizing

• Disk/tape unit self tests

Those components of the I/O module used by the mass storage subsystem are
tested in parallel with the disk and tape unit self tests. After the I/O module
completes self test, the drivers complete their initialization and size the system to
determine what units are present.

These tests are invoked when the console starts running, before the console
prompt is issued. These tests cannot be invoked from the shell because other
applications, in addition to diagnostics, may be using the driver concurrently. The
driver initialization is run only once. Hence, these initialization tests are run
only once.
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26.4.3.1 IO Module Self Tests
All of these tests execute even if the five SCSI/DSSI interfaces do not have any
disk or tape units attached. These tests cover the I/O module components in the
following order: script RAM, NCR 53C710 chip host lines and the SCSI/DSSI
lines.

26.4.3.2 Driver Startup/Sizing
After the I/O module completes self test, the class and port drivers startup and
report any errors detected. Once the drivers have started, they size the system,
that is, they build a device list of the units that respond. SCSI/DSSI ports with
no disk or tape units attached get very little test coverage from this driver startup
code.

Expected Failures
Failure models not previously covered are: faulty cables and cable connections;
failed disk or tape units (but no media); more of the NCR 53C710 chip internals
than previously covered.

Test Description
The drivers startup and report any errors detected. The drivers then size the
system by sending command packets to units that may be there. Units that do
not respond are assumed to be either not present or have failed their self tests.
Units that respond are entered into the system device list. SCSI/DSSI ports with
no disk or tape units attached get very little test coverage from this driver startup
code.

If one or more units per SCSI/DSSI port shows up in the system device table,
there exists a high probability that the port’s cables and cable connectors as well
as the disk/tape unit are functional. If no units show up for any particular port,
there is not sufficient information about the integrity of the port’s cables and
connectors. Units that are physically attached to a port but do not show in a
device table are faulty or the cable/connectors are faulty.

26.4.3.3 Disk/Tape Unit Self Tests
These tests reside in the firmware of the disk/tape units themselves and are
run in response to a hardware reset or device power-up. These tests run
independently and in parallel with the DEC 4000 system self tests (which
includes the I/O module self tests described above).

Because the method of retrieval of this information varies depending on the unit
type and the nature of an error the test results are not retrieved by the console
firmware.

Expected Failures
Defective disk or tape unit.

Test Description
These tests vary depending on the unit type. The units that fail these tests do
not responded to normal commands and do not show up in the system device list.

26.4.4 Functional Tests
These tests can be invoked from the shell if the operator chooses to run them.
These tests are not run at power-up time. They read and write to one or more
disk units concurrently. Tape units can be read but not written by the console
firmware.
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Expected Failures
Faulty cables and cable connections; failed disk or tape units; bad media, and
faulty disk subsystem components on the I/O module.

Test Description
The two functional tests for mass storage devices are exer_read and exer_
write. These two commands are described in the Console Command Repository
Appendix.

26.4.5 Exerciser Tests
The third section of testing is the exerciser. The main goal is to test the disk
subsystem running in a resource competing environment (both hardware and
CPU compute time). These tests detect interaction faults and provide some
functional testing as well.

Test Description
In general, these tests read, write and verify data to/from the devices. They are
started as processes and run concurrently with other exercisers under the DEC
4000 Shell. A status program, show_status, can be run to report the progress of
the exercisers.

The console command, test, concurrently exercises all disks as well as other
system hardware. Only one test command at a time should be run. The test
command is described in the Console Command Repository Appendix.

The console command, exer, provides virtually unlimited ways of specifying
device and test specifications to facilitate triggering failures that aren’t easily
reproduceable. In almost all cases this same functionality is provided with the
exer_read, exer_write, and test commands. The exer command is intended
only for extremely knowledgable service personnel and then in only rare
circumstances. The exer command is described in the Console Command
Repository Appendix.

26.5 Network Subsystem
The network subsystem is part of the I/O module in a DEC 4000 system. It
consists of two TGEC chips and associated logic to communicate with the
Thinwire and Thickwire ports on the I/O module handle, the CPU and host
memory.

26.5.1 Initialization

26.5.1.1 Driver Initialization Tests
The initialization tests are completed before the console driver is started and are
only invoked on a: power-cycle; hardware reset; or console init command. For
each TGEC chip installed the chip itself is verified, and internal and external
loobacks are performed. Errors detected in initialization will be flagged by the
LEDS on the OCP and may prohibit the driver from being fully functional.
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Description
Verify the TGEC chip:

Run the TGEC chip-level Power-up Self Test

Verify the port station address ROM

TGEC CSR Storage - Float a one and zero across all bits in one TGEC register.

Initialize the chip - Set up the transmit and receive descriptors, build and send
the setup frame.

Verify logic from the TGEC chip to the I/O module handle:

Transmit loopback packets - Send internal and external loopback messages of
varying size and alignment.

Note

The loopback tests require a correctly terminated network port.

26.5.2 Exerciser Tests

Description
The exerciser uses a system wide network exerciser available from the shell.
This allows the NI subsystem to run in a resource-competing environment (both
hardware and CPU compute time). Both internal and external loopback testing
may be performed as well as live-network testing. The more extensive coverage
comes from the external or live-network testing.

These tests rely heavily on the EZ port driver and MOP driver for detection
and reporting of error information. Because the diagnostic may not be the
only application using the driver, it cannot own the driver nor can it force the
hardware to do things that might interfere other applications.

The exerciser tests complete the verification of the subsystem that is not covered
by the initialization code. The tests are simple in principle but, through
customization of environment variables and user created scripts, are able to
detect a wide range of problems.

For a complete description of the network exercisers refer to the command
Appendix sections for nettest, netexer, ntlpex, ntlpex1, ntlpex2, and net.

26.6 Futurebus+ Subsystem

26.6.0.1 Hardware Overview
The Futurebus+ Adapter on the I/O module provides an interface between the
DEC 4000 system and devices attached to the Futurebus+. This interface makes
the physical memory available for access by the Futurebus+ devices as well
and provides access to Futurebus+ device CSR’s and routes Futurebus+ device
interrupts to the system processor.
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26.7 Futurebus+ Devices

26.7.1 Hardware Overview
The DEC 4000 system supports up to 6 Futurebus+ devices via a 6 slot
Futurebus+ backplane in the system chassis. These devices may be a mixture of
both Digital and Non-Digital produced devices.

The DEC 4000 system console supports the testing of only those devices that
comply with the Digital Futurebus+ Handbook suggestions for a Standard Test
interface.

26.7.1.1 Diagnostic Strategy
The diagnostic strategy for the Futurebus+ devices uses the built-in tests on these
devices. Three test sets of diagnostics are used during the automated testing of
these devices provided that the device under test implements all three test sets.
Should a given device not implement one or more of these test sets, that test set
is reported as passed. The three tests used are defined as follows:

1. Power-on Self Tests -

The completion status of the power-on self test is verified during the
Futurebus+ sizing. Failing devices are reported. Power-on tests are defined
by the Digital Futurebus+ Handbook as being tests that shall not require any
external resources. Every test that can be run without support or cooperation
with other nodes or resources in the system shall be included in this category.

2. Extended Self Tests -

Once the Futurebus+ has been sized and configured, the extended self-test is
executed on each device and the completion status checked. Extended tests
are defined by the Digital Futurebus+ Handbook as being tests that shall
use a buffer external to the unit under test as scratch space. The handle or
pointer to the scratch space is passed to tests in the extended category in the
ARGUMENT CSRs. To be consistent with the CSR standard, the buffer shall
be 4 Kbytes in size.

3. System Tests -

As part of the DEC 4000 system testing, the system test set for each
Futurebus+ device is started and the completion status monitored. System
tests are defined by the Digital Futurebus+ Handbook as tests that may
require additional system resources beyond those required by a test in the
extended category. The exact use of this category is defined by the vendor.

26.7.2 Futurebus+ Sizing

Overview
The initial configuration of Profile B I/O devices on Digital systems is split
between the console code and the device drivers. Following power-on the console
configures the various registers on the system bus bridge and then probes the
Futurebus+ to determine which devices are present.

Note that the IEEE Futurebus+ standard allows up to two nodes on each module
(sides 0 and 1). Modules that have only one node are required to place the node
on side 0.
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The configuration routine performs the operations outlined in the System
Configuration Software section of the Digital Furturebus+ Handbook.

26.8 SLU Subsystem
26.8.1 Overview

26.8.1.1 Hardware Overview
The I/O module contains two serial line units: The console serial line and the
auxiliary serial line. Both serial lines operate in asynchronous mode only. These
serial lines are implemented using a single Zilog 85C30 device. Access to the
85C30 is via two byte wide registers for each of the available serial lines which
are accessible on L-bus addresses.

26.8.2 85C30 Register Test
The 85C30 register test verifies that each bit in the internal registers can be
independently set and cleared. Completion of this test provides a high confidence
level that the chip is functional and the driver initialization will complete
successfully. This test is executed prior to initialization of the console serial line
driver and can not be invoked from the console CLI.

Note

Due to the function of some the bits within the registers, not all bits of
the registers are tested.

Failure Model
The focus of this test is to verify the pins of the 85C30 serial line controller chip.
The pins to be tested are listed below:

• A/!B

• !CE

• D0-D7

• D/!C

• !RD

• !WR

Environment Variables Used
None.

Parameters/Options Used
None.

Test Description
This test execute a floating 0’s and 1’s pattern test for the following registers.

• TBD
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26.8.3 85C30 Internal Loop-back Test
The 85C30 internal loop-back test verify its functionality by looping the transmit
signal to the receive signal internal to the chip.

Failure Model
Internal transmit and receive logic of the 85c30 chip

Environment Variables Used
None

Parameters/Options Used
None

Test Description
This test sets the 85C30 chip into internal loop-back and transmits and receives a
series of characters, a each of several Baudrates. A check is made to ensure that
the character transmitted is the same as the character received.

26.8.4 85C30 External Loop-back Test
The 85C30 external loop-back test uses an external loop-back connector to loop
the transmit signal to the receive signal external to the chip in order verify the
functionality of this component.

Test Description
This tests utilizes the EXER command along with the external loopback connector
to transmit and recieve a series of characters. One each block of characters has
been transfered, EXER will compare the transmitted and recieved characters to
ensure that the same number of characters were recieved as were transmitted
and that the recieved characters match the transmitted characters. The EXER
command line to implement this test is as follows:

>>>exer tta’n’ -bs 1 -a "W-rc" -l 1000

This test requires the use of an external loop-back connector and therefore may
not be used to test a serial line currently be used as the console input/output
channel. In order to execute this test on the console serial line, the console input
/output must be redirected to either the auxiliary serial line or the MOP based
remote console.

26.9 Multi-Processor
The DEC 4000 may be configured as a multi-processor system. While it is
possible to run diagnostics locked to a single processor, most tests will be
scheduled to run on the next available processor. This allows devices to be tested
from both processors.

It may also be desirable to stress the dependency of the processor caches in a
multi-processor system. This may be done using the memexer_mp script. This
script locks a memory exerciser to each processor. Each exerciser will test every
other longword. This interaction causes a high incidence of shared and dirty
cache blocks.

The cache status may be examined using the cbcc command. Cbcc verifies the
coherhency of the caches on each processor. It can also list the value of the tag
and the tag control bits at a specific point in time for the desired cache lines.

For a complete descriptions of the commands related to multi-processing refer to
the command Appendix sections for memexer_mp, memtest and cbcc.
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26.10 Serial Control Bus Subsystem

26.10.1 Controller Register Test (iic_reg_test)
The serial control bus controller register test verifies that each bit the internal
registers can be independently set and cleared. Completion of this test provides a
high-confidence level that the chip is functional and that the driver initialization
will complete successfully. This test is executed prior to initialization of the serial
control bus driver, and can not be invoked from the console CLI.

Note

Because of the function of some of the bits within the Control register, not
all bits of this register are tested.

Test Description
Execute a floating 0’s and 1’s pattern test for the following registers.

• Data shift (S0) - all bits

• Own address (S0’) - all bits

• Control/status (S1) - bits <5:0>

• Clock register (S2) - all bits

• Interrupt vector (S) - all bits

26.10.2 Bus Access Test (iic_acc_test)
The serial control bus access test verifies the ability to access devices attached
to the serial control bus. This test makes uses the LED driver contained on the
OCP as the test target. This test is executed by the serial control bus driver
initialization routine, and can not be invoked from the console CLI.

Test Description
This test reads the current value of the OCP LED driver and verifies that it
contains the power-up default value of 00h.
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IPR State on Power-up and RESET

The table below lists the state of all the IPRs immediately following reset. The
table also specifies which IPRs need to be initialized by power-up PALcode.

Table A–1 IPR Reset State

IPR Reset State Comments

ITB_TAG undefined

ITB_PTE undefined

ICCSR cleared Floating point disabled, single issue mode, VAX mode
enabled, ASN = 0, jsr predictions disabled, branch
predictions disabled, branch history table disabled,
performance counters reset to zero, Perf Cnt0(16b) : Total
Issues/2, Perf Cnt1(12b) : Dcache Misses

ITB_PTE_TEMP undefined

EXC_ADDR undefined

SL_RCV undefined

ITBZAP n/a PALcode must do a itbzap on reset.

ITBASM n/a

ITBIS n/a

PS undefined PALcode must set processor status.

EXC_SUM undefined Palcode must clear exception summary and exception
register write mask by doing 64 reads.

PAL_BASE cleared Cleared on reset.

HIRR n/a

SIRR undefined PALcode must initialize.

ASTRR undefined PALcode must initialize.

HIER undefined PALcode must initialize.

SIER undefined PALcode must initialize.

ASTER undefined PALcode must initialize.

SL_XMIT undefined PALcode must initialize. Appears on external pin.

DTB_CTL undefined Palcode must select between SP/LP dtb prior to any TB fill.

DTB_PTE undefined

DTB_PTE_TEMP undefined

MMCSR undefined Unlocked on reset.

(continued on next page)
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Table A–1 (Cont.) IPR Reset State

IPR Reset State Comments

VA undefined Unlocked on reset.

DTBZAP n/a PALcode must do a dtbzap on reset.

DTBASM n/a

DTBIS n/a

BIU_ADDR undefined Potentially locked.

BIU_STAT undefined Potentially locked.

SL_CLR undefined PALcode must initialize.

DC_ADDR undefined Potentially locked.

DC_STAT undefined Potentially locked.

FILL_ADDR undefined Potentially locked.

ABOX_CTL see comments [11..0] <- ^x0100 Write buffer enabled, machine checks
disabled, correctable read interrupts disabled, Icache stream
buffer disabled, Dcache disabled, forced hit mode off.

ALT_MODE undefined

CC undefined Cycle counter is disabled on reset.

CC_CTL undefined

BIU_CTL see comments Bcache disabled, parity mode undefined, chip enable asserts
during RAM write cycles, Bcache forced-hit mode disabled.
BC_PA_DIS field cleared. BAD_TCP cleared. BAD_DP
undefined.

Note: The Bcache parameters BC RAM read speed, BC
RAM write speed, BC write enable control, and BC size are
all undetermined on reset and must be initialized before
enabling the Bcache.

FILL_SYNDROME undefined Potentially locked.

BC_TAG undefined Potentially locked.

PAL_TEMP[31..0] undefined

PALcode should execute four jsr call instructions to initialize the jsr stack. This
is necessary to insure deterministic behavior for testers. The following code will
initialize the stack once the ICCSR [JSE] bit is set.

BSR r1,stk_1 ; push RET PC
stk_1:

BSR r2,stk_2 ; push RET PC
stk_2:

BSR r3,stk_3 ; push RET PC
stk_3:

BSR r4,stk_4 ; push RET PC
stk_4:

A.1 TB Miss Flows
This section describes hardware specific details to aid the PALcode programmer
in writing ITB and DTB fill routines. These flows were included to highlight
trade-offs and restrictions between PAL and hardware. The PALcode source that
is released with EVx should be consulted before any new flows are written. A
working knowledge of the ALPHA memory management architecture is assumed.
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A.1.1 ITB Miss
When the Ibox encounters an ITB miss it latches the VPC of the target
instruction-stream reference in the EXC_ADDR IPR, flushes the pipeline of
any instructions following the instruction which caused the ITB miss, waits for
any other instructions which may be in progress to complete, enters PALmode,
and jumps to the ITB miss PAL entry point. The recommended PALcode sequence
for translating the address and filling the ITB is described below.

1. Create some scratch area in the integer register file by writing the contents of
a few integer registers to the PAL_TEMP register file.

2. Read the target virtual address from the EXC_ADDR IPR.

3. Fetch the PTE (this may take multiple reads) using a physical-mode HW_LD
instruction. If this PTE’s valid bit is clear report TNV or ACV as appropriate.

4. Since the ALPHA SRM states that translation buffers may not contain invalid
PTEs, the PTE’s valid bit must be explicitly checked by PALcode. Further,
since the ITB’s PTE RAM does not hold the FOE bit, the PALcode must also
explicitly check this condition. If the PTE’s valid bit is set and FOE bit is
clear, PALcode may fill an ITB entry.

5. Write the original virtual address to the TB_TAG register using HW_MTPR.
This writes the TAG into a temp register and not the actual tag field in the
ITB.

6. Write the PTE to the ITB_PTE register using HW_MTPR. This HW_MTPR
causes both the TAG and PTE fields in the ITB to be written. Note it is not
necessary to delay issuing the HW_MTPR to the ITB_PTE after the MTPR to
the ITB_TAG is issued.

7. Restore the contents of any modified integer registers to their original state
using the HW_MFPR instruction.

8. Restart the instruction stream using the HW_REI instruction.

A.1.2 DTB Miss
When the Abox encounters a DTB miss it latches the referenced virtual address
in the VA IPR and other information about the reference in the MMCSR IPR, and
locks these registers against further modifications. The Ibox latches the PC of
the instruction which generated the reference in the EXC_ADDR register, drains
the machine as described above for ITB misses, and jumps to the DTB miss
PALcode entry point. Unlike ITB misses, DTB misses may occur while the CPU
is executing in PALmode. The recommended PALcode sequence for translating
the address and filling the DTB is described below.

1. Create some scratch area in the integer register file by writing the contents of
a few integer registers to the PAL_TEMP register file.

2. Read the requested virtual address from the VA IPR. Although the act of
reading this register unlocks the VA and MMCSR registers, the MMCSR
register only updates when D-stream memory management errors occur. It
therefore will retain information about the instruction which generated this
DTB miss. This may be useful later.

3. Fetch the PTE (may require multiple reads). If the valid bit of the PTE is
clear, a TNV or ACV must be reported unless the instruction which caused
the DTB miss was FETCH or FETCH/M. This can be checked via the opcode
field of the MMCSR register. If the value in this field is 18 (hex), then a
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A.1 TB Miss Flows

FETCH or FETCH/M instruction caused this DTB miss, and as mandated
by the ALPHA SRM, the subsequent TNV or ACV should NOT be reported.
Therefore PALcode should read the value in EXC_ADDR, increment it by four,
write this value back to EXC_ADDR, and do a HW_REI.

4. Write the register which holds the contents of the PTE to the DTB_CTL
IPR. This has the effect of selecting either the small or large page DTB
for subsequent DTB fill operations, based on the value contained in the
granularity hint field of the PTE.

5. Write the original virtual address to the TB_TAG register. This writes the
TAG into a temp register and not the actual tag field in the DTB

6. Write the PTE to the DTB_PTE register. This HW_MTPR causes both the
TAG and PTE fields in the DTB to be written. Note it is not necessary to
delay issuing the HW_MTPR to the DTB_PTE after the MTPR to the DTB_
TAG is issued.

7. Restore the contents of any modified integer registers.

8. Restart the instruction stream using the HW_REI instruction.
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Error Flows

The following sections give a summary of the hardware flows for various error
conditions for the 21064 (EV4) CPU.

B.1 I-stream ECC error

• data put into Icache unchanged, block gets validated

• machine check

• BIU_STAT: FILL_ECC, FILL_IRD set, FILL_SEO set if multiple errors
occurred

• FILL_ADDR[33..5] & BIU_STAT[FILL_QW] give bad QW’s address

• FILL_SYNDROME contains syndrome bits associated with failing quadword

• BIU_ADDR, BIU_STAT[6..0] locked - contents are UNPREDICTABLE

• DC_STAT locked - contents are UNPREDICTABLE

• BC_TAG holds results of external cache tag probe if external cache was
enabled for this transaction

B.2 D-stream ECC error

• data put into Dcache unchanged, block gets validated

• machine check

• BIU_STAT: FILL_ECC set, FILL_IRD clear, FILL_SEO set if multiple errors
occurred

• FILL_ADDR[33..5] & BIU_STAT[FILL_QW] give bad QW’s address

• FILL_ADDR[4..2] contain PA bits [4..2] of location which the failing load
instruction attempted to read

• FILL_SYNDROME contains syndrome bits associated with failing quadword

• BIU_ADDR, BIU_STAT[6..0] locked - contents are UNPREDICTABLE

• DC_STAT: RA identifies register which holds the bad data.
LW,LOCK,INT,VAX_FP identify type of load instruction

• BC_TAG holds results of external cache tag probe if external cache was
enabled for this transaction
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B.3 BIU: tag address parity error

B.3 BIU: tag address parity error

• recognized at end of tag probe sequence

• lookup uses predicted parity so transaction misses the external cache

• BC_TAG holds results of external cache tag probe

• machine check

• BIU_STAT: BC_TPERR set

• BIU_ADDR holds address

B.4 BIU: tag control parity error

• recognized at end of tag probe sequence

• transaction forced to miss external cache

• BC_TAG holds results of external cache tag probe

• machine check

• BIU_STAT: BC_TCPERR set

• BIU_ADDR holds address

B.5 BIU: system external transaction terminated with CACK_SERR

• CRD interrupt.

• BIU_STAT: BIU_SERR set, BIU_CMD holds cReq_h[2..0].

• BIU_ADDR holds address.

B.6 BIU: system transaction terminated with CACK_HERR

• machine check

• BIU_STAT: BIU_HERR set, BIU_CMD holds cReq_h[2..0]

• BIU_ADDR holds address

B.7 BIU: I-stream parity error (parity mode only)

• data put into Icache unchanged, block gets validated

• machine check

• BIU_STAT: FILL_DPERR set, FILL_IRD set

• FILL_ADDR[33..5] & BIU_STAT[FILL_QW] give bad QW’s address

• FILL_SYNDROME identifies failing longword(s)

• BIU_ADDR, BIU_STAT[6..0] locked - contents are UNPREDICTABLE

• DC_STAT locked - contents are UNPREDICTABLE

• BC_TAG holds results of external cache tag probe if external cache was
enabled for this transaction
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B.8 BIU: D-stream parity error (parity mode only)

B.8 BIU: D-stream parity error (parity mode only)

• data put into Dcache unchanged, block gets validated

• machine check

• BIU_STAT: FILL_DPERR set, FILL_IRD clear

• FILL_ADDR[33..5] & BIU_STAT[FILL_QW] give bad QW’s address

• FILL_ADDR[4..2] contain PA bits [4..2] of location which the failing load
instruction attempted to read

• FILL_SYNDROME identifies failing longword(s)

• BIU_ADDR, BIU_STAT[6..0] locked - contents are UNPREDICTABLE

• DC_STAT: RA identifies register which holds the bad data.
LW,LOCK,INT,VAX_FP identify type of load instruction

• BC_TAG holds results of external cache tag probe if external cache was
enabled for this transaction
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C
AC and DC Characteristics

Table C–1 System bus AC and DC Characteristics

Parameter Description Min Max Units Notes

DC Characteristics

Voh Output high voltage @Ioh = 8ma 2.4 - V

Vol Output low level @Iol= -8ma - .4 V

Vohck Output high voltage @Ioh = -8ma 4.5 - V

Volck Output low voltage @Iol = 8ma - .5 V

Volod Output low voltage @Iol = 48ma - .4 V

Ioh Output high current @Voh = min 8 - ma

Iol Output low current @Vol = max 8 - ma

Iohck Output high current @Voh= max 8 - ma

Iolck Output low current @Vol= max 8 - ma

Iolod Output low current @Vol= max 48 - ma

Ioz Tri-state leakage current Vpin=
0 to 4.74v

-100 +100 ua

Vih Input high voltage 2 - V

Vil Input low voltage - .8 V

Vihck Input high clock voltage 70%-Vdd - V

Vilck Input low clock voltage - 30%-Vdd V
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alloc

alloc — Allocate a block of memory from the heap.

Exports the ’malloc’ routine out to the shell, so that users may allocate a block of
memory from the heap. The resulting block may then be used simultaneously by
several test routines (there can be several readers but only one writer).

Syntax

alloc size [modulus] [remainder] [-flood] [-z heap_address]

Arguments

size
Specifies the size (hex) in bytes of the requested block.

modulus
Specifies the modulus (hex) for the beginning address of the requested block.

remainder
Specifies the remainder (hex) used in conjunction with the modulus for computing
the beginning address of the requested block.

Options

-flood
Flood memory with 0s. By default, alloc does not flood.

-z heap_address
Allocate from the memory zone starting at address heap_address. This address is
usually obtained from the output of a ’dynamic’ command).

Examples
>>>alloc 200
00FFFE00
>>>free fffe00
>>>set base ‘alloc 400‘
>>>show base
base 00FFFC00
>>>memtest $base
>>>free $base
>>>clear base

Command References

dynamic, free
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bin

bin — Convert an ASCII representation of hex digits into binary
values.

Converts a ASCII representation of hexadecimal digits (0..9, a..f) into their binary
values. All other characters are ignored.

Syntax

bin hex_digit...

Arguments

hex_digit ...
Specifies the hexadecimal digit(s) to be converted to binary.

Options

None.

Examples
>>>bin 12 > foo
>>>hd foo
00000000 12 .
>>>bin 1 2 3 4 5 6 7 8 > foo
>>>hd foo
00000000 21 43 65 87 !Ce.
>>>bin 12345678 abcdef > foo
>>>hd foo
00000000 78 56 34 12 ef cd ab xV4.ïÍ«
>>>bin 01 23 45 67 89 ab cd ef > foo
>>>hd foo
00000000 01 23 45 67 89 ab cd ef .#Eg.«Íï
>>>bin g h i j k l m n o > foo
>>>hd foo

Command References

None
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boot

boot — Bootstrap the system.

Initializes the processor, loads a program image from the specified boot device,
and transfers control to that image. If you do not specify a boot device in
the command line, the default boot device is used. The default boot device is
determined by the value of the ’bootdef_dev’ environment variable.

If you specify a list of devices, a bootstrap is attempted from each device in order.
Then control passes to the first successfully booted image. In a list, always enter
network devices last, since network bootstraps only terminate if a fatal error
occurs or an image is successfully loaded.

The -flags option can pass additional information to the operating system about
the boot that you are requesting. On a VMS system, the -flags option specifies the
system root number and boot flags. If you do not specify a boot flag qualifier, then
the default boot flags value specified by the ’boot_osflags’ environment variable is
used.

The -protocol option allows selection of either the DECNET MOP or the TCP/IP
BOOTP network bootstraps. The keywords ’mop’ or ’bootp’ are valid arguments
for this option. Note, it is possible to set the default protocol for a port by setting
the environment variable, ’eza0_protocols’ or ’ezb0_protocols’ to the appropriate
protocol.

Explicitly stating the boot flags or the boot device overrides the current default
value for the current boot request, but does not change the corresponding
environment variable.

Syntax

boot [-file filename] [-flags longword[,longword]]
[-protocols enet_protocol] [-halt]
[boot_device]

Arguments

boot_device
A device path or list of devices from which the firmware attempts to boot, or
a saved boot specification in the form of an environment variable. Use the set
bootdef_dev command to define the default boot device.

Options

-file filename
Specifies the name of a file to load into the system. For booting from Ethernet,
this name is limited by the MOP V3 load protocol to 15 characters. Use the set
boot_file command to specify a default boot file.

-flags longword [,longword ]
Specifies additional information to the operating system. In the case of VMS,
specifies system root number and boot flags. These values are passed to the
operating system for interpretation. Preset default boot flag values are 0,0. Use
the set boot_osflags command to change the default boot flag values.
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boot

-protocols enet_protocol
Specifies the Ethernet protocol(s) to to be used for the network boot. Either the
keyword ’mop’ or ’bootp’ may be specified. If both are specified, each protocol is
attempted to solicit a boot server.

-halt
Forces the bootstrap operation to halt and invoke the console program once the
image is loaded and page tables and other data structures are set up. Console
device drivers are not shut down when this qualifier is present. Transfer control
to the image by entering the continue command.

Examples

In the following example, the system boots from the default boot device. The console program
returns an error message if a default boot device has not been set.

>>>boot

In the next example, the system boots from the Ethernet port, eza0.
>>>boot eza0

In the next example, the system boots the file named ’dec_4000.sys’ from Ethernet port mke0.
>>>boot -file dec_4000.sys mke0

In the next example, the system attempts a TCP/IP BOOTP network boot from Ethernet port
eza0.

>>>boot -protocol bootp eza0

In the next example, the system boots from the default boot device using boot flag settings 0,1.
>>>boot -flags 0,1

In the next example, the system loads the operating system from the SCSI disk, dka0, but
remains in console mode. Subsequently, you can enter the continue command to transfer control
to the operating system.

>>>boot -halt dka0

Command References

set, show
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cat

cat — Copy files to standard output.

Concatenates files that you specify to the standard output. If you do not specify
files on the command line, cat copies standard input to standard output.

You can also copy or append one file to another by specifing I/O redirection.

Syntax

cat [-l num] file...

Arguments

file ...
Specifies the name of the input file or files to be copied.

Options

-l num
Specifies the number of bytes of the file to copy.

Examples
>>>echo > foo ’this is a test.’
>>>cat foo
this is a test.
>>>cat -l 6 foo
this i
>>>

Command References

echo, ls, rm
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cbcc

cbcc — Check backup cache coherency.

The cbcc command checks backup cache coherency. It can be used to test cache
coherency in both single and dual processor systems.

The cbcc command has three distinct pieces, the coherency master process, the
coherency slave process, and the display flag. In a multiprocessor environment
each processor will run either a master or a slave process. The master process
will be run on only one processor and the other active processors will run slave
processes. Display of the memory and cache information is done with the -s
qualifier.

Syntax

cbcc [-cm] [-cs] [-dc] [-s] [-sa] [-sum]
[-si start_index] [-l index_count]
[-p pass_count] [-w wait_time]

Arguments

None.

Options

-cm
Create the master cache coherency checker.

-cs
Create the slave cache coherency checker.

-dc
Enable D-cache.

-s
Show tag, cache, and memory.

-sum
Show summary of the cache entries checked.

-si start_index
Specifies the starting cache index to be checked.

-l index_count
Specifies the number of indices to be checked.

-p pass_count
Specifies the number of passes of the cache test. If 0, then run forever or until
CTRL-C. The default is 1.

-w wait_time
Specifies the number of seconds to wait between checks of the cache. The default
is 10 seconds.
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Examples
# These examples are for a multi-processor system.

>>>cbcc -cs &p1& # start the coherency checker running on the
# slave. This process runs forever.

# display a summary of 32 cache lines starting at 0X100

>>>cbcc -cm -si 100 -l 20 -sum &p0
Master B-Cache summary Entries: 32 V: 32 S: 9 D: 21 SD: 2
Slave B-Cache summary Entries: 32 V: 3 S: 3 D: 0 SD: 0
>>>
# show the full status of cache line 0x1000.

>>>cbcc -cm -si 1000 -s &p0
Master:

TAG: 009 TP: 0 I: 1000 HIT: 0 S: 0 D: 1 V: 1 CP: 0
efefefef efefefef efefefef efefefef : 1000 C
efefefef efefefef efefefef efefefef
efefefef efefefef efefefef efefefef : 00920000 M
efefefef efefefef efefefef efefefef : 00920010 M

Slave:
TAG: 001 TP: 1 I: 1000 HIT: 0 S: 0 D: 0 V: 0 CP: 0

efefefef efefefef efefefef efefefef : 1000 C
efefefef efefefef efefefef efefefef
efefefef efefefef efefefef efefefef : 00120000 M
efefefef efefefef efefefef efefefef : 00120010 M

>>>
# display a summary of all 32K cache lines

>>>cbcc -cm -si 0 -l 8000 -sum &p0
Master B-Cache summary Entries: 32768 V: 32434 S: 4809 D: 24827 SD: 660
Slave B-Cache summary Entries: 32768 V: 4333 S: 3764 D: 331 SD: 174
>>>

# These examples are on a single processor system

# show the full status of cache line 0x200.

>>>cbcc -cm -si 200 -s
Master:

TAG: 035 TP: 0 I: 0200 HIT: 0 S: 0 D: 1 V: 1 CP: 0
efefefef efefefef efefefef efefefef : 0200 C
efefefef efefefef efefefef efefefef
efefefef efefefef efefefef efefefef : 03504000 M
efefefef efefefef efefefef efefefef : 03504010 M

>>>
# display a summary of 0x200 cache lines starting at line 0.

>>>cbcc -cm -l 200 -sum
Master B-Cache summary Entries: 512 V: 512 S: 0 D: 490 SD: 0
>>>
# display a summary of all 32K cache lines

>>>cbcc -cm -l 8000 -sum
Master B-Cache summary Entries: 32768 V: 32768 S: 332 D: 26266 SD: 0
>>>

Command References

None
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cdp

cdp — Configure DSSI parameters.

The cdp command permits the modification of DSSI device parameters from
the console without explicit connection to a node’s DUP server. The parameters
which are modified are the DUP task PARAMS: NODENAME, ALLCLASS, and
UNITNUM.

Entering cdp without an option or target device will list these parameters for all
DSSI devices in the system.

Syntax

cdp [-{i,n,a,u,o}] [-sn]
[-sa allclass] [-su unitnum] [dssi_device]

Arguments

dssi_device
Name of the DSSI device or DSSI controller name. Only the parameters for this
device or the devices on this controller will be modified.

Options

-i
Selective interactive mode, set all parameters.

-n
Set device node name, NODENAME (upto 16 characters).

-a
Set device allocation class, ALLCLASS.

-u
Set device unit number, UNITNUM.

-o
Override warning messages.

-sn
Set the node name (NODENAME) for all DSSI devices in the system to either
RFhscn or TFhscn, where "h" is the device hose number (0), "s" is the device slot
number (0), "c" is the device channel number (0..3), and "n" is the device node ID
number (0..6).

-sa allclass
Set the allocation class (ALLCLASS) for all DSSI devices in the system to the
value specified.

-su unitnum
Set the starting unit number (UNITNUM) for the first DSSI device in the system
to the value specified. The unit number for subsequent DSSI devices will be
incremented from this base.
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Examples
>>>show device
dua5.5.0.0.0 BASHFL$DIA5 RF71
dub44.4.1.0.0 $1$DIA44 (BLANK4) RF71
>>>cdp -i

pua.5.0.0.0:

Node Name [BASHFL]?
Allocation Class [0]?
Unit Number [5]?

pub.4.1.0.0:

Node Name [BLANK4]?
Allocation Class [1]?
Unit Number [44]?

>>>cdp -n dua5

pua.5.0.0.0:

Node Name [BASHFL]?
>>>cdp -a

pua.5.0.0.0:

Allocation Class [0]?

pub.4.1.0.0:

Allocation Class [1]?
>>>

Command References

set host -dup
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check

check — Evaluate a string or the attributes of a inode.

Check evaluates a predicate and returns the result as status. By default, check
returns ’true’, if the argument ’s’ is not a null string.

Syntax

check [-{f,r,w,x,b}] [!] [string]

Arguments

string
Specifies a string or an inode name to be checked.

Options

-f
Return true, if the inode exists.

-r
Return true, if the inode is readable.

-w
Return true, if the inode is writeable.

-x
Return true, if the inode is executable.

-b
Return true, if the inode is binary.

!
Return the negation of the evaluated check status.

Examples
>>> echo > foo ’Hello World.’
>>>cat foo
Hello World.
>>>ls -l foo
rwx- rd 13/2048 0 foo
>>>if check -f foo; then cat foo; fi
Hello World.
>>>if check -w foo; then cat foo; fi
Hello World.
>>>if check -b foo; then cat foo; fi

>>>rm foo
>>>if check -f foo; then cat foo; fi

>>>if check -f ! foo; then cat foo; fi
Hello World.
>>>

Command References

None
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chmod

chmod — Change the mode of a file.

Changes the specified attributes of a file. The chmod command is a subset of the
equivalent U*x command.

You alter a file’s attributes by entering an operation on the command line: A
minus sign (-) indicates to remove the attribute, a plus sign (+) indicates to add
the attribute, and an equals sign (=) indicates to set the attribute absolutely
(clear all other attributes not in the list). You can only enter one operation per
command line.

To specify an option, you must place the option as the first argument in a
command line.

Syntax

chmod [{- | + | =}{r,w,x,b,z}] [file...]

Arguments

file ...
Specifies the file(s) or inode(s) to be modified.

Options

r
Set or clear the read attribute.

w
Set or clear the write attribute.

x
Set or clear the execute attribute.

b
Set or clear the binary attribute.

z
Set or clear the expand attribute.

Examples
>>> chmod +x script ! makes file script executable
>>> chmod =r errlog ! sets error log to read only
>>> chmod -w dk* ! makes all scsi disks non writeable

Command References

chown, ls -l
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chown

chown — Change the process ownership of a block of memory.

Changes the ownership of a memory block to the specified process.

Syntax

chown pid address...

Arguments

pid
Specifies a process id (hex). PIDs may be dipslayed using the ps command.

address ...
Specifies an address (hex) or list of addresses of allocated block(s) for which
ownership is to be changed.

Options

None.

Examples
>>>chown ‘ps|grep idle|find 0‘ ‘alloc 200‘

Command References

alloc, dynamic, ps
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clear — Delete an environment variable.

Deletes an environment variable from the name space.

Note that some environment variables, such as bootdef_dev, are permanent and
cannot be deleted.

Syntax

clear envar

Arguments

envar
Specifies the name of the environment variable to be cleared.

Options

None.

Examples

In the following example, an environment variable, ’foo’, is deleted.
>>>clear foo
>>>

Command References

set, show
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cmp

cmp — Compare two files.

Compares the contents of two files that you specify and reports offsets where the
files are different.

The cmp command reads the files into internal buffers in blocks of 1024 bytes
(the block size can be changed with the -b qualifier) and compares the files on a
byte by byte basis. If the files are equal, cmp does not issue a report.

One of the files may be ’-’, in which case stdin is used.

You can compare portions of files by using the -n qualifier and the skipcounts for
each file. Also using the -n qualifier, you can specify how many characters, in
decimal, are to be compared.

If you specify skip parameters, then the appropriate number of characters are
ignored from the input stream. If one of the files is a pipe, then the pipe is
drained for skipcount characters by reading and discarding the data. Otherwise,
the characters are skipped by an fseek call. You specify skipcounts in decimal.

If you specify skipcounts, offsets are reported relative to the skipcount.

Syntax

cmp [-n bytes] [-b size] file1 file2 [skip1] [skip2]

Arguments

file1
Specifies the first file to be compared.

file2
Specifies the second file to be compared.

skip1
Specifies the number of characters to skip in file1.

skip2
Specifies the number of characters to skip in file2.

Options

-n bytes
Specifies the number of bytes to compare.

-b size
Specifies the user defined buffer size.

Examples
>>>echo abc > foo

>>>echo abcd > bar
>>>echo zzabc > foobar
>>>cmp foo bar
>>>cmp foo foobar 0 2

>>>cmp foo foo
>>>cat foo | cmp foo

>>>
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Command References

cat, echo
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continue

continue — Resume program execution on the specified processor.

Continues execution on the specified processor, or the primary processor if
a processor is not specified. The processor begins executing instructions at
the address currently contained in the program counter. The processor is not
initialized.

The continue command is only valid if an operator has halted the system by one
of two methods: either by pressing the Halt button on the control panel or by
entering Ctrl/P on the console terminal.

Note that some console commands, for example, test and boot, may alter the
machine state so that program mode cannot be successfully resumed.

Syntax

continue

Arguments

None.

Options

None.

Examples

In the following example, the primary processor resumes operating system mode.
>>>continue

In the next example, a system’s second processor is commanded to resume operating system
mode.

>>>continue &p 2

Command References

start, stop
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crc — Calculate a CRC on a file.

Calculates a CRC on a file. If you do not specify any options, then computes the
CRC on the entire file.

Syntax

crc [-s val] [-e val] [-l val] file

Arguments

file
file on which to calculate the CRC

Options

-s
starting offset within the file

-e
ending offset within the file

-l
number of bytes to compute the crc on.

Examples
>>>cat foo
hello world
>>>crc foo
0x00000466
>>>hd foo
00000000 68 65 6c 6c 6f 20 77 6f 72 6c 64 0a hello world.
>>>eval -x \
_>0x68 0x65 0x6c 0x6c 0x6f 0x20 0x77 0x6f 0x72 0x6c 0x64 0x0a \
_> + + + + + + + + + + +
00000466
>>>d -b -n 8 pmem:0 0
>>>hd -l 8 pmem
00000000 00 00 00 00 00 00 00 00 ........
>>>crc -l 8 pmem
0x00000000
>>>d -b -n 8 pmem:0 1
>>>hd -l 8 pmem
00000000 01 01 01 01 01 01 01 01 ........
>>>crc -l 8 pmem
0x00000008
>>>crc -s 4 -l 4 pmem
0x00000004
>>>
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date — Set or display the current time and date.

Displays or modifies the current time and date. If you do not specify any
arguments, date displays the current date and time. If you specify arguments,
date modifies the arguments that you specify in the TOY clock.

If you want to modify the date or time, you must specify at least four digits, those
that represent the hour and minute. Omitted fields are inherited. When setting
the date, the day of the week is automatically generated.

Syntax

date [yyyymmddhhmm.ss]

Arguments

yymmddhhmm.ss
Specifies the date and time string consisting of decimal pairs, where:

• ’yyyy’ (0000-9999) is the year,

• ’mm’ (01-12) is the two digit month,

• ’dd’ (01-31) is the two digit day,

• ’hh’ (00-23) is the two digit hour,

• ’mm’ (00-59) is the two digit minute, and

• ’ss’ (00-59) is the two digit second.

-bias What the year is biased by. By default, this is 1858

Examples
>>>date 199208031029.00
>>>date
10:29:04 August 3, 1992
>>>

Command References

None
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deposit — Write data to a specified address.

Writes data to an address that you specify: a memory location, a register, a
device, or a file.

After initialization, if you have not specified a data address or size, the default
address space is physical memory, the default data size is a quadword, and the
default address is zero.

You specify an address or "device" by concatenating the device name with the
address, for example, PMEM:0 and by specifying the size of the space to be
written to.

If you do not specify an address, the data is written to the current address, in the
current data size (the last previously specified address and data size).

If you specify a conflicting device, address, or data size, the console ignores the
command and issues an error response.

The display line consists of the device name, the hexadecimal address (or offset
within the device), and the examined data also in hexadecimal.

The EXAMINE command supports most of the same options. Additionally,
EXAMINE supports instruction decoding, the -d option, which disassembles
instructions beginning at the current address.

Syntax

deposit [-{b,w,l,q,o,h}] [-{physical,virtual,gpr,fpr,ipr}]
[-n count] [-s step]
[device:]address data

Arguments

[device :]
The optional device name (or address space) selects the device to access. The
following platform independent devices supported:

• pmem: Physical memory.

• vmem: Virtual memory. All access and protection checking occur. If the
access would not be allowed to a program running with the current PS, the
console issues an error message. If memory mapping is not enabled, virtual
addresses are equal to physical addresses.

The following platform dependent devices are supported:

• eerom: Environment variable and error log EEROM

• enet: Ethernet station address ROM

• fbus: FutureBus+

• ferom: Intel 28F010 firmware FEPROM

• iic: PCD8584 registers I2Cbus controller

• ncr0(1,2,3,4): NCR53710 registers DSSI/SCSI (port

• scram: Script RAM

• tgec0(1): TGEC registers Ethernet (ports 0,1)
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• toy: DS1287A registers clock chip and NVRAM

• uart: Z8530 registers Console serial port

address
An address that specifies the offset within a device into which data is deposited.
The address may be any valid hexadecimal offset in the device’s address space.
Note: Memory addresses of the form: Fdd, where dd is a 1-2 digit decimal
number, must be preceded by a 0 to prevent recognition as a Floating-Point
Register. Ex: 0f0 is a valid memory address; f0 is not. The address may also
be any legal symbolic address. Hovever, a symbolic name cannot be used if the
address space was explicitly specified. The following forms are valid symbolic
addresses:

• gpr-name - A symbol representing a General Purpose Register.

• ipr-name - A symbol representing the Internal Processor Register.

• PC - Program Counter (execution address). The last address, size, and type
are unchanged.

• "+" - The location immediately following the last location referenced in an
examine or deposit. For references to physical or virtual memory, the location
is the last address plus the size of the last reference. For other address
spaces, the address is the last address referenced plus one.

• "-" - The location immediately preceding the last location referenced in an
examine or deposit. For references to physical or virtual memory, the location
is the last address minus the size of the last reference. For other address
spaces, the address is the last address referenced minus one.

• "*" - The location last referenced by an examine or deposit.

• "@" - The location addressed by the last location referenced in an examine or
deposit.

data
The data to be deposited. If the specified data is larger than the deposit data size,
the console ignores the command and issues an error response. If the specified
data is smaller than the deposit data size, it is extended on the left with zeros.

Options

-b
The data type is byte.

-w
The data type is word.

-l
The data type is longword.

-q
The data type is quadword.

-o
The data type is octaword.

-h
The data type is hexaword.
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-physical
The address space is physical memory.

-virtual
The address space is virtual memory.

-gpr
The address space is general purpose registers.

-fpr
The address space is floating point registers.

-ipr
The address space is internal processor registers.

-n count
Specifies the number of consecutive locations, val (hex), to modify. The console
deposits to the first address, then to the specified number of succeeding addresses.

-s step
Specifies the address increment size (hex). Normally this defaults to the data
size, but is overriden by the presence of this qualifier. This qualifier is not
inherited.

Examples
>>>d -b -n 1FF pmem:0 0 ! Clear first 512 bytes of physical memory.
>>>d -l -n 3 vmem:1234 5 ! Deposit 5 into four longwords starting at virtual memory address 1234.
>>>d -n 8 R0 FFFFFFFF ! Loads GPRs R0 through R8 with -1.
>>>d -l -n 10 -s 200 pmem:0 8 ! Deposit 8 in the first longword of the first 17 pages in physical memory.
>>>

Command References

examine
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dynamic — Show the state of dynamic memory.

Show the state of dynamic memory. Dynamic memory is split into two main
heaps, the console’s private heap and the remaining memory heap.

The -h, -v, and -c options only work on the default memory zone. To perform these
actions on other zones you must specify the other zone using the -z option.

Syntax

dynamic [-h] [-v] [-c] [-r] [-p]
[-extend byte_count] [-z heap_address]

Arguments

None.

Options

-c
Perform a consistency check on the heap.

-h
Display the headers of the blocks in the heap.

-p
Display dynamic memory statistics on a per process basis.

-r
Repair a broken heap by flooding free blocks with DYN$K_FLOOD_FREE if and
only if they have been corrupted. Repairing broken heaps is dangerous at best, as
it is masking underlying errors. This flag takes effect only if a consistency check
is being done.

-v
Perform a validation test on the heap.

-extend byte_count
Extend the default memory zone by the byte count at the expense of the main
memory zone. This command assumes that these two zones are physically
adjacent.

-z heap_address
Perform the dynamic command on the heap specified by heap_address.
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Examples
>>> dynamic
zone zone used used free free utili- high
address size blocks bytes blocks bytes zation water
-------- ---------- ------- ---------- ------- ---------- ------- ----------
00097740 1048576 389 358944 17 689664 34 % 371872
001D2B80 14805504 1 32 1 14805504 0 % 0

>>>dynamic -cv -z 97740
zone zone used used free free utili- high
address size blocks bytes blocks bytes zation water
-------- ---------- ------- ---------- ------- ---------- ------- ----------
00097740 1048576 398 359520 17 689088 34 % 371872

>>>dynamic -h
zone zone used used free free utili- high
address size blocks bytes blocks bytes zation water
-------- ---------- ------- ---------- ------- ---------- ------- ----------
00097740 1048576 392 359136 17 689472 34 % 389280
a 00097740 000E1600_001E0600 000E1608_001BF628 00000000 00097740 32
f 000E1600 0017E600_00097740 00189E68_00097748 FFFFFFFF 000E1600 643072
a 0017E600 001823C0_000E1600 001BF448_001B0D6C 00000023 0017E600 15808
.
.
.
>>>

Command References

alloc, free
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echo — Echo the command line.

Echoes the text entered on the command line. The echo command separates
arguments in the line to be echoed by blanks. The end of the echoed line is
signified by a new line on the standard output.

Whenever specifying pipes or I/O redirection, be explicit by enclosing the text
within single quotes.

Syntax

echo [-n] args...

Arguments

args ...
Specifies any arbitrary set(s) of character strings.

Options

-n
Suppress newlines from output.

Examples
>>>echo this is a test.
this is a test.
>>>echo -n this is a test.
this is a test.cs>
>>>echo ’this is a test’ > foo
>>>cat foo
this is a test
>>>echo > foo ’this is the simplest way
_>to create a long file. All characters will be echoed
_>file foo until the closing single quote.’
>>>cat foo
this is the simplest way
to create a long file. All characters will be echoed
file foo until the closing single quote.
>>>

Command References

cat
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edit — Invoke the console BASIC-like line editor on a file.

’edit’ is a console editor which behaves much like a BASIC line editor. With ’edit’
lines of a file may be added, inserted, or deleted. The editor has the following set
of subcommands: HELP, LIST, RENUMBER, EXIT, and QUIT.

To invoke the editor simply ’edit filename’, where filename is an existing file.

The editor may be used to modify the user powerup script, ’nvram’, or any other
user created file, such as ’foo’ in the examples below. Note ’nvram’ is a special
script which is always invoked during the powerup sequence. Hence, any actions
which the user wishes to execute on any powerup, can be saved in the non-volatile
memory using the ’nvram’ script file.

Syntax

edit file
[Subcommands: HELP, LIST, RENUMBER, EXIT or CTL/Z, QUIT]
[nn : Delete line number nn.]
[nn text : Add or overwrite line nn with text.]

Arguments

file
Specifies the name of the file to be edited. Note the file must already exist.

Options

HELP
Display the brief help file.

LIST
List the current file prefixed with line numbers.

RENUMBER
Renumber the lines of the file in increments of 10.

EXIT
Leave the editor and close the file saving all changes.

QUIT
Leave the editor and close the file without saving changes.

CTL/Z
Acts the same as EXIT, leave and save all changes.

nn
Delete line number nn.

nn text
Add or overwrite line nn with text.
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Examples

The following is an example showing how to create an modify a script ’foo’ using edit.
>>>echo > foo ’this is a test’ # Create a sample file.
>>>cat foo
this is a test
>>>edit foo # Edit the newly created file.
editing ‘foo’
15 bytes read in
*help
Think "BASIC line editor", and see if that’ll do the trick
*list

10 this is a test
*20 of the console BASIC-like line editor
*30 This editor supports HELP, LIST, RENUMBER, EXIT, and QUIT.
*list

10 this is a test
20 of the console BASIC-like line editor
30 This editor supports HELP, LIST, RENUMBER, EXIT, and QUIT.

*10 This is a test of the console BASIC-like line editor.
*20
*list

10 This is a test of the console BASIC-like line editor.
30 This editor supports HELP, LIST, RENUMBER, EXIT, and QUIT.

*15 It may be used to create scripts files at the console.
*list

10 This is a test of the console BASIC-like line editor.
15 It may be used to create scripts files at the console.
30 This editor supports HELP, LIST, RENUMBER, EXIT, and QUIT.

*renumber
*list

10 This is a test of the console BASIC-like line editor.
20 It may be used to create scripts files at the console.
30 This editor supports HELP, LIST, RENUMBER, EXIT, and QUIT.

*exit
168 bytes written out
>>>cat foo # Note EXIT saves changes.
This is a test of the console BASIC-like line editor.
It may be used to create scripts files at the console.
This editor supports HELP, LIST, RENUMBER, EXIT, and QUIT.
>>>edit foo
editing ‘foo’
168 bytes read in
*20
*list

10 This is a test of the console BASIC-like line editor.
30 This editor supports HELP, LIST, RENUMBER, EXIT, and QUIT.

*quit
>>>cat foo # Note QUIT does not save changes.
This is a test of the console BASIC-like line editor.
It may be used to create scripts files at the console.
This editor supports HELP, LIST, RENUMBER, EXIT, and QUIT.
>>>

The next example shows how do modify the non-volatile user-defined power-up script, ’nvram’.
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>>>edit nvram # Modify user powerup script, nvram.
editing ‘nvram’
0 bytes read in
*10 set boot_dev eza0
*20 set boot_osflags 0,0
37 bytes written out
>>>nvram # Execute the silent script, nvram.
>>>edit nvram
editing ‘nvram’
37 bytes read in
*15 show boot_dev
*25 show boot_osflags
*list

10 set boot_dev eza0
15 show boot_dev
20 set boot_osflags 0,0
25 show boot_osflags

*exit
69 bytes written out
>>>cat nvram # List the modified file.
set boot_dev eza0
show boot_dev
set boot_osflags 0,0
show boot_osflags
>>>nvram # Execute nvram, note the SHOWs.
boot_dev eza0
boot_osflags 0,0
>>>

#
# Reset system, note nvram execution.

#
Cobra powerup script start
boot_dev eza0
boot_osflags 0,0
Cobra powerup script end

Cobra/Laser (COBRA) console X1.3-1505, built on Feb 13 1992 at 01:28:52

Command References

cat, echo
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eval — Evaluate a postfix expression.

Evaluates a specified arithmetic expression and displays the results. You can
specify standard operations, such as addition, subtraction, and bitwise operators.
Eval can also substitute environment variables. Internally, the evaluator keeps a
16 entry value stack which bounds the complexity of the expression.

All arithmetic operations are done with unsigned integers. Boolean operators
(less than, greater than, etc.) always return 0 or 1. Spaces must be used to
separate tokens in an expression.

You must place certain operators in quotes to protect them from the shell.

The following operators are supported:
+ addition
- subtraction
* multiplication
/ unsigned division
% modulus
& bitwise and
| bitwise inclusive or
^ bitwise exclusive or
< unsigned less than
<= unsigned less than or equal
== equal
!= not equal
>= unsigned greater than or equal
> unsigned greater than
~ one’s complement
if conditional operator
ent replicate top entry on value stack
del pop off top entry on value stack
’=’ assign a value to an environment value
srnd random number with a seed
rnd random number
<< shift logical left
>> shift logical right
~ ones complement

Syntax

eval [-{ib,io,id,ix}] [-{b | d | o | x}] postfix_expression

Arguments

postfix_expression
Specifies the postfix expression to be evaluated.

Options

-ib
Set default input radix to binary.

-id
Set default input radix to decimal, the default.

-io
Set default input radix to octal.

-ix
Set default input radix to hexadecimal.

-b
Print output in binary.
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-d
Print output in decimal, the default.

-o
Print output in octal.

-x
Print output in hexadecimal.

Examples
>>>eval 5 6 ’*’
30
>>>eval -bodx ’3 4 *’
1100 14 12 C
>>>eval -x ’0xaa 0x55 |’
FF
>>>cat bswap
for aa; do
set bb 0x$aa
eval -x ’$bb 0xff & 24 << $bb 0xff00 & 8 << $bb 0xff0000 & 8 >> $bb 0xff000000’
done
>>>bswap 01234567 89abcdef
67452301
EFCDAB89
>>>

Command References

None
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examine — Display data at a specified address.

The EXAMINE command displays the contents of an address that you specify:
either a memory location, a register, a device, or a file.

After initialization, if you have not specified a data address or size, the default
address space is physical memory, the default data size is a quadword, and the
default address is zero.

You specify an address or "device" by concatenating the device name with the
address, for example, PMEM:0, and by specifying the size of the data to be
displayed.

If you do not specify an address, the system displays the data at an address
that is based on the current address and data size (the last previously specified
address and data size).

If you specify a conflicting device, address, or data size, the console ignores the
command and issues an error response.

The display line consists of the device name, the hexadecimal address (or offset
within the device), and the examined data, also in hexadecimal.

EXAMINE uses the same options as DEPOSIT. Additionally, the EXAMINE
command supports instruction decoding, the -d option, which disassembles
instructions beginning at the current address.

Syntax

examine [-{b,w,l,q,o,h,d}] [-{physical,virtual,gpr,fpr,ipr}]
[-n count] [-s step]
[device:]address

Arguments

[device:]
The optional "device" name (or address space) selects the device to access (see
DEPOSIT).

address
The address specifies the first location to examine within the current device. The
address can be any legal address specifier (see DEPOSIT).

Options

-b
The data size is byte.

-w
The data size is word.

-l
The data size is longword.

-q
The data size is quadword.
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-o
The data size is octaword.

-h
The data size is hexaword.

-d
The data displayed is the decoded macro instruction. Alpha instruction decode
(-d) does not recognize machine-specific PAL instructions.

-physical
The address space is physical memory.

-virtual
The address space is virtual memory.

-gpr
The address space is general purpose registers.

-fpr
The address space is floating point registers.

-ipr
The address space is internal processor registers.

-n count
Specifies the number of consecutive locations to examine.

-s step
Specifies the address increment size, val (hex). Normally this defaults to the data
size, but is overriden by the presence of this option. This option is not "sticky".
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Examples
>>>e r0 ! Examine R0 by symbolic address.
gpr: 0 ( R0) 0000000000000002
>>>e -g 0 ! Examine R0 by address space.
gpr: 0 ( R0) 0000000000000002
>>>e gpr:0 ! Examine R0 by device name.
gpr: 0 ( R0) 0000000000000002

>>>examine pc ! Examine the PC.
gpr: 0000000F ( PC) FFFFFFFC
>>>examine sp ! Examine the SP.
gpr: 0000000E ( SP) 00000200
>>>examine psl ! Examine the PSL.

CM TP FPD IS CURMOD PRVMOD IPL DV FU IV T N Z V C
PSL 00000000 0 0 0 0 KERNEL KERNEL 00 0 0 0 0 0 0 0 0
>>>examine -n 5 R7 ! Examine R7 through R12.
gpr: 00000007 ( R7) 00000000
gpr: 00000008 ( R8) 00000000
gpr: 00000009 ( R9) 801D9000
gpr: 0000000A ( R10) 00000000
gpr: 0000000B ( R11) 00000000
gpr: 0000000C ( AP) 00000000
>>>examine ipr:11 ! Examine the SCBB, IPR 17.
ipr: 00000011 ( SCBB) 2004A000
>>>examine scbb ! Examine the SCBB using symbolic name.
ipr: 00000011 ( SCBB) 2004A000
>>>examine pmem:0 ! Examine physical address 0.
pmem: 00000000 00000000
>>>examine -d 40000 ! Examine with instruction decode.
pmem: 00040000 11 BRB 20040019
>>>examine -d -n 5 40019 ! Disassemble from branch.
pmem: 00040019 D0 MOVL I^#20140000,@#20140000
pmem: 00040024 D2 MCOML @#20140030,@#20140502
pmem: 0004002F D2 MCOML S^#0E,@#20140030
pmem: 00040036 7D MOVQ R0,@#201404B2
pmem: 0004003D D0 MOVL I^#201404B2,R1
pmem: 00040044 DB MFPR S^#2A,B^44(R1)
>>>examine ! Look at next instruction.
pmem: 20040048 DB MFPR S^#2B,B^48(R1)
>>>

Command References

deposit, hd
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exer — Exercise one or more devices.

Exercise one or more devices by performing specified read, write, and compare
operations. Optionally, report performance statistics.

A ’read’ operation reads from a device that you specify into a buffer. A ’write’
operation writes from a buffer to a device that you specify. A ’compare’ operation
writes from two devices that you specify into two buffers and compares the
contents of the buffers.

The exer command uses two buffers, ’buffer1’ and ’buffer2’, to carry out the
operations. A read or write operation can be performed using either buffer. A
compare operation uses both buffers.

You can tailor the behavior of exer by using options to specify the following:

1. an address range to test within the test device(s),

2. the packet size, also known as the IO size, which is the number of bytes read
or written in one IO operation,

3. the number of passes to run,

4. how many seconds to run for,

5. a sequence of individual operations performed on the test device(s) The
qualifier used to specify this is called the action string qualifier.

Syntax

exer [-sb start_block] [-eb end_block] [-p pass_count]
[-l blocks] [-bs block_size] [-bc block_per_io]
[-d1 buf1_string] [-d2 buf2_string] [-a action_string]
[-sec seconds] [-m] [-v]
device_name...

Arguments

device_name ...
Specifies the name(s) of the device(s) or filestream(s) to be exercised.

Options

-sb start_block
Specifies the starting block number (hex) within filestream. The default is 0.

-eb end_block
Specifies the ending block number (hex) within filestream. The default is 0.

-p pass_count
Specifies the number of passes to run the exerciser. If 0, then run forever or until
Ctrl-C. The default is 1.

-l blocks
Specifies the number of blocks (hex) to exercise. l has precedence over eb. If
only reading, then specifying neither l nor eb defaults to read till eof. If writing,
and neither l nor eb are specified then exer will write for the size of device. The
default is 1.
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-bs block_size
Specifies the block size (hex) in bytes. The default is 200 (hex).

-bc block_per_io
Specifies the number of blocks (hex) per I/O. On devices without length (tape)
use the specified packet size or default to 2048. The maximum block size allowed
with variable length block reads is 2048 bytes. The default is 1.

-d1 buf1_string
string arg for eval to gen buffer1 data pattern from. buffer1 is iniitialized only
once and that is before any IO occurs. default = all bytes set to hex 5A’s

-d2 buf2_string
string arg for eval to gen buffer2 data pattern from. buffer2 is iniitialized only
once and that is before any IO occurs. default = all bytes set to hex 5A’s

-a action_string
Specifies an exerciser ’action string’, which determines the sequence of reads,
writes, and compares to various buffers. The default action string is ’?r’. The
action string characters are:

• r - Read into buffer1.

• w - Write from buffer1.

• R - Read into buffer2.

• W - Write from buffer2.

• n - Write without lock from buffer1.

• N - Write without lock from buffer2.

• c - Compare buffer1 with buffer2.

• - - Seek to file offset prior to last read or write.

• ? - Seek to a random block offset within the specified range of blocks. exer
calls the program, random, to ’deal’ each of a set of numbers once. exer
chooses a set which is a power of two and is greater than or equal to the block
range. Each call to random results in a number which is then mapped to the
set of numbers that are in the block range and exer seeks to that location in
the filestream. Since exer starts with the same random number seed, the set
of random numbers generated will always be over the same set of block range
numbers.

-sec seconds
Specifies to terminate the exercise after the number of seconds have elapsed. By
default the exerciser continues until the specified number of blocks or passcount
are processed.

-m
Specifies metrics mode. At the end of the exerciser a total throughput line is
displayed.

-v
Specifies verbose mode, data read is also written to stdout. This is not applicable
on writes or compares. The default is verbose mode off.
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Examples
>>>exer du*.* dk*.* -p 0 -secs 36000

Read all DSSI and SCSI type disks for the entire length of each disk. Repeat
this until 36000 seconds, 10 hours, have elapsed. All disks will be read
concurrently. Each block read will occur at a random block number on each
disk.

>>>exer -l 2 duc0

Read block numbers 0 and 1 from device duc0.
>>>exer -sb 1 -eb 3 -bc 4 -a ’w’ -d1 ’0x5a’ duc0

Write hex 5a’s to every byte of blocks 1, 2, and 3. The packet size is bc * bs, 4 * 512, 2048 for all
writes.

>>>ls -l du*.* dk*.*
d**.* no such file
r--- dk 0/0 0 dka0.0.0.0.0
>>>exer dk*.* -bc 10 -sec 20 -m -a ’r’
dka0.0.0.0.0 exer completed

packet IOs elapsed idle
size IOs bytes read bytes written /sec bytes/sec seconds secs

8192 3325 27238400 0 166 1360288 20 19

>>>exer -eb 64 -bc 4 -a ’?w-Rc’ duc0

A destructive write test over block numbers 0 thru 100 on disk duc0. The packet size is 2048
bytes. The action string specifies the following sequence of operations:

1. Set the current block address to a random block number on the disk
between 0 and 97. A four block packet starting at block numbers 98, 99,
or 100 would access blocks beyond the end of the length to be processed
so 97 is the largest possible starting block address of a packet.

2. Write a packet of hex 5a’s from buffer1 to the current block address.

3. Set the current block address to what it was just prior to the previous
write operation.

4. From the current block address read a packet into buffer2.

5. Compare buffer1 with buffer2 and report any discrepancies.

6. Repeat steps 1 thru 5 until enough packets have been written to satisfy
the length requirement of 101 blocks.

>>>exer -a ’?r-w-Rc’ duc0

A non-destructive write test with packet sizes of 512 bytes. The action string specifies the
following sequence of operations:

1. Set the current block address to a random block number on the disk.

2. From the current block address on the disk, read a packet into buffer1.

3. Set the current block address to the device address where it was just
before the previous read operation occurred.

4. Write a packet of hex 5a’s from buffer1 to the current block address.

5. Set the current block address to what it was just prior to the previous
write operation.

6. From the current block address on the disk, read a packet into buffer2.

7. Compare buffer1 with buffer2 and report any discrepancies.
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8. Repeat the above steps until each block on the disk has been written once
and read twice.

>>>set myd 0
>>>exer -bs 1 -bc a -l a -a ’w’ -d1 ’myd myd ~ =’ foo
>>>clear myd
>>>hd foo -l a
00000000 ff 00 ff 00 ff 00 ff 00 ff 00 ..........

Use an environment variable, myd, as a counter. Write 10 bytes of the pattern ff 00 ff 00... to
RAM disk file foo. A packet size of 10 bytes is used. Since the length specified is also 10 bytes
then only one write occurs. Delete the environment variable, myd. The hd, hex dump of foo
shows the contents of foo after exer is run.

>>>set myd 0
>>>exer -bs 1 -bc a -l a -a ’w’ -d1 ’myd myd 1 + =’ foo
>>>hd foo -l a
00000000 01 02 03 04 05 06 07 08 09 0a ..........

Write a pattern of 01 02 03 ... 0a to file foo.
>>>set myd 0
>>>exer -bs 1 -bc 4 -l a -a ’w’ -d1 ’myd myd 1 + =’ foo -m

foo exer completed

packet IOs elapsed idle
size IOs bytes read bytes written /sec bytes/sec seconds secs

4 3 0 10 3001 10001 0 0
>>>hd foo
00000000 01 02 03 04 01 02 03 04 01 02 ..........
>>>show myd
myd 4

>>>echo ’0123456789abcdefghijklmnopqrstAB’ -n >foo3
>>>exer -bs 1 -v -m foo3
b2lkfmp8jatsnA1gri54B69o3qdc7eh0foo3 exer completed

packet IOs elapsed idle
size IOs bytes read bytes written /sec bytes/sec seconds secs

1 32 32 0 5333 5333 0 0

Command References

exer_read, exer_write, memexer, netexer

Description

Exercise one or more devices. As described in the preceding overiew section, exer
uses two buffers, buffer1 and buffer2. Buffer1 and buffer2 are in main memory in
the ’memzone’ heap.

Both buffer1 and buffer2 are initialized to a data pattern before any IO operations
occur. These buffers never reinitialized, even after completing one or more passes.
The data patterns that the buffers are initialized with are either a hex 5A in
every byte of each buffer or it is specified via the string arguments to the optional
data pattern qualifiers, -d1, -d2

The d1, d2 qualifiers use a postfix string argument to initialize a buffer’s contents
as follows. For each byte in the specified buffer, starting with the first byte, this
postfix string is passed to the eval command which returns a byte value which is
then written to the specified buffer.

Several exer qualifiers are used to specify the amount of device data to be
processed. The qualifiers -sb, -eb, -l, -bs, and -bc specify, respectively: starting
block, ending block, number of blocks, block size in bytes, and the number of
blocks in a packet, where a packet is the amount of data transferred in one IO
operation.
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Reading, writing, comparing buffers, and other operations can be specified to
occur in various combinations and sequences. These operations are specified by
a string of one-character command codes known as the ’action string’. The action
string is specified as an argument to the action string qualifier, -a.

Each command code character in the action string is processed in a sequence
from left to right. Each time that exer completes all of the operations specified
by the action string, exer will reduce the remaining amount of device data to be
processed by the size of the last packet processed by the action string. The action
string is repeatedly processed until the specified amount of device data has been
processed.

Lower-case action string characters, ’rwn’, specify operations that involve buffer1.
Upper-case action string characters, RWN, specify operations that involve
buffer2. The action string character, ’c’, involves both buffer1 and buffers. The
action string characters, ’-?,’ do not involve either buffer1 or buffer2.

A random number generator can be used to seek to varying device locations
before performing either a read or write operation. Randomization is acheived
by calling the function, ’random’, which uses a linear congruential generator
(LCG) to generate the numbers. This algorithm isn’t truly random, but it comes
closest to meeting the needs of exer. Each time that ’random’ is called, it returns
a number from a specified range. If the range of numbers is a power of two, then
each subsequent call to ’random’, is guaranteed to return a different number from
the range until all possible numbers within the range have been chosen. If the
range of numbers isn’t a power of two, then ’ random,’ is used with an upper
bounds that is greater than the actual range size but is a power of two. Then
a modulus operation with the range size is done to the number that ’random’
returns, thereby ensuring that a random number is generated within the random
range size.

The total number of bytes read or written on each pass of the exerciser is specified
by the length in blocks or the starting/ending block address option arguments.
If neither the ending address nor the length options are specified, then on each
pass the number of bytes processed could vary depending on whether or not the
filestream is being written to or just being read. If the filestream is not being
written to by exer, then exer will read until EOF is reached. If exer will be
writing to the file (as specified in the action string), then the number of bytes
processed per pass is equal to the allocation size of the file which is usually larger
than the length of the file for RAM disk files, but equal to the length for disk
devices.

Note that disk device I/O will fail, if the blocksize is not equal to 1 or a multiple
of 512. Partial block read/writes are not supported so a length which is not a
multiple of the blocksize will result in no errors, but the last partial block I/O of
data won’t occur.

Any combination of writing, reading, or comparing the buffer1 and buffer2 can
be executed in the sequence as specified in the action string. Depending on the
option arguments, one or two of these three operations (read/write/compare) may
be omitted without affecting the execution of the other operations.

The exer command will return an error code immediately after a read, write,
or compare error, if the ’d_harderr’ environment variable is set to ’halt’. When
an error occurs and ’continue’ or ’loop on error’ is specified, then subsequent
operations specified by the action string qualifier will occur except for compares.
For instance, if a read error occurs, a subsequent compare operations will be
skipped since a read failure preceding a compare operation guarantees that the
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compare will fail. If subsequent block I/O’s succeed, then compares of those blocks
will occur. When exer terminates because of completing all passes or by operator
termination, then the status returned will be that of the last failed write, read or
compare operation, regardless of subsequent successful IO’s.

Source File

exer.c
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exer_read — Use exer to read data from 1 or more devices

Seek to a random block number on the device then read a packet of 2048 bytes.
Repeat this until one of the following conditions occur:

1) All blocks on the device(s) have been read for passcount of d_passes. 2) The
exer process has been killed via ^C or by the kill command. 3) The specified time
has elapsed.

Nothing is displayed unless an error occurs.

Syntax

exer_read [-sec seconds] [device_name device_name...]

Arguments

device_name
One or more device names. Defaults to du*.* dk*.*, all DSSI and SCSI disks that
are online.

Options

-sec seconds
Number of seconds to run. Defaults to length of device times number of number
of passcounts specified by the d_passes enivironment variable.

Examples
>>>exer_read #Run on all, if any, disks that are online.

Source File

exer_read
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exer_write — Use exer to test the writing of data to one or more
devices

Use exer to run a non-destructive write test on one or more devices. The data is
read and written in packets of 2048 bytes.

Seek to a random block on the device then read a 2048 byte packet of data then
write that same data back to the same location on the device. Then read the
written data back and compare it to the data originally read and display any
discrepancies.

This is repeated until one of the following conditions occurs:

1) All blocks on the device(s) have been read for the number of passes specified by
the d_passes environment variable. 2) The exer process has been killed via ^C or
by the kill command. 3) The specified time has elapsed.

Nothing is displayed unless an error occurs.

Syntax

exer_write [-sec seconds] [device_name device_name...]

Arguments

device_name
one or more device names. Defaults to du*.* dk*.*, all DSSI and SCSI disks that
are online.

Options

-sec seconds
Number of seconds to run. Defaults to length of device times number of number
of passcounts specified by the d_passes enivironment variable.

Examples
>>>exer_write #Run on all, if any, disks that are online.

Source File

exer_write
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exit — Exit the current shell.

Exit the current shell with a status or return the status of the last command.

Syntax

exit exit_value

Arguments

exit_value
Specifies the status code to be returned by the shell.

Options

None.

Examples
>>>exit # exits with status of previous command
>>>exit 0 # exits with success
>>>test || exit # runs test and exits if an error

Command References

None
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fbus_diag — Start a diagnostic on a Futurebus+ node.

The fbus_diag command is used to start execution of a diagnostic test test script
on a specific Futurebus+ node. Process options and command line arguments are
use to specify the specific Test or Test Script to be executed as well as the target
Futurebus+ node for this command.

This command will utilize the Futurebus+ standard Test CSR interface to initiate
commands on specific Futurebus+ nodes within the Cobra/Laser system. Once
the command has been sent to the Futurebus+ node the routine will wait for
test completion and report the results to the console. If an error is reported by
the node the diagnostic will issue a dump_buffer command to gain any available
extended information which will also be reported to the console.

Those test categories which require a buffer pointer in the argument CSR will
have a default buffer provided by this diagnostic if the user does not specify a
buffer address.

Syntax

fbus_diag [-rb] [-p pass_count]
[-st test_number] [-cat test_group] [-opt test_option]
node_name [test_arg]

Options

-rb
Randomly allocate from memzone on each pass with a block size of 4096.

-p pass_count
Specifies the number of times to run the test. If 0, the test runs forever. This
overrides the value of environment variable, pass_count. In the absence of this
option, pass_count is used. The default for pass_count is 1.

-st test_number
Specifies the test number to be run. The default is 0 which runs the default tests
in the category.

-cat test_group
Specifies the test category to be executed. The default for this qualifier is the init
category. The possible categories are as follows:

• Init : Initialization tests

• Extended : Extended tests

• System : System tests

• Manual : Manual tests

• x : Bit mask of the desired test categories

-opt test_option
Specify the Test Start CSR Option field bits to be set. The possible option bits are
as follows:

• Loop_error : Loop on Test if an error is detected

• Loop_test : Loop on this test
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• Cont_error : Continue if an error is detected

• x : Bit mask of the desired option bits

The default value for this qualifier is based on the current values in the global enviroment
variables as follows:

• Loop_test : 1 if D_PASSES = = 0 ; 0 otherwise

• Loop_error : 1 if D_HARDERR = = "Loop" ; 0 otherwise

• Cont_error : 1 if D_HARDERR = = "Continue" ; 0 otherwise

Examples
>>>fbus_diag -p 100 -cat init -st ff fba1 00
>>>
>>>fbus_diag -p 100 -cat "init,system" -st 1 -opt "loop_error" fbb0 100
>>>

Command References

fbus_exer

D–44 Console Command Repository



fbus_sizer

fbus_sizer — routine used for sizing the Fbus+

Syntax

COMMAND ARGUMENTS:

Examples
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find_field — Extract a field from each input line and write it.

This command may be replaced by a non-standard grep option sometime in the
future. Look for the new grep option if this cmd vaporizes.

Extract one specified field from each string in stdin. Output these fields as lines
(with linefeeds) to stdout.

Maximum string length supported is 133 characters. Strings larger than the max
supported size will be broken up into multiple strings before field extraction.

Syntax

find_field field_number

Arguments

field_number
Specifies a number from 0 to the number of fields on a line minus 1. Larger
numbers will not produce a field match.

Options

None.

Examples
>>>echo > foo ’this is a sample file
_>to show how find_field works.
_>It should pick off the first word
_>on each line.’
>>>cat foo
this is a sample file
to show how find_field works.
It should pick off the first word
on each line.
>>>find_field 0 <foo
this
to
It
on
>>>find_field 1 < foo
is
show
should
each
>>>

Command References

grep
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free — Return an allocated block of memory to the heap.

Frees a block of memory that has been allocated from a heap. The block is
returned to the appropriate heap.

Syntax

free address...

Arguments

address ...
Specifies an address (hex) or list of addresses of allocated block(s) to be returned
to the heap.

Options

None.

Examples
>>>alloc 200
00FFFE00
>>>free fffe00
>>>free ‘alloc 10‘ ‘alloc 20‘ ‘alloc 30‘
>>>

Command References

alloc, dynamic
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grep — Globally search for regular expressions and print matches.

Globally search for regular expressions and print any lines containing occurrences
of the regular expression. Since grep is line oriented, it only works on ASCII files.

A regular expression is a shorthand way of specifying a ’wildcard’ type of string
comparison. Regular expressions may need to be enclosed by quotes to prevent
metacharacters from being interpreted by the shell. Grep supports the following
metacharacters:

^ matches the beginning of line.
$ matches end of line.
. matches any single character.
[ ] set of characters; [ABC] matches either ’A’ or ’B’ or ’C’; a

dash (other than first or last of the set) denotes a range
of characters: [A-Z] matches any upper case letter; if the
first character of the set is ’^’, then the sense of match
is reversed: [^0-9] matches any non-digit; several
characters need to be quoted with backslash (\) if they
occur in a set: ’\’, ’]’, ’-’, and ’^’

* repeated matching; when placed after a pattern, indicates that
the pattern should match any number of times. For example,
’[a-z][0-9]*’ matches a lower case letter followed by zero or
more digits.

+ repeated matching; when placed after a pattern, indicates that
the pattern should match one or more times ’[0-9]+’ matches
any non-empty sequence of digits.

? optional matching; indicates that the pattern can match zero or
one times. ’[a-z][0-9]?’ matches lower case letter alone or
followed by a single digit.

\ quote character; prevent the character which follows from
having special meaning.

Syntax

grep [-{c | i | n | v}] [-f file] [expression] [file...]

Arguments

expression
Specifies the target regular expression. If any regular expression metacharacters
are present, the expression should be enclosed with quotes to avoid interpretation
by the shell.

file ...
Specifies the file(s) to be searched. If none are present, then stdin is searched.

Options

-c
Print only the number of lines matched.

-i
Ignore case in the search. By default grep is case sensitive.

-n
Print the line numbers of the matching lines.

-v
Print all lines that don’t contain the expression.

-f file
Specifies to take regular expressions from a file, instead of command.
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Examples

In the following example, the output of the ps command (stdin) is searched
for lines containing ’eza0’.

>>>ps | grep eza0
0000001f 0019e220 3 2 ffffffff 0 mopcn_eza0 waiting on mop_eza0_cnw
00000019 0018e220 2 1 ffffffff 0 mopid_eza0 waiting on tqe
00000018 0018f900 3 3 ffffffff 0 mopdl_eza0 waiting on mop_eza0_dlw
00000015 0019c320 5 0 ffffffff 0 tx_eza0 waiting on eza0_isr_tx
00000013 001a2ce0 5 2 ffffffff 0 rx_eza0 waiting on eza0_isr_rx

In the next example, grep is used to search for all quadwords in a range of memory which are
non-zero.

>>>alloc 20
00FFFFE0
>>>deposit -q pmem:fffff0 0
>>>e -n 3 ffffe0
pmem: FFFFE0 EFEFEFEFEFEFEFEF
pmem: FFFFE8 EFEFEFEFEFEFEFEF
pmem: FFFFF0 0000000000000000
pmem: FFFFF8 EFEFEFEFEFEFEFEF
>>>e -n 3 ffffe0 | grep -v 0000000000000000
pmem: FFFFE0 EFEFEFEFEFEFEFEF
pmem: FFFFE8 EFEFEFEFEFEFEFEF
pmem: FFFFF8 EFEFEFEFEFEFEFEF
>>>free ffffe0
>>>

Command References

None
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hd — Dump the contents of a file in hexadecimal and ASCII.

Dump the contents of a file in hexadecimal and ASCII.

Syntax

hd [-{s | e | l}] file...

Arguments

file ...
Specifies the file or files to be displayed.

Options

-s
Specifies the starting offset within the file.

-e
Specifies the ending offset within the file.

-l
Specifies the number of bytes to dump.

Examples
>>>cat fred
a script called fred.
>>>hd fred
00000000 61 20 73 63 72 69 70 74 20 63 61 6C 6C 65 64 20 a script called
00000010 66 72 65 64 0A fred.
>>>hd -l 16 foo
00000000 72 2d 2d 2d 20 20 20 6e 6c 20 30 30 30 30 30 30 r--- nl 000000
>>>hd -s 512 -e 522 foo
00000200 20 20 72 64 20 30 30 30 31 37 rd 00017
>>>hd -s 512 -l 10 foo
00000200 20 20 72 64 20 30 30 30 31 37 rd 00017
>>>

Command References

cat
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help or man — Display information about console commands.

Defines and shows the syntax for each command that you specify on the command
line. If you do not specify a command, displays information about the help
command and lists the commands for which additional information is available.

For each argument (or command) on the command line, help tries to find all topics
that match that argument. For example, if there are topics on ’exit’, ’examine’
and ’entry’, the command ’help ex’ would generate the help text for both ’exit’ and
’examine’.

Wildcards are supported, so that ’help *’ generates the expected behavior.
Topics are treated as regular expressions that have the same rules as regular
expressions for the shell. Help topics are case sensitive.

In describing command syntax, the following conventions are used.

• <ITEM> Angle brackets enclose a placeholder, for which the user must specify
a value.

• [<ITEM>] Square brackets enclose optional parameters, qualifiers, or values.

• {a,b,c} Braces enclosing items separated by commas, imply mutually exclusive
items. Choose any one of a, b, c.

• {a | b | c} Braces enclosing items separated by vertical bars, imply
combinatorial items. Choose any combination of a, b, c.

The commands help and man can be used interchangeably.

Syntax

help or man [command...]
Command synopsis conventions:
item Implies a placeholder for user specified item.
item... Implies an item or list of items.
[ ] Implies optional keyword or item.
{a,b,c} Implies any one of a, b, c.
{a | b | c} Implies any combination of a, b, c.

Arguments

command ...
Specifies the command(s) or topic(s) for which help is requested.

Options

None.

Examples

In the following example, a list of topics for which help is available is requested.
>>>help # List all topics.

In the next example, help is requested on all topics.
>>>help * # List all topics and associated text.

In the next example, help is requested on all commands that begin with ’ex’.
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>>>help ex

In the next example, help is requested on the boot command.
>>>help boot

Command References

None
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initialize — Initializes the console, a device, or a processor.

Initializes the console, a device, or the specified processor. If a processor is not
specified, the primary processor is initialized.

Syntax

initialize [-c] [-d device] [slot-id]

Arguments

slot-id
Specifies the processor "n" to be initialized.

Options

-c
Specifies the console device.

-d device
Specifies the device to be initialized.

Examples
cs>init 2
cs>initialize -d eza0
cs>
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io_diag — Test miscellaneous devices within the system

io_diag uses information contained in various devices within the system to verify
these devices. See the subtest descriptions for more details. Multiple io_diags
may be started and run concurrently. io_diag may be used in conjunction with
other exercisers to test the complete system.

Syntax

io_diag [-p n] [-t n]

Arguments

None.

Options

-p
passcount; if = 0 then run forever or until ^C; default = 1

-t
list of desired tests to execute; default is all tests

Examples
cs> io_test ;execute all subtest once

cs> io_test -p 0 & ;execute all subtest until stoped in the background
cs> io_test -t 1 ;execute only the scsi test for one pass

Description

Source File

io_diag.c
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kill — Stop and delete a process.

Kill the processes listed on the command line. Processes are killed by making a
kernel call with the process id (PID) as the argument.

Syntax

kill [pid...]

Arguments

pid ...
Specifies the PID(s) as shown by the ’ps’ command of the process(es) to be killed.

Options

None.

Examples
>>>memtest -p 0 &
>>>ps | grep memtest
000000f1 00217920 2 9357 ffffffff 0 memtest ready
>>>kill f1
>>>ps | grep memtest

Command References

ps
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kill_diags — Kill all currently executing diagnostic processes.

Kill the processes running specific diagnostics. These are: memtest, exer, nettest,
and cbcc.

Syntax

kill_diags

Arguments

None.

Options

None.

Examples
>>>memexer 2 & # Start up two memtest processes.
>>>show_status

ID Program Device Pass Hard/Soft Bytes Written Bytes Read
-------- ------------ ------------ ------ --------- ------------- -------------
00000001 idle system 0 0 0 0 0
00000351 memtest memory 0 0 0 37748736 37748736
00000352 memtest memory 0 0 0 37748736 37748736
>>>kill_diags
>>>show_status

ID Program Device Pass Hard/Soft Bytes Written Bytes Read
-------- ------------ ------------ ------ --------- ------------- -------------
00000001 idle system 0 0 0 0 0
>>>

Source File

kill_diags
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line — Read a line from standard input and write it to standard
output.

Copy one line (up to a new-line) from the standard input channel of the current
process to the standard output channel of the current process. Always outputs at
least a new-line.

It is often used in scripts to read from the user’s terminal, or to read lines from a
pipeline while in a for/while/until loop.

Syntax

line

Arguments

None.

Options

None.

Examples

Use interactively as follows:
>>>line

type a line of input followed by carriage return
type a line of input followed by carriage return

>>>line >nl
type a line of input followed by carriage return
>>>

Use w/in a script as follows:
>>>echo -n ’continue [Y, (N)]? ’
>>>line <tt >tee:foo/nl

>>>if grep <foo ’[yY]’ >nl; then echo yes; else echo no; fi
>>>

Command References

None

Console Command Repository D–57



ls

ls — List files or inodes in file system.

List files or inodes in the system. Inodes are RAM disk files, open channels and
some drivers. RAM disk files include script files, diagnostics and executable shell
commands.

If no strings are present on the command line, then list all files or inodes in the
system.

Syntax

ls [-l] [file...]

Arguments

file ...
Specifies the file(s) or inode(s) to be listed.

Options

-l
Specifies to list in line format. Each file or inode is listed on a line with additional
information. By default just file names are listed.

Examples
>>>ls examine
examine
>>>ls d*
d date debug1 debug2 decode deposit
dg_pidlist dka0.0.0.0.0 dke100.1.0.4.0
dub0.0.0.1.0 dynamic
>>>

Command References

None
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memexer — Invoke Gray code memory exerciser.

Start the requested number of memory tests running in the background.
Randomly allocate and test 2MB blocks of memory using all available memory.
The pass count is 0 to run the started tests forever.

Nothing is displayed unless an error occurs.

Syntax

memexer [number]

Arguments

number
the number of memory exercisers to start. Default 1.

Options

None.

Examples
>>>memexer 2 # Start two memtests running in the background. Test
>>> # in blocks of 2MB across all availavble memory
>>>show_status

ID Program Device Pass Hard/Soft Bytes Written Bytes Read
-------- ------------ ------------ ------ --------- ------------- -------------
00000001 idle system 0 0 0 0 0
00000107 memtest memory 10 0 0 541065216 541065216
00000108 memtest memory 10 0 0 541065216 541065216
>>>

Source File

memexer
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memexer_mp — Invoke Gray code memory exerciser on
multiprocessor system.

Start the requested number of memory exerciser sets running in the background.
A set is comprised of a memory test running on each processor in an incrementing
longword count. For example, with two processors, one test will run on the even
lws on the first processor and the other will run on second processor on the odd
lws. This will work for any number of processors. 2MB blocks of memory are
allocated for the test set to run on. The blocks do no change. The pass count is 0
to run the started tests forever.

Nothing is displayed unless an error occurs. Do not call memexer_mp multiple
times as a background process!!

Syntax

memexer_mp [number]

Arguments

number
The number of memory exerciser sets to start. Default 1.

Options

None.

Examples
>>>memexer_mp 2 # Start two memtest sets running in the background on

>>> # a block of 2MB.
>>>show_status

ID Program Device Pass Hard/Soft Bytes Written Bytes Read
-------- ------------ ------------ ------ --------- ------------- -------------
00000001 idle system 0 0 0 0 0
00000122 memtest memory 65 0 0 134217728 134217728
0000012c memtest memory 72 0 0 148897792 148897792
0000014d memtest memory 55 0 0 113246208 113246208
00000157 memtest memory 62 0 0 127926272 127926272

>>># ID PCB Pri CPU Time Affinity CPU Program State
>>>#-------- -------- --- -------- -------- --- ---------- ------------------------

>>>ps | grep memtest
00000157 00135680 2 56292 00000002 1 memtest running
0000014d 0013d160 2 55297 00000001 0 memtest ready
0000012c 00145b00 2 58450 00000002 1 memtest ready
00000122 0014d6e0 2 57318 00000001 0 memtest ready
>>>

Source File

memexer_mp
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memtest — Exercise a section of memory.

Memtest uses a gray codes to exercise a specified section of memory. The gray
code algorithm used is: data = (x>>1)^x, where x is an incrementing value.
Multiple memtests may be started and run concurrently. Memtest may be used
in conjunction with other exercisers to test the complete system. Three passes
are made on the memory under test.

The first pass writes alternating graycode inverse graycode to each octaword.
This will cause one data bit to toggle between each longword write, and almost all
bits will toggle between octawords. For example graycode(0)=0x00000000 while
inverse graycode(1)=0xFFFFFFFE.

The second pass reads each location verifies the data and writes the inverse of
the data. The read-verify-write is done one longword at a time. This will cause:
all data bits to be written as a one and zero; one data bit toggle between longword
writes; many bits to toggle between octaword write; and will identify address
shorts.

The third pass reads and verifies each location.

The -f "fast" option can be specified so the verify sections of the second and third
loops is not performed. This will not catch address shorts but will stress memory
with a higher throughput. The ECC/EDC logic will be used to detect failures.

Syntax

memtest [-sa start_address] [-ea end_address] [-l length]
[-bs block_size] [-i address_inc] [-p pass_count]
[-d data_pattern] [-rs random_seed] [-rb]
[-f] [-m] [-z] [-h] [-mb]

Arguments

None.

Options

-sa start_address
Specifies the starting address for the test. The default is the first free space in
memzone.

-ea end_address
Specifies the ending address for the test. The default is the start address plus the
length.

-l length
Specifies the length of section to test in bytes. The default is the block_size,
except with the -rb option which uses the zone size. -l has precedence over -ea.

-bs block_size
Specifies the block (or packet) size (hex) in bytes The default is 8192 bytes. This
is only used for the random block test. For all other tests the block size equals
the length.
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-i address_inc
Specifies the address increment value in longwords. This value will be used
to increment the address through the memory to be tested. The default is 1
(longword). This is only implemented for the graycode test. An an address
increment of 2 tests every other longword. This option is useful for multiple
CPUs testing the same physical memory.

-d data_pattern
Specifies to use this data pattern for testing memory. This is only used for the
march test. The default pattern is all 5’s.

-p pass_count
Specifies the number of times to execute the test. If 0, then run forever or until
CTRL-C. The default is 1.

-rs random_seed
Specifies the random seed (only used with -rb). The default is 0.

-rb
Specifies to randomly allocate and test all of the specified memory address range.
Allocations are done of block_size.

-f
Specifies fast mode. If -f is specified, the data compare is omitted. Only ECC/EDC
errors are detected.

-m
Specifies to time the memory test. At the end of the test the ellapsed time is
displayed. By default the timer is off.

-z
Specifies the test will use the specified memory address without an allocation.
This bypasses all checking but will allow testing in addresses outside of the main
memory heap. It will also allow unaligned testing. WARNING: This flag permits
testing and corrupting ANY memory!

-h
Specifies to allocate test memory from the firmware heap.

-mb
Specifies to use memory barriers after each memory access. This flag is only used
in -f graycode test. When set, an Alpha mb instruction will be done after every
memory access. This will guarantee serial access to memory. Only performed on
ALPHA based machines.

Examples

The first example writes gray codes starting at 0x200000 (-sa) for 0x1000 bytes (-l).
>>>memtest -sa 200000 -l 1000

In the next example gray codes are written from 0x200000 for 0x1000 bytes, but data in not
verified (-f).

>>>memtest -sa 200000 -l 1000 -f

In the next example a default block size of 8192 bytes is written from 0x300000 for 10 passes
(-p).
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>>>memtest -sa 300000 -p 10

In the next example gray codes are written to arbitrary 8192 byte blocks in memory without
verification. After every read and write to memory an MB, memory barrier instruction, is
executed (-mb).

>>>memtest -f -mb

In the next example gray codes are written from 0x200000 to 0x3fffff. Every block within this
range is randomly allocated (-rb). With -rb memtest will not error if a block within the range
can’t be allocated.

>>>memtest -sa 200000 -ea 400000 -rb

In the next example the console heap (-h) is tested by randomly mallocing 0x100 byte blocks
(-bs).

>>>memtest -h -rb -bs 100

In this example gray codes are written across all of memzone (all memory excluding the HWRPB,
the PAL area, the console, and the console heap. It is run in the foreground until CTRL-C.

>>>memtest -rb -p 0

In the next example two memtest processes are started to run forever concurrently. The first
memtest writes gray codes to every other longword (-i 2) from 0x300000 for 0x200000 bytes. The
second memtest tests the same range, but writes to the alternating longwords. The memory
allocation is done by the first memtest. These are run on separate processors to test cache
coherency. The first memtest is run on processor 0 (&p0) and the second memtest is run on
processor 1 (&p1). Both memtests are run in the background.

>>>memtest -sa 300000 -l 200000 -i 2 -p 0 &p0&
>>>memtest -sa 300004 -l 200000 -i 2 -p 0 -z &p1&

Command References

memexer, memexer_mp, test
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net — Access a network port and execute MOP maintenance
functions.

Using the specified port, perform some maintenance operations. If no port is
specified, the default port is used.

The net command performs basic MOP operations, such as, loopback, request IDs,
and remote file loads. The net command also provides the means to observe the
status of a network port. Specifically, the ’net -s’ will display the current status of
a port including the contents of the MOP counters. This is useful for monitoring
port activities and trying to isolate network failures.

To get a port’s Ethernet station address, use ’net -sa’.

Syntax

net [-s] [-sa] [-ri] [-ic] [-id] [-l0] [-l1] [-rb] [-csr]
[-els] [-kls] [-cm mode_string] [-da node_address]
[-l file_name] [-lw wait_in_secs] [-sv mop_version]
port_name

Arguments

port_name
Specifies the Ethernet port on which to operate.

Options

-s
Display port status information including MOP counters.

-sa
Display the port’s Ethernet station address.

-ri
Reinitialize the port drivers.

-ic
Initialize the MOP counters.

-id
Send a MOP Request ID to the specified node. Uses -da to specify the destination
address.

-l0
Send an Ethernet loopback to the specified node. Uses -da to specify the
destination address.

-l1
Do a MOP loopback requester.

-rb
Send a MOP V4 boot message to remote boot a node. Uses -da to specify the
destination address.
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-csr
Displays the values of the Ethernet port CSRs.

-els
Enable the extended DVT loop service.

-kls
Kill the extended DVT loop service.

-cm mode_string
Change the mode of the port device. The mode string may be any one of the
following abbreviations.

• nm = Normal mode

• in = Internal Loopback

• ex = External Loopback

• nf = Normal Filter

• pr = Promiscious

• mc = Multicast

• ip = Internal Loopback and Promiscious

• fc = Force collisions

• nofc = Don’t Force collisions

• df = Default

-da node_address
Specifies the destination address of a node to be used with -l0, -id, or -rb, options.

-l file_name
Attempt a MOP load of the file name.

-lw wait_in_secs
Wait the number of seconds specified for the loop messages from the -l1 option
to return. If the messages don’t return in the time period, an error message is
generated.

-sv mop_version
Set the prefered MOP version number for operations. Legitimate values are 3 or
4.

Examples

Display the local Ethernet ports’ station address.
>>>net -sa
-eza0: 08-00-2b-1d-02-91
>>>net -sa ezb0
-ezb0: 08-00-2b-1d-02-92

Display the eza0 port status, including the MOP counters.
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>>>net -s

DEVICE SPECIFIC:
TI: 203 RI: 42237 RU: 4 ME: 0 TW: 0 RW: 0 BO: 0
HF: 0 UF: 0 TN: 0 LE: 0 TO: 0 RWT: 39967 RHF: 39969 TC: 54

PORT INFO:
tx full: 0 tx index in: 10 tx index out: 10
rx index in: 11

MOP BLOCK:
Network list size: 0

MOP COUNTERS:
Time since zeroed (Secs): 2815

TX:
Bytes: 116588 Frames: 204

Deferred: 2 One collision: 52 Multi collisions: 14
TX Failures:

Excessive collisions: 0 Carrier check: 0 Short circuit: 0
Open circuit: 0 Long frame: 0 Remote defer: 0
Collision detect: 0

RX:
Bytes: 116564 Frames: 194
Multicast bytes: 13850637 Multicast frames: 42343

RX Failures:
Block check: 0 Framing error: 0 Long frame: 0
Unknown destination: 42343 Data overrun: 0 No system buffer: 22
No user buffers: 0

>>>

Command References

netexer, nettest
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nettest — Test the network ports using MOP loopback.

This is a network test. It can test the ez ports in internal loopback, external
loopback or live network loopback mode.

Nettest contains the basic options to allow the user to run MOP loopback tests. It
is assumed that nettest will be included in a script for most applications. Many
environment variables can be set to customize nettest. These may be set from the
console before nettest is started. Listed below are the environment variables, a
brief description, and their default values.

Note: Each variable name is proceded by eza0_ or ezb0_ to specify the desired
port.

Experienced users my also desire to change other network driver characteristics
by modifying the port mode. Refer to the -mode option.

Syntax

nettest [-f file] [-mode port_mode] [-p pass_count]
[-sv mop_version] [-to loop_time] [-w wait_time]
[port]

Arguments

port
Specifies the Ethernet port on which to run the test.

Options

-f file
Specifies the file containing the list of network station addresses to loop messages
to. The default file name is lp_nodes_eza0 for port eza0. The default file name is
lp_nodes_ezb0 for port ezb0. The files by default have their own station address.

-mode port_mode
Specifies the mode to set the port adapter (TGEC). The default is ’ex’ (external
loopback). Allowed values are:

• df : default, use environment variable values

• ex : external loopback

• in : internal loopback

• nm : normal mode

• nf : normal filter

• pr : promiscious

• mc : multicast

• ip : internal loopback and promiscious

• fc : force collisions

• nofc : do not force collisions

• nc : do not change mode
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-p pass_count
Specifies the number of times to run the test. If 0, then run forever. The default
is 1. Note: This is the number of passes for the diagnostic. Each pass will send
the number of loop messages as set by the environment variable, eza*_loop_count.

-sv mop_version
Specifies which MOP version protocol to use. If 3, then MOP V3 (DECNET Phase
IV) packet format is used. If 4, then MOP V4 (DECNET Phase V IEEE 802.3)
format is used.

-to loop_time
Specifies the time in seconds allowed for the loop messages to be returned. The
default is 2 seconds.

-w wait_time
Specifies the time in seconds to wait between passes of the test. The default is 0
(no delay). The network device can be very CPU intensive. This option will allow
other processes to run. ENVIRONMENT VARIABLE(S):

eza*_loop_count
Specifies the number (hex) of loop requests to send. The default is 0x3E8 loop
packets.

eza*_loop_inc
Specifies the number (hex) of bytes the message size is increased on successive
messages. The default is 0xA bytes.

eza*_loop_patt
Specifies the data pattern (hex) for the loop messages. The following are
legitimate values.

• 0 : all zeroes

• 1 : all ones

• 2 : all fives

• 3 : all 0xAs

• 4 : incrementing data

• 5 : decrementing data

• ffffffff : all patterns

loop_size
Specifies the size (hex) of the loop message. The default packet size is 0x2E.

Examples
>>>nettest - internal loopback test on port eza0
>>>nettest ez* - internal loopback test on ports eza0/ezb0
>>>nettest -mode ex - external loopback test on port eza0
>>>nettest -mode ex -w 10 - external loopback test on port eza0 wait 10

seconds between tests
>>>nettest -f foo -mode nm - normal mode loopback test on port eza0

using the list of nodes contained in the
file foo
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Command References

net, netexer
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ps — Print process status and statistics.

The ps command displays the system state in the form of process status and
statistics.

Syntax

ps

Arguments

None.

Options

None.

Examples
>>>ps

ID PCB Pri CPU Time Affinity CPU Program State
-------- -------- --- -------- -------- --- ---------- ------------------------
0000008f 0010e8a0 3 0 00000001 0 ps running
00000020 00110160 1 0 ffffffff 0 puc_poll waiting on tqe
0000001f 0013cb60 6 0 ffffffff 0 puc_receive waiting on puu_receive
0000001c 0013ed00 1 0 ffffffff 0 pub_poll waiting on tqe
0000001b 0014fc00 6 0 ffffffff 0 pub_receive waiting on puu_receive
0000001a 00111a20 3 0 00000001 0 sh ready
00000015 001176a0 2 0 ffffffff 0 mopcn_eza0 waiting on mop_eza0_cnw
00000014 00119140 2 0 ffffffff 0 mopid_eza0 waiting on tqe
00000013 0011ac20 2 0 ffffffff 0 mopdl_eza0 waiting on mop_eza0_dlw
00000012 0011f6a0 6 0 ffffffff 0 tx_eza0 waiting on eza0_isr_tx
00000011 00121140 6 0 ffffffff 0 rx_eza0 waiting on eza0_isr_rx
00000010 00122ac0 1 0 ffffffff 0 pua_poll waiting on tqe
0000000f 001244e0 6 0 ffffffff 0 pua_receive waiting on pua_receive
00000009 00147460 5 0 ffffffff 0 lad_poll waiting on tqe
00000008 00148f00 5 0 ffffffff 0 dup_poll waiting on tqe
00000007 0014a9a0 5 0 ffffffff 0 mscp_poll waiting on tqe
00000006 0014e1a0 5 0 00000001 0 entry_00 waiting on entry_00
00000004 001516e0 2 0 ffffffff 0 dead_eater waiting on dead_pcb
00000003 00153140 7 11759330 ffffffff 0 timer waiting on timer
00000002 00158740 6 0 ffffffff 0 tt_control waiting on tt_control
00000001 0005cfd8 0 0 00000001 0 idle ready
>>>

Command References

show_status, sa, sp
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psc — Communicate with the power system controller via the IIC
bus.

Provides a user interface to the Cobra power system controller. The console
passes packets to the power system controller via the IIC bus.

Syntax

psc [clear param] [set param] [show] [reset]

Arguments

clear param
Clear a parameter in the power system controller.

set param
Set a parameter in the power system controller.

show
Show the internal status of the power system controller.

reset
Request the power system controller to reset the system.

Options

None.

Examples
>>>psc show
>>>

Command References

None
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rm — Remove files from the file system.

Remove the specified file or files from the file system. Any allocated memory is
returned to the heap.

Syntax

rm file...

Arguments

file ...
Specifies the file or files to be deleted.

Options

None.

Examples
>>>ls foo
foo
>>>rm foo
>>>ls foo
foo no such file

>>>

Command References

cat, ls
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sa — Set process affinity.

Set affinity, ’sa’, is used to change the affinity mask of a process. The process may
then execute on any processors specified by the mask.

Syntax

sa process_id affinity_mask

Arguments

process_id
Specifies the PID of the process to be modified.

affinity_mask
Specifies the new affinity mask which indicates which processors the process may
run on. Bits 0 and 1 of the mask correspond to processors 0 and 1, respectively.

Options

None.

Examples
>>>memtest -p 0 &
>>>ps | grep memtest
00000025 001a9700 2 23691 00000001 0 memtest ready
>>>sa 25 2
>>>ps | grep memtest
00000025 001a9700 2 125955 00000002 1 memtest running

>>>

Command References

ps, sp
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semaphore — Show system semaphores.

Show all the semaphores known to the system by traversing the semaphore
queue.

Syntax

semaphore

Arguments

None.

Options

None.

Examples
>>>semaphore

Name Value Address First Waiter
-------------------------------- -------- -------- ------------------------

dyn_sync 00000001 00050378
dyn_release 00000001 000503A0

shell_iolock 00000001 0015D684
exit_iolock 00000001 0015D770
grep_iolock 00000001 0015DB20
eval_iolock 00000001 0015DC0C

chmod_iolock 00000001 0015DCF8
^c
>>>

Command References

None
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set — Set or modify the value of an environment variable.

Sets or modifies the value of an environment variable. Environment variables
are used to pass configuration information between the console and the operating
system.

Syntax

set envar value
[-default] [-integer] [-string]
where
envar={auto_action,bootdef_dev,boot_file,boot_osflags,...}

Arguments

envar
The environment variable to be assigned a new value. Refer to the list of
commonly used environment variables below.

value
The value that is assigned to the environment variable. Either a numeric value
or an ASCII string.

Options

-default
Restores an environment variable to its default value.

-integer
Creates an environment variable as an integer.

-string
Creates an environment variable as a string. ENVIRONMENT VARIABLE(S):

auto_action
Sets the console action following an error, halt, or power-up, to halt, boot, or
restart. The default setting is halt.

bootdef_dev
Sets the default device or device list from which the system attempts to boot. For
systems which ship with factory installed software (FIS), the default device is
preset at the factory to the device that contains FIS. For systems which do not
ship with FIS, the default setting is null.

boot_file
Sets the file name to be used when a bootstrap requires a file name. The default
setting is null.

boot_osflags
Sets additional parameters to be passed to system software. When using VMS
software, these parameters are the system root number and boot flags. The
default setting is 0,0.
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tta*_baud
Sets the baud rate for the auxilliary serial port. Possible settings are 600, 1200,
2400, 4800, 9600, or 19,200. The default setting is 1200.

tta*_halts
Specifies halt characters recognized on the console serial ports, tta0 and tta1.
The value is an integer bitmap, where:

• bit 0 : Enables(1) or disables(0) CTRL-P to init from the console.

• bit 1 : Enables(1) or disables(0) CTRL-P halts from the operating system.

• bit 2 : Enables(1) or disables(0) BREAK halts from the operating system.
Note, since tta1 is intended for modem support, this bit is ignored on tta1 (i.e.
BREAKs are not permitted on the auxiliary port).

The default for tta0 is a 2, enabling CTRL-P halts from the operating system. The default for
tta1 is a 0, disabling halts from the operating system.

Examples

In the following example, the default device from which the system attempts to boot is set to
eza0.

>>>set bootdef_dev eza0

In the next example, the system’s default console action following error, halt, or power-up is set
to boot.

>>>set auto_action boot

In the next example, the file name to be used when the system’s boot requires a file name is set
to vax_4000.sys.

>>>set boot_file vax_4000.sys

In the next example, the system’s default boot flags are set to 0,1.
>>>set boot_osflags 0,1

In the next example, the Baud rate of the auxillary console serial port, tta1, is set to 1200.
>>>set tta1_baud 1200

In the next example, the Baud rate of the auxillary console serial port, tta1, is set back to its
default value, 9600.

>>>set -default tta1_baud

In the next example, an environment variable called foo is created and given a value of 5.
>>>set foo 5

Command References

clear, set host, show
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set host — Connect the console to another server.

Connects the console to another server. Using the -dup option invokes the MSCP
DUP server on the selected ’target’ node. You can use the DUP protocol to
examine and modify parameters of a DSSI device.

The -task option permits connection to the desired MSCP DUP service utility.

Syntax

set host [-dup] [-task task_name] target

Arguments

target
Specifies the target processor number or the target device for the service
connection.

Options

-dup
Specifies connection to an MSCP DUP server. The DUP service may be used to
examine and modify parameters of a DSSI device.

-task task_name
Specifies which DUP service utility to invoke. Refer to example below for a list
of utilities. Note that in the absence of this qualifier, a directory of utilities is
displayed.

Examples

The following example shows how to find DSSI disks in the system and then connect to the
MSCP DUP server on a disk.

>>>show device du
dud0.0.0.3.0 R2YQYA$DIA0 RF72
>>>set host -dup dud0
starting DIRECT on pud0.0.0.3.0 (R2YQYA)

Copyright (C) 1990 Digital Equipment Corporation
PRFMON V1.0 D 2-NOV-1990 10:30:58
DKCOPY V1.0 D 2-NOV-1990 10:30:58
DRVEXR V2.0 D 2-NOV-1990 10:30:58
DRVTST V2.0 D 2-NOV-1990 10:30:58
HISTRY V1.1 D 2-NOV-1990 10:30:58
DIRECT V1.0 D 2-NOV-1990 10:30:58
ERASE V2.0 D 2-NOV-1990 10:30:58
VERIFY V1.0 D 2-NOV-1990 10:30:58
DKUTIL V1.0 D 2-NOV-1990 10:30:58
PARAMS V2.0 D 2-NOV-1990 10:30:58
Total of 10 programs.
Task?
>>>set host -dup -task params dud0
starting PARAMS on pud0.0.0.3.0 (R2YQYA)

Copyright (C) 1990 Digital Equipment Corporation

PARAMS> show allclass

Parameter Current Default Type Radix
--------- ---------------- ---------------- -------- -----
ALLCLASS 0 0 Byte Dec B

PARAMS> exit
Exiting...
>>>
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Command References

cdp
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sh — Create a new shell process.

This routine implements most of the functionality of the Bourne shell. It is not
the Bourne shell itself, but a reverse engineered programs.

Syntax

sh [-{x | v | d}] [arg...]

Arguments

arg
any text string terminated with whitespace.

Options

-v
print lines as they are read in

-x
show commands just before they are executed

-d
delete stdin when shell is done

-l
trace lexical analyzer (show tokens as they are recognized)

-r
trace parser (show rules as they fire)

-p
trace execution engine (show routines called)

Examples
cs> sh # start a new shell
cs> # the new shell’s prompt

cs> sh -v <foo # execute command file "foo" and show lines as read in
cs> sh -x <foo # print out commands as they are executed and after

# all substitutions have been performed.
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show — Display an environment variable value or other information.

Displays the current value (or setting) for an environment variable that you
specify.

Also displays other information about the system, according to the arguments
that you enter on the command line. For example, you can display the system
configuration by entering ’show config’.

Syntax

show [{config,device,hwrpb,memory,pal,version,...}]
[envar]
where:
envar={auto_action,bootdef_dev,boot_file,boot_osflags,...}

Arguments

cluster
Displays open virtual circuits.

config
Displays the current system configuration.

device
Displays devices and controllers in the system.

error
Displays error log information.

fbus
Displays Futurebus+ devices.

fru
Displays system FRU information.

hwrpb
Displays the Alpha HWRPB.

map
Displays system virtual memory map.

memory
Displays the memory module configuration.

pal
Displays the versions of VMS and OSF PALcode.

version
Displays the verison of the console firmware.

memory
Displays the memory module configuration.
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envar
Displays the value of the environment variable specified. Refer to the list of
commonly used environment variables below.

Options

None.
ENVIRONMENT VARIABLE(S):

auto_action
Displays the console action following an error halt or power-up: either halt, boot,
or restart.

baud_modem
Displays the baud rate for the auxilliary console port.

bootdef_dev
Displays the device or device list from which bootstrapping is attempted.

boot_file
Displays the file name to be used when a bootstrap requires a file name.

boot_osflags
Displays the additional parameters to be passed to system software.

eza0_rm_boot, ezb0_rm_boot
Displays the state of MOP remote boot enable. A 0 indicates enabled, a 1
indicates disabled.

language
Displays the language in which system software and layered products are
displayed.

password
Displays whether a password is required to gain access to privileged console
commands.

Examples

In the following example, the version of firmware on a system is displayed. The firmware version
is X1.4-2129.

>>>show version
version V3.0-1 Sep 20 1992 00:28:54
>>>

In the next example, the default system powerup action is displayed.
>>>show auto_action
boot
>>>

In the next example, a system’s default boot device is displayed. The default boot device in the
example is eza0.

>>>show bootdef_dev
eza0
>>>

In the next example, the baud rate for a system’s auxillary console port is displayed. The baud
rate in the example is 1200.
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>>>show baud_modem
1200
>>>

Command References

clear, set, show cluster, show config, show device, show error show fru, show fbus,
show hwrpb, show map, show memory
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show cluster — Display open virtual circuits.

Shows any open virtual circuits in the system on DSSI.

Syntax

show cluster

Arguments

None.

Options

None.

Examples

In the following example, a system’s cluster is displayed.
>>>show cluster

pud0.0.0.3.0 R2YQYA RF72/RFXX T251
>>>

Command References

show device
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show config — Display the current system configuration.

Displays the buses found on the system and the devices found on these buses.

You can use the information from show config to identify target devices for
commands like ’boot’ and ’exer’, as well as to verify that the system sees all
devices that are installed.

Currently executes the two powerup screens.

Syntax

show config

Arguments

None.

Options

None.

Examples

In the following example, a system’s configuration is displayed.
>>>show config

.
powerup screens...
.

>>>

Command References

show cluster, show device, show memory
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show device — Display devices and controllers in the system.

Shows the devices and controllers in the system. By default all devices
and controllers which respond are shown. If you enter a device name or an
abbreviation, show device displays the device or devices that match the device
name or abbreviation.

The device naming convention is as follows.
dka0.0.0.0.0
| || | | | |
| || | | | +--- Bus # : 0 LBus 1 FutureBus+
| || | | +---- Slot # : 0-4 DSSI/SCSI 6,7 Enet 2-13 Fbus Nodes
| || | +--- Channel # : Used for multi-channel devices.
| || +---- Bus Node # : Device’s bus ID (i.e. DSSI node ID plug #).
| |+----Device Unit # : Device’s unique system unit number.
| +---- Controller ID : One letter controller designator.
+---------- Driver ID : Two letter port or class driver designator.

PU - DSSI port, DU - MSCP class
PK - SCSI port, DK - SCSI class
EZ - Ethernet Port

Syntax

show device [device_name]

Arguments

device_name
Specifies he device name or an abbreviation of a device name. When an
abbreviation or wildcarding is used, all devices which match the abbreviated
name are shown.

Options

None.

Examples

The following example shows all devices and controllers in the system. Note
that the controllers ’p_a0’ and ’p_b0’ are indeterminant, that is, neither SCSI
nor DSSI. This occurs when no devices or terminators are present.

>>>show device
dkc0.0.0.2.0 DKC0 RZ57
dud0.0.0.3.0 R2YQYA$DIA0 RF72
mke0.0.0.4.0 MKE0 TLZ04
eza0.0.0.6.0 EZA0 08-00-2B-1D-27-AA
ezb0.0.0.7.0 EZB0 08-00-2B-1D-27-AB
p_a0.7.0.0.0 Bus ID 7
p_b0.7.0.1.0 Bus ID 7
pkc0.7.0.2.0 PKC0 SCSI Bus ID 7
pke0.7.0.4.0 PKE0 SCSI Bus ID 7
pud0.7.0.3.0 PID0 DSSI Bus ID 7
>>>

In the next examples, specific devices or device classes are displayed.
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>>>show device e # Show Ethernet devices.
eza0.0.0.6.0 EZA0 08-00-2B-1D-27-AA
ezb0.0.0.7.0 EZB0 08-00-2B-1D-27-AB
>>>show device eza0 # Show Ethernet port 0.
eza0.0.0.6.0 EZA0 08-00-2B-1D-27-AA
>>>show device du # Show DSSI disks.
dud0.0.0.3.0 R2YQYA$DIA0 RF72
>>>show device *k* # Show SCSI devices.
dkc0.0.0.2.0 DKC0 RZ57
mke0.0.0.4.0 MKE0 TLZ04
>>>show device dk # Show SCSI disks.
dkc0.0.0.2.0 DKC0 RZ57
>>>show device mk # Show SCSI tape drives.
mke0.0.0.4.0 MKE0 TLZ04
>>>

Command References

show cluster, show config
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show error — Display error information from serial control bus
EEROM.

Display’s the serial control bus EEROM error log events stored in each module in
the system.

Syntax

show error [module...]

Arguments

module ...
Specifies the module for which the FRU information is displayed. This is an
optional argument, if not supplied the FRU information for all modules in the
system will be displayed. Module names are cpu0, cpu1, io, mem0, mem1, mem2,
and mem3.

Options

None.

Examples
>>> show error # Show error information for all system modules.

IO Module EEROM Event Log
Undefined

CPU1 Module EEROM Event Log

Module Not Present

CPU0 Module EEROM Event Log
Undefined

MEM0 Module EEROM Event Log

Module Not Present

MEM1 Module EEROM Event Log

Module Not Present

MEM2 Module EEROM Event Log

Module Not Present

MEM3 Module EEROM Event Log

Entry Offest RAM # Bit Mask Multi-Chip Event Type
0 4200 0 1 0 2
1 8200 0 1 0 2
2 c200 0 1 0 2

>>>
>>> show error mem3 # Show error information for a memory module.

MEM3 Module EEROM Event Log

Entry Offest RAM # Bit Mask Multi-Chip Event Type
0 4200 0 1 0 2
1 8200 0 1 0 2
2 c200 0 1 0 2

>>>
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Command References

build, clear_error, show error
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show fru — Display FRU information based on the serial control bus
EEROM.

Display’s the part number, serial number, hardware and software revision levels
along with the SDD and TDD event counts for selected system modules.

Syntax

show fru [module...]

Arguments

module ...
Specifies the module for which the FRU information is displayed. This is an
optional argument, if not supplied the FRU information for all modules in the
system will be displayed. Module names are cpu0, cpu1, io, mem0, mem1, mem2,
and mem3.

Options

None.

Examples
>>> show fru # Show FRU information for all system Modules

Rev Events logged
Slot Option Part# Hw Sw Serial# SDD TDD

1 IO B2201-AA D5 1 AY42100001 00 00
2
3 CPU0 B2001-AA D5 1 AY24200012 00 00
4
5
6
7 MEM3 B2002-BA C1 0 GA32400321 03 00

>>>
>>> show fru cpu1 # Show FRU information for the CPU Module

Rev Events logged
Slot Option Part# Hw Sw Serial# SDD TDD

3 CPU0 B2001-AA D5 1 AY24200012 00 00
>>>

Command References

build, clear_error, show error
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show hwrpb — Display the address of the HWRPB.

Display the address of the Alpha HWRPB.

Syntax

show hwrpb

Arguments

None.

Options

None.

Examples
>>>show hwrpb
HWRPB is at 2000
>>>
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show map

show map — Display the system virtual memory map.

Display the current system virtual memory map. This routine will not show pte
that are hardwired into the chip (as in the case of EV4 pass 2).

Syntax

show map

Arguments

None.

Options

None.

Examples
>>>show map

pte 00001020 v FFFFFC0902408000 p 00000000 V KR SR FR FW
pte 00001028 v FFFFFC090240A000 p 00000000 V KR SR FW
pte 00001020 v FFFFFC0902C08000 p 00000000 V KR SR FR FW
pte 00001028 v FFFFFC0902C0A000 p 00000000 V KR SR FW
pte 00001020 v FFFFFC0B02408000 p 00000000 V KR SR FR FW
pte 00001028 v FFFFFC0B0240A000 p 00000000 V KR SR FW
pte 00001020 v FFFFFC0B02C08000 p 00000000 V KR SR FR FW
pte 00001028 v FFFFFC0B02C0A000 p 00000000 V KR SR FW

>>>
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show memory

show memory — Show memory configuration.

Shows the main memory configuration on a board by board basis. Also reports
the addresses of bad pages defined by the bitmap.

Additionally, shows the normally inaccessible areas of memory, such as, the PFN
bitmap pages, the console memory pages, PALcode, and shared data structures
such as the HWRPB.

Syntax

show memory

Arguments

None.

Options

None.

Examples

In the following example, a system’s memory is displayed.
>>>show memory

Module Size Base Addr Intlv Mode Intlv Unit
------ ----- --------- ---------- ----------

0 64Mb 00000000 1-Way 0
1 Not Installed
2 Not Installed
3 Not Installed

Total Bad Pages 0
>>>

Command References

show config
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show_status

show_status — Show the status of any currently executing
diagnostics.

Reports one line of information per currently running diagnostic. The info
includes error counts, passes completed and bytes read/written to the device
being tested. The source of each line of info is an IOB, IO block.

Syntax

show_status

Arguments

None.

Options

None.

Examples
>>>memexer 2 & # Start up two memtest processes.
>>>show_status

ID Program Device Pass Hard/Soft Bytes Written Bytes Read
-------- ------------ ------------ ------ --------- ------------- -------------
00000001 idle system 0 0 0 0 0
00000351 memtest memory 0 0 0 37748736 37748736
00000352 memtest memory 0 0 0 37748736 37748736
>>>

Source File

show_status
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sleep

sleep — Suspend execution for a time.

The sleep command suspends execution of the process for a specified number of
seconds. It temporarily wakes up every second to check for and kill pending bits.

Syntax

sleep [-v] time_in_secs
time_in_se Unmatched angle brackets! The default is 1 second.

Options

-v
Specifies that the value supplied is in milliseconds. By default this is 1000 (1
second).

Examples
>>>(sleep 10; echo hi there)&
>>>
(10 seconds expire...)
hi there
>>> sleep -v 20 # sleep for 20 milliseconds

Command References

None
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sort

sort — sort a file and write the sorted data into another file

Sort a files in lexicographic order and write the results onto stdout. Sort has
limitations on the size of files that it can sort, due to the finite amount of memory.

Syntax

sort file

Arguments

file
Name of the unsorted input file to be sorted.

Options

None.

Examples
>>>echo > foo ’banana
_>pear
_>apple
_>orange’
>>>sort foo
apple
banana
orange
pear
>>>
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sp — Set process priority.

Set priority, ’sp’, is used to modify the priority of a process. Changing the priority
of process will impact the behaviour of the process and the rest system.

Syntax

sp process_id new_priority

Arguments

process_id
Specifies the PID of the process to be modified.

new_priority
Specifies the new priority for the process. Priority values range from 0 lowest to
7 highest.

Options

None.

Examples
>>>memtest -p 0 &
>>>ps | grep memtest
00000025 001a9700 2 23691 00000001 0 memtest ready
>>>sp 25 3
>>>ps | grep memtest
00000025 001a9700 3 125955 00000001 0 memtest ready

>>>

Command References

ps, sa
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start

start — Start a processor at the specified address or drivers.

Starts program execution on a processor at the specified address or start drivers.

Syntax

start [-drivers [device_prefix]] [address]

Arguments

address
Specifies the PC address at which to start execution.

Options

-drivers [ device_prefix ]
Specifies the name of the device or device class to stop. If no device prefix is
specified, then all drivers are stopped.

Examples
>>>start 400 # Start the primary at address 400.
>>>start 100000 &p 2 # Start processor 2 at address 100000.
>>>start -drivers # Start the drivers in the system.

Command References

continue, init, stop
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stop

stop — Stop the specified processor or device.

Stops the specified processor of device.

Syntax

stop [-drivers [device_prefix]] [processor_num]

Arguments

processor_num
Specifies the number of the processor to stop.

Options

-drivers [ device_prefix ]
Specifies the name of the device or device class to stop. If no device prefix is
specified, then all drivers are stopped.

Examples
>>>stop 2
>>>

Command References

continue, init, start
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sw — swap little/big endian conversion

Swaps the bytes within a longword to convert from one endian format to the other

Syntax

sw lwd1 lwd2 lwd3 ... lwdn hex

Arguments

None.

Options

None.

Examples

>>>sw 12345678
87654321

>>>sw 12345678 deadbeef
87654321 efbeadde

>>>
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test — Test the system, a subsystem, or a specific device.

Test the entire system, a subsystem, or a specific device, depending on the device
list argument. A list of the subsystems and devices that can be tested can be
obtained from the SHOW CONFIG and SHOW DEVICE commands.

If no subsystems or devices are specified, the TEST commmand tests all
subsystems. Tapes cannot be tested with the TEST command.

Test a subsystem by entering TEST and then the name of the subsystem to be
tested. Note that TEST performs read and write tests on memory.

Test a device by entering TEST and then the name of the device to be tested.
TEST will then parse the device specification to find the appropriate test or script
for that device. Note that only read tests are performed on disks.

All tests run concurrently for a minimum of 30 seconds. Tests complete when all
component tests have completed at least one pass. Test passes are repeated on
any component that completes its test before other components.

The run time of a test is proportional to the amount of memory to be tested and
the number of disk drives to be tested.

Only one instance of test can be run at a time. test can be run as either a
background or foreground process.

Use the SET command to establish parameters, such as whether to halt, loop, or
continue on error. The passcount environment variable, d_passes is ignored by
test.

Syntax

test [disk] [dssi] [scsi] [memory] [ethernet] [fbus] [device_list]

Arguments

disk
Do read-only test of all disk drives. One pass consists of seeking to a random
block on the disk(s) and reading a packet of 2048 bytes and repeating this until
512 packets are read.

dssi
Do read-only test of all dssi disks.

scsi
Do read-only test of all scsi disks.

memory
Test memory subsystem.

ethernet
Test network subsystem.

fbus
Run extended test number 0 on all (if any) Fbus+ devices.
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device_list
Use to specify an Fbus+ device or a subset of the disk subsystem. Use fbus_diag
to run extended test 0 on the device if it is an Fbus+ device. For all other devices
use exer to perform a read-only test on one or more devices. Legal device names
are disk device names.

Options

None.

Examples
>>>test
>>>test &
>>>show_status
ID Program Device Pass Hard/Soft Bytes Written Bytes Read

-------- ------------ ------------ ------ --------- ------------- -------------
00000001 idle system 0 0 0 0 0
0000009f memtest memory 0 0 0 100663296 100663296
000000a5 fbus_diag fbc0.0.0.6.1 1 0 0 12 92
000000b4 exer_kid dub0.0.0.1.0 0 0 0 0 444416
000000b5 exer_kid duc0.6.0.2.0 122 0 0 0 1249280
000000b6 exer_kid dud0.7.0.3.0 122 0 0 0 1249280
000000b7 exer_kid dka0.0.0.0.0 0 0 0 0 256000
000000be nettest eza0.0.0.6.0 13 0 0 20888 20888
000000be nettest ezb0.0.0.7.0 13 0 0 17904 17904

>>>
tests done
>>>show_status

ID Program Device Pass Hard/Soft Bytes Written Bytes Read
-------- ------------ ------------ ------ --------- ------------- -------------
00000001 idle system 0 0 0 0 0
>>>

Source File

test
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tr

tr — translate chararacters from stdin to stdout

The tr command copies the standard input to the standard output with
substitution or deletion of selected characters. Input characters found in string1
are mapped into the corresponding characters of string2. When string2 is short
it is padded to the length of string1 by duplicat- ing its last character. Any
combination of the options -cds may be used: -c complements the set of characters
in string1 with respect to the universe of characters whose ASCII codes are 0
through 0377 octal; -d deletes all input characters in string1; -s squeezes all
strings of repeated output characters that are in string2 to single characters.

In either string the notation a-b means a range of characters from a to b in
increasing ASCII order. The backslash character (\) followed by 1, 2 or 3 octal
digits stands for the character whose ASCII code is given by those digits. A \
followed by any other character stands for that character.

TR is binary transparent; it’s operation is not restricted to ascii strings.

Syntax

tr [-cds] [string1 [string2]]

Arguments

string1
input characters

string2
translated characters

Options

c
complement characters in string1

d
delete all characters in string1 from output

s
squeeze all repeated characters in string2 to one character

Examples
tr a-z A-Z <foo # translate from lower case to upper case
tr -s [\ \011\012] \012 # break out words one per line
tr -s [\ \011] [\ \011] # collapse multiple blanks and tabs
tr -sd [ ] # remove blanks
tr -sd ’\000’ # remove nulls from stdin
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uniq — cull out duplicate lines in a file

UNIQ culls out duplicate lines in a file. U*x versions of uniq also have a qualifier
that matches on fields. Similar funcationality can be obtained by passing the
input stream through a filter that removes whitespace (see the commadn tr).

Syntax

uniq [filenames]

Arguments

filename
name of file(s) to search.

Options

-c
skip n characters

Examples
>>>hd dua0 | uniq -1 | more
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update — Update flash roms on the system

Update FEPROMS with new firmware.

FEPROMs may be updated using the ’update’ shell command. Normally, no
arguments or qualifiers are needed if just the console roms are being updated.

Update kits normally contain the required images for updating. The update
program looks for these images (in the ram disk). If the images are not present,
or some other image is to be used, then one of the following command constructs
must be used:

1) specify a device, protocol and filename, eg: update -file cobra_ev4p2 -protocol
mopdl -device eza0

2) specify the fully qualified pathname, eg: update -path mopdl:cobra_ev4p2.sys
/eza0 The process works as follows: 1) The image is loaded into memory 2)
consistency checks are applied to the image. Specifically, checksums must match,
signatures must match, sizes must match etc. Consistency checks also insure
that a VAX program doesn’t get burned on an ALPHA. The program complains
if any of the consistency checks fail. The program will then exit unless the -
ignore qualifier is present. 3) The program asks the user to confirm that an
update is desired. 4) The program actually burns the FEPROMS. If all of these
requirements are satisfied, the user is given a console prompt of ’Do you really
want to continue [Y/N]?’ If ’n’ (or ’N’) is typed, the program will be aborted with a
return to the console prompt. If ’y’ (or ’Y’) is typed, the blast will commence. At
this point it is imperative that the program is NOT broken, halted, or interrupted
for any reason. If interrupted, the module will most likely be left in an inoperable
state and the FEPROMs will need to be replaced.

There are three steps to the blasting process:

1. All longwords are programmed to ’00000000’. This is accomplished via
function uniform_program( ) internal to the update command.

2. All longwords are erased. The erased state is ’ffffffff ’. This is accomplished
via function erase( ) internal to the update command.

3. All longwords are reprogrammed to the values in the image booted into
memory. This is accomplished via the function program( ) internal to the
update command.

Progress messages to the user are printed out for each of the three steps.

Each longword of the FEPROM is verified in each of the three steps. Each step
provides for a certain number of chances to perform the operation successfully
on a particular longword of the FEPROM. These algorithms are taken directly
from the 28f010 spec. If a failure occurs in any of the steps, an error message is
printed to the console.

If the blasting operation is successful, a success message is printed to the console.

Note that it is necessary to reset or cycle power on the system to unload the new
image of the FEPROMs into memory. Until a power down, the old image is still
being executed.
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Syntax

update [-file filename]
[-protocol transport] [-device source_device]
[-target target_name]
[-path full_pathanme]

Arguments

None.

Options

-file filename
Specifies the name of the new FEPROM update image. The default is the name
of the platform that the update is running on. For example, if the update is
running on a COBRA using a pass 4 chip, the default name is COBRA_EV4P2.

-protocol transport
Specifies the source transport protocol. The default is MOPDL.

-device
Specifies the device from which to load the new FEPROM update image file. The
default is EZA0.

-target device
Specifies the device which contains the FEPROMs to be upgraded. The default
is IO (the FEPROMs on I/O module). If the target is not recognized, then it is
assumed to be the name of device driver this is of type flash rom.

-path full_pathname
This qualifier is used if the file, protocol and device qualifiers are not sufficient to
fully specify the source filename. This qualifier over rides the file, protocol and
device qualifiers.

-ignore
Ignore the signature and consistency checks. If specified, the burn occurs
regardless of the built in consistency checks. This qualifier should be used with
caution!

Examples
cs>update -file cobra_feb01_e42

FEPROM UPDATE UTILITY
-----> CAUTION <-----

EXECUTING THIS PROGRAM WILL CHANGE YOUR CURRENT ROM!

Do you really want to continue [Y/N] ? : y

DO NOT ATTEMPT TO INTERRUPT PROGRAM EXECUTION!
DOING SO MAY RESULT IN LOSS OF OPERABLE STATE.

The program will take at most several minutes.

Starting uniform programming to 0’s of block...
00000 10000 20000 30000 40000 50000 60000 70000

Starting erase of block...
00000 10000 20000 30000 40000 50000 60000 70000

Starting reprogramming of block...
00000 10000 20000 30000 40000 50000 60000 70000

update successful!
cs>
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wc — Count bytes, words and lines and report totals.

WC counts bytes, words and lines in files and reports the totals on the standard
output.

Syntax

wc [-{l | w | c}] [file...]

Arguments

file ...
Specifies the file(s) on which to perform the counts.

Options

-l
Specifies to count lines and display the number of lines.

-w
Specifies to count lines and display the number of words.

-c
Specifies to count lines and display the number of characters.

Examples
>>>wc fred

1 4 21 fred
1 1 1 total

>>>wc -l fred
1 fred
1 total

>>>wc -w fred
4 fred
1 total

>>>wc -c fred
21 fred

1 total
>>>

Command References

cat, ls
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E
Environment Variables

All supported environment variables are listed below in Table E–1.

Table E–1 Environment Variables

# Variable Attributes Function

Alpha SRM Defined Environment Variables

00 Reserved

01 auto_action NV,W The action the console should take following an
error halt or powerfail. Defined values are:

"BOOT" (544F4F42) - Attempt bootstrap.
"HALT" (544C4148) - Halt, enter console I/O
mode.
"RESTART" (54524154534552) - Attempt
restart. If restart fails, then try boot.

Any other values cause a halt, and console mode
is entered.

02 boot_dev W The default device or device list from which
booting is attempted when no boot path
is specified by the BOOT command. This
variable may be a boot search list. The console
derives the value from bootcmd_dev at console
initialization; the value is preserved across warm
bootstraps. The format of value is independent
of the console presentation layer.

03 bootdef_dev NV The device or device list from which booting is to
be attempted, when no path is specified on the
command line.

04 booted_dev RO The device from which booting actually occurred.

05 boot_file NV,W The default file name used for the primary
bootstrap when no file name is specified by the
BOOT command. The default value when the
system is shipped is NULL.

Key to variable attributes:

NV - Non-volatile. The last value saved by system software or set by console commands is
preserved across system initializations, cold bootstraps, and long power outages.
W - Warm non-volatile. The last value set by system software is preserved across warm bootstraps
and restarts.
RO - Read-only. The variable cannot be modified by system system software or console commands.

(continued on next page)

Environment Variables E–1



Table E–1 (Cont.) Environment Variables

# Variable Attributes Function

Alpha SRM Defined Environment Variables

06 booted_file RO The file name used for the primary bootstrap
during the last boot. The value is NULL if boot_
file is NULL and no bootstrap file name was
specified by the BOOT command.

07 boot_osflags NV,W Default additional parameters to be passed
to system software during booting if none are
specified by the boot command.

On the OpenVMS AXP operating system, these
additional parameters are the root number and
boot flags. The default value when the system is
shipped is NULL. The following parameters are
used with the DEC OSF/1 operating system:

a Autoboot. Boots /vmunix from bootdef_
dev, goes to multiuser mode. Use this
for a sysatem that should come up
automatically after a power failure.

s Stop in single-user mode. Boots /vmunix
to single-user mode and stops at the #
(root) prompt.

i Interactive boot. Request the name of
the image to boot from the specified boot
device. Other flags, such as -kdebug (to
enable the kernel debugger), may be
entered using this option.

D Full dump, implies ‘‘s’’ as well. By
default, if DEC OSF/1 V2.1 crashes,
it completes a partial memory dump.
Specifying ‘‘D’’ forces a full dump at
system crash.

Common settings are a, autoboot; and Da,
autoboot; but create full dumps if the system
crashes.

08 booted_osflags RO Additional parameters, if any, specified by the
last BOOT command that are to be interpreted
by system software. The default value when the
system is shipped is NULL.

Key to variable attributes:

NV - Non-volatile. The last value saved by system software or set by console commands is
preserved across system initializations, cold bootstraps, and long power outages.
W - Warm non-volatile. The last value set by system software is preserved across warm bootstraps
and restarts.
RO - Read-only. The variable cannot be modified by system system software or console commands.

(continued on next page)
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Table E–1 (Cont.) Environment Variables

# Variable Attributes Function

Alpha SRM Defined Environment Variables

09 boot_reset NV,W Indicates whether a full system reset is
performed in response to an error halt or BOOT
command. Defined values and the action taken
are:

"OFF" (46464F) - warm boot, no full reset is
performed.
"ON" (4E4F) - cold boot, a full reset is
performed.

The default value when the system is shipped is
"OFF".

0A dump_dev NV,W The complete device specification of the device
to which operating system dumps should be
written. The default value when the system
is shipped indicates a valid implementation-
dependent device.

0B enable_audit NV,W Indicates whether audit trail messages are to be
generated during bootstrap.

"OFF" (46464F) - Suppress audit trail
messages.
"ON" (4E4F) - Generate audit trail messages.

The system is shipped with this set to "ON".

0D char_set NV,W Indicates the character-set encoding currently
selected to be used for the console terminal.

0 - ISO-LATIN-1 character encoding
other - TBD

The default value when the system is shipped is
0.

Key to variable attributes:

NV - Non-volatile. The last value saved by system software or set by console commands is
preserved across system initializations, cold bootstraps, and long power outages.
W - Warm non-volatile. The last value set by system software is preserved across warm bootstraps
and restarts.
RO - Read-only. The variable cannot be modified by system system software or console commands.

(continued on next page)
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Table E–1 (Cont.) Environment Variables

# Variable Attributes Function

Alpha SRM Defined Environment Variables

0E language NV,W The default language to display critical system
messages.

00 none (cryptic)
30 Dansk
32 Deutsch
34 Deutsch (Schweiz)
36 English (American)
38 English (British/Irish)
3A Espanol
3C Francais
3E Francais (Canadian)
40 Francais (Suisse Romande)
42 Italiano
44 Nederlands
46 Norsk
48 Portugues
4A Suomi
4C Svenska
4E Vlaams

0F tty_dev NV,W,RO Specifies the current console terminal unit.
Indicates which entry of the CTB Table
corresponds to the actual console terminal. The
value is preserved across warm bootstraps. The
default value is "0" 30 (hex).

10-
3F

Reserved for Digital.

40-
7F

Reserved for console use.

80-
FF

Reserved for operating system use.

System Dependent Environment Variables

cpu_enabled NV A bitmask indicating which processors are
enabled to run (leave console mode). If this
variable is not defined, all available processors
are considered enabled.

d_bell Specifies whether or not to bell on error if error
is detected.

OFF (Default)
ON

Key to variable attributes:

NV - Non-volatile. The last value saved by system software or set by console commands is
preserved across system initializations, cold bootstraps, and long power outages.
W - Warm non-volatile. The last value set by system software is preserved across warm bootstraps
and restarts.
RO - Read-only. The variable cannot be modified by system system software or console commands.

(continued on next page)
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Table E–1 (Cont.) Environment Variables

# Variable Attributes Function

System Dependent Environment Variables

d_cleanup Specifies whether or not cleanup code is executed
at the end of a diagnostic.

ON (Default)
OFF

d_complete Specifies whether or not to display the diagnostic
completion message.

OFF (Default)
ON

d_eop Specifies whether or not to display end-of-pass
messages.

OFF (Default) - Disable end-of-pass
messages.
ON - Enable end-of-pass messages.

d_group Specifies the diagnostic group to be executed.

FIELD (Default)
MFG
other diagnostic group string (up to 32
characters)

d_harderr Specifies the action taken following hard error
detection.

CONTINUE
HALT (Default)
LOOP

d_oper Specifies whether or not an operator is present.

ON - Indicates operator present.
OFF (Default) - Indicates no operator
present.

d_passes Specifies the number of passes to run a
diagnostic module.

1 (Default)
0 - Indicates to run indefinitely.
an arbitrary value

Key to variable attributes:

NV - Non-volatile. The last value saved by system software or set by console commands is
preserved across system initializations, cold bootstraps, and long power outages.
W - Warm non-volatile. The last value set by system software is preserved across warm bootstraps
and restarts.
RO - Read-only. The variable cannot be modified by system system software or console commands.

(continued on next page)
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Table E–1 (Cont.) Environment Variables

# Variable Attributes Function

System Dependent Environment Variables

d_report Specifies the level of information provided by
diagnostic error reports.

SUMMARY (Default)
FULL
OFF

d_softerr Specifies the action taken following soft error
detection.

CONTINUE (Default)
HALT
LOOP

d_startup Specifies whether or not to display the diagnostic
startup message.

OFF (Default) - Disables the startup
message.
ON - Enables the startup message.

d_trace Specifies whether or not to display test trace
messages.

OFF (Default) - Disables trace messages.
ON - Enables trace messages.

enable_servers NV Set to ON to run storage port loopback test.
Default is OFF.

etherneta Specifies the Ethernet station address for port
eza0.

ethernetb Specifies the Ethernet station address for port
ezb0.

exdep_data RO Specifies the data value referenced by the last
examine or deposit command.

exdep_location RO Specifies the location referenced by the last
examine or deposit command.

exdep_size RO Specifies the data size referenced by the last
examine or deposit command.

exdep_space RO Specifies the address space referenced by the last
examine or deposit command.

exdep_type RO Specifies the data type referenced by the last
examine or deposit command.

Key to variable attributes:

NV - Non-volatile. The last value saved by system software or set by console commands is
preserved across system initializations, cold bootstraps, and long power outages.
W - Warm non-volatile. The last value set by system software is preserved across warm bootstraps
and restarts.
RO - Read-only. The variable cannot be modified by system system software or console commands.

(continued on next page)
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Table E–1 (Cont.) Environment Variables

# Variable Attributes Function

System Dependent Environment Variables

ez*0_arp_tries NV Sets the number of transmissions that are
attempted before the ARP protocol fails. Values
less than 1 cause the protocol to fail immediately.
Default value is 3, which translates to an
average of 12 seconds before failing. Interfaces
on busy networks may need higher values.

ez*0_bootp_file NV Supplies the generic file name to be included in a
BOOTP request. The BOOTP server will return
a fully qualified file name for booting. This can
be left empty.

ez*0_bootp_server NV Supplies the server name to be included in a
BOOTP request. This can be set to the name
of the server from which the machine is to be
booted, or can be left empty.

ez*0_bootp_tries NV Sets the number of transmissions that are
attempted before the BOOTP protocol fails.
Values less than 1 cause the protocol to fail
immediately. Default value is 3, which translates
to an average of 12 seconds before failing.
Interfaces on busy networks may need higher
values.

ez*0_def_ginetaddr NV Supplies the initial value for ez*0_ginetaddr
when the interface’s internal internet database is
initialized from nvram (ie, ez*0_inet_init is set to
"nvram").

ez*0_def_inetaddr NV Supplies the initial value for ez*0_inetaddr when
the interface’s internal internet database is
initialized from nvram (ie, ez*0_inet_init is set to
"nvram").

ez*0_def_inetfile NV Supplies the initial value for ez*0_inetfile when
the interface’s internal internet database is
initialized from nvram (ie, ez*0_inet_init is set to
"nvram").

ez*0_def_sinetaddr NV Supplies the initial value for ez*0_sinetaddr
when the interface’s internal internet database is
initialized from nvram (ie, ez*0_inet_init is set to
"nvram").

Key to variable attributes:

NV - Non-volatile. The last value saved by system software or set by console commands is
preserved across system initializations, cold bootstraps, and long power outages.
W - Warm non-volatile. The last value set by system software is preserved across warm bootstraps
and restarts.
RO - Read-only. The variable cannot be modified by system system software or console commands.

(continued on next page)
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Table E–1 (Cont.) Environment Variables

# Variable Attributes Function

System Dependent Environment Variables

ez*0_driver_flags Specifies the flags to be used by the driver.
Current values are:

1 : NDL$M_ENA_BROADCAST will enable
broadcast messages.
2 : NDL$M_ENA_HASH will enable hash
filtering.
4 : NDL$M_ENA_INVF will enable inverse
filtering.
8 : NDL$M_MEMZONE will allocate the
message buffers from memzone.

ez*0_ginetaddr Accesses the gateway address field of the
interface’s internal internet database. This
is normally the address of the local network’s
gateway to other networks.

ez*0_inet_init NV Determines whether the interface’s internal
internet database is initialized from nvram or
from a network server (via the BOOTP protocol).
Legal values are "nvram" and "bootp"; default is
"bootp".

ez*0_inetaddr the local address field of the interface’s internal
internet database.

ez*0_inetfile Accesses the file name field of the interface’s
internal internet database. This is normally the
file to be booted from the TFTP server. This
variable supplies the default remote file name for
TFTP transactions.

ez*0_loop_count Specifies the number of time each message is
looped.

ez*0_loop_inc Specifies the amount the message size is
increased from message to message.

ez*0_loop_patt Specifies the type of data pattern to be used
when doing loopback. Current patterns are
accessed by the following:

0xffffffff = All the patterns
0 = all zero’s
1 = all one’s
2 = all fives
3 = all A’s
4 = incrementing
5 = decrementing

Key to variable attributes:

NV - Non-volatile. The last value saved by system software or set by console commands is
preserved across system initializations, cold bootstraps, and long power outages.
W - Warm non-volatile. The last value set by system software is preserved across warm bootstraps
and restarts.
RO - Read-only. The variable cannot be modified by system system software or console commands.

(continued on next page)
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Table E–1 (Cont.) Environment Variables

# Variable Attributes Function

System Dependent Environment Variables

ez*0_loop_list_size Specifies the size of the preallocated list used
during loopback.

ez*0_loop_size Specifies the size of the loop data to be used.

ez*0_lp_msg_node Specifies the number of messages originally sent
to each node.

ez*0_mode Specifies the value for the SGEC mode when the
device is started. This value is a mirror of CSR6.
It can be different from device to device.

ez*0_msg_buf_size Specifies the message size. Receive data chaining
can be achieved by picking a small value for this
variable.

ez*0_msg_mod Specifies the modulus for message alignment.

ez*0_msg_rem Specifies the remainder for message alignment.

ez*0_protocols NV Determines which network protocols are enabled
for booting and other functions. Legal values
include "BOOTP", "MOP", and "BOOTP,MOP". A
null value is equivalent to "BOOTP,MOP".

ez*0_rcv_buf_no Specifies the number of receive buffers

ez*0_rcv_mod Specifies the modulus for receive descriptor
alignment.

ez*0_rcv_rem Specifies the remainder for receive descriptor
alignment.

ez*0_sinetaddr Accesses the server address field of the
interface’s internal internet database. This is
normally the address of the BOOTP and TFTP
server. This variable supplies the default remote
address for TFTP transactions.

ez*0_tftp_tries NV Sets the number of transmissions that are
attempted before the TFTP protocol fails. Values
less than 1 cause the protocol to fail immediately.
Default value is 3, which translates to an
average of 12 seconds before failing. Interfaces
on busy networks may need higher values.

ez*0_xmt_buf_no Specifies the number of transmit buffers.

ez*0_xmt_int_msg Specifies the number of transmit interrupts per
message.

ez*0_xmt_max_size Specifies the maximum message size that can
be transmitted. Transmit data chaining can
be achieved by picking a small value for this
variable.

Key to variable attributes:

NV - Non-volatile. The last value saved by system software or set by console commands is
preserved across system initializations, cold bootstraps, and long power outages.
W - Warm non-volatile. The last value set by system software is preserved across warm bootstraps
and restarts.
RO - Read-only. The variable cannot be modified by system system software or console commands.

(continued on next page)
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Table E–1 (Cont.) Environment Variables

# Variable Attributes Function

System Dependent Environment Variables

ez*0_xmt_mod Specifies the modulus for transmit descriptor
alignment.

ez*0_xmt_msg_post Specifies the number of messages before posting
a transmit.

ez*0_xmt_rem Specifies the remainder for transmit descriptor
alignment.

ferr1 Quadword of error information that Futurebus+
modules can store.

ferr2 Quadword of error information that Futurebus+
modules can store.

fis_name NV Specifies a string indicating the factory installed
software.

interleave NV Specifies the memory interleave configuration for
the system. The value must be one of: "default",
"none", or an explicit interleave list. The syntax
for specifing the configuration is:

0,1,2,3 - Indicates the memory module (or
slot) numbers.
: - Indicates that the adjacent memory
modules are combined to form a logical
module or single interleave unit.
+ - Indicates that the adjacent memory
modules or units are to be interleaved
forming a set.
, - Indicates that the adjacent memory
modules, units, or sets are not to be
interleaved.

For example, assume a system where memory
module 0 and 1 are 64MB each, module 2 is
128MB, and module 3 is 32MB. Memory is
configured memory such that module 0 and 1
are combined as a logical unit which is 128MB.
This unit is interleaved with module 2 which is
also 128MB to form an interleaved set which
is 256MB. Module 3 is not interleaved, but
configured as the next 32MB after the interleave
set.

set interleave 0:1+2,3
The system is shipped with interleave set to
"default". With this value, the optimal interleave
configuration for the memory modules will be
set. Normally, there is no reason to change the
interleave setting.

Key to variable attributes:

NV - Non-volatile. The last value saved by system software or set by console commands is
preserved across system initializations, cold bootstraps, and long power outages.
W - Warm non-volatile. The last value set by system software is preserved across warm bootstraps
and restarts.
RO - Read-only. The variable cannot be modified by system system software or console commands.

(continued on next page)
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Table E–1 (Cont.) Environment Variables

# Variable Attributes Function

System Dependent Environment Variables

mopv3_boot Specifies whether to use MOP Version 3 format
messages first in the boot requests sequence
instead of MOP Version 4.

ncr*_setup NV Here "*" may be one of 0, 1, 2, 3, or 4,
corresponding to the storage bus adapters A,
B, C, D, or E, respectively.

pal RO Specifies the versions of VMS and OSF PALcode
in the firmware. For instance, VMS PALcode
X5.12B, OSF PALcode X1.09A.

screen_mode NV Specifies whether to show the powerup display
as a series of lines of text or in screen-mode.
screen_mode can be ON or OFF. The default is
ON.

sys_serial_num NV The system serial number, set at the factory.

tt_allow_login Set to 0 if loopback testing is to be done on tta1.
Default is 1.

tta_merge NV Merges the input from tta0 to the input stream
of tta1. Output from tta0 is duplicated to tta1.
Output from tta1 is not displayed on tta0.

tta*_baud NV Here "*" may be one of 0 or 1, corresponding
to the primary console serial port, tta0 or the
auxiliary console serial port, tta1. Specifes the
Baud rate of the primary console serial port,
tta0. Allowable values are 600, 1200, 2400, 4800,
9600, and 19200. The initial value for tta0 is
read from the Baud rate switch on OCP.

tta*_halts NV Specifies halt characters recognized on the
console serial ports, tta0 and tta1. The value
is an integer bitmap, where:

bit 0 - Enables(1) or disables(0) CTRL-P to
init from the console.
bit 1 - Enables(1) or disables(0) CTRL-P
halts from the operating system.
bit 2 - Enables(1) or disables(0) BREAK
/halts from the operating system. Note,
since tta1 is intended for modem support,
this bit is ignored on tta1 (i.e. BREAKs are
not permitted on the auxiliary port).

The default for tta0 is a 2, enabling CTRL-P
halts from the operating system. The default for
tta1 is a 0, disabling halts from the operating
system.

Key to variable attributes:

NV - Non-volatile. The last value saved by system software or set by console commands is
preserved across system initializations, cold bootstraps, and long power outages.
W - Warm non-volatile. The last value set by system software is preserved across warm bootstraps
and restarts.
RO - Read-only. The variable cannot be modified by system system software or console commands.

(continued on next page)
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Table E–1 (Cont.) Environment Variables

# Variable Attributes Function

System Dependent Environment Variables

version RO Specifies the version of the console code in the
firmware. For instance, V2.3-2001 Aug 21 1992
14:25:19.

Key to variable attributes:

NV - Non-volatile. The last value saved by system software or set by console commands is
preserved across system initializations, cold bootstraps, and long power outages.
W - Warm non-volatile. The last value set by system software is preserved across warm bootstraps
and restarts.
RO - Read-only. The variable cannot be modified by system system software or console commands.
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Glossary

ANSI

American National Standards Institute, an organization that develops and
publishes standards for the computer industry.

arbiter

The entity responsible for controlling a bus. It controls bus mastership and may
field bus interrupt requests.

assert

To cause a signal to change to its logical true state.

AST

See asynchronous system trap.

AST atomic

A characteristic of certain operations that indicates that the operation may be
performed in an environment where ASTs may occur. From the standpoint of the
AST service routine, the operation will always appear either to have not started
or to have completed. See also asynchronous system trap.

asymptotic

An equality statement about two functions, which states that the ratio of the
two functions approaches 1 while the variable approaches some value, usually
infinity. It is not a true equality. This term is sometimes used in reference to bus
bandwidth (approaching, but never reaching, full theoretical bandwidth).

asynchronous system trap (AST)

A software-simulated interrupt to a user-defined routine. ASTs enable a user
process to be notified asynchronously, with respect to that process, of the
occurrence of a specific event. If a user process has defined an AST routine for an
event, the system interrupts the process and executes the AST routine when that
event occurs. When the AST routine exits, the system resumes execution of the
process at the point where it was interrupted.

atomic

An operation or sequence of events that, once begun, completes without
interruption.

atomic instructions

Instructions that consist of one or more discrete operations, which are handled as
a single operation by the hardware, without interruption.
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atomicity of modifications

A characteristic of VAX memory systems that allows read-modify-write operations
that cannot be interrupted by other system events. These operations appear to
other processes to be a single operation. Once the operation starts, it always
completes without interruption. Atomic memory modification may involve bus
locking protocols or other hardware assistance to achieve the atomic operation.

autoboot

The process by which the system boots automatically.

auxiliary serial port

The EIA 232 serial port on the I/O module of the DEC 4000 AXP system. This
port provides asynchronous communication with a device, such as a modem.

availability

The amount of scheduled time that a computing system provides application
service during the year. Availability is typically measured as either a percentage
of ‘‘uptime’’ per year or as system ‘‘unavailability,’’ the number of hours or
minutes of downtime per year.

BA640

The enclosure that houses the DEC 4000 AXP system. The BA640 is compatible
with the departmental environment and is designed for maximum flexibility
in system configuration. Employing an open system architecture, the BA640
incorporates a state-of-the-art Futurebus+ area, which allows for expansion of the
DEC 4000 AXP system with options available from Digital and other vendors.

backplane

The main circuit board or panel that connects all of the modules in the system.
In desktop systems, the backplane is analogous to the motherboard.

backup cache

A second, very fast memory that is used in combination with slower large-capacity
memories.

bandwidth

Bandwidth is often used to express ‘‘high rate of data transfer’’ in an I/O channel.
This usage assumes that a wide bandwidth may contain a high frequency, which
can accommodate a high rate of data transfer.

baud rate

The speed at which data is transmitted over a data line; baud rates are measured
in bits per second.

benchmark

A routine or program used in the evaluation of computer performance.

bit

Binary digit. The smallest unit of data in a binary notation system, designated
as 0 or 1.
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BIU

See bus interface unit.

block exchange

Memory feature that improves bus bandwidth by paralleling a cache victim
write-back with a cache miss fill.

boot

Short for bootstrap. Loading an operating system into memory is called booting.

bootblock

The first logical block on the boot device. It contains information about the
location of the primary bootstrap on the device.

boot device

The device from which the system bootstrap software is acquired.

boot flags

Boot flags contain information that is read and used by the bootstrap software
during a system bootstrap procedure.

boot primitives

Device handler routines that read the bootblock and, subsequently, the primary
bootstrap program, into memory from the boot device. See also bootblock.

boot server

A system that provides boot services to remote devices such as network routers
and VAXcluster satellite nodes.

bootstrap

See boot.

buffer

An internal memory area used for temporary storage of data records during input
or output operations.

bugcheck

A software condition, usually the response to software’s detection of an ‘‘internal
inconsistency,’’ which results in the execution of the system bugcheck code.

bus

A group of signals that consists of many transmission lines or wires. It
interconnects computer system components to provide communications paths for
addresses, data, and control information.

bus interface unit

Logic designed to interface internal logic, a module or a chip, to a bus.

bystander

A system bus node that is not addressed by a current system bus commander
transaction address.
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byte

Eight contiguous bits starting on an addressable byte boundary. The bits are
numbered right to left, 0 through 7.

byte granularity

Memory systems are said to have byte granularity if adjacent bytes can be
written concurrently and independently by different processes or processors.

C3 chip

An acronym for command, control, and communication chip. On the DEC 4000
AXP system, the ASIC gate array chip located on the CPU module. This chip
contains CPU command, control, and communication logic, as well as the bus
interface unit for the processor module.

cache

See cache memory.

cache block

The fundamental unit of manipulation in a cache. Also known as cache line.

cache interference

The result of an operation that adversely affects the mechanisms and procedures
used to keep frequently used items in a cache. Such interference may cause
frequently used items to be removed from a cache or incur significant overhead
operations to ensure correct results. Either action hampers performance.

cache line

The fundamental unit of manipulation in a cache. Also known as cache block.

cache memory

A small, high-speed memory placed between slower main memory and the
processor. A cache increases effective memory transfer rates and processor speed.
It contains copies of data recently used by the processor and fetches several
bytes of data from memory in anticipation that the processor will access the next
sequential series of bytes.

card cage

A mechanical assembly in the shape of a frame that holds modules against the
system and storage backplanes.

CD-ROM

Compact disc read-only memory. The optical removable media used in a compact
disc reader mass storage device.

central processing unit (CPU)

The unit of the computer that is responsible for interpreting and executing
instructions.

channel

A path along which digital information can flow in a computer.
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checksum

A sum of digits or bits that is used to verify the integrity of a piece of data.

CI

See computer interconnect.

CISC

Complex instruction set computer. An instruction set consisting of a large
number of complex instructions that are managed by microcode. Contrast with
RISC.

clean

In the cache of a system bus node, refers to a cache line that is valid but has not
been written.

client-server computing

An approach to computing that enables personal computer and workstation
users—the ‘‘client’’—to work cooperatively with software programs stored on a
mainframe or minicomputer—the ‘‘server.’’

clock

A signal used to synchronize the circuits in a computer system.

cluster

A group of systems and hardware that communicate over a common interface.
See also VMScluster system.

CMOS

Complementary metal-oxide semiconductor. A silicon device formed by a process
that combines PMOS and NMOS semiconductor material.

command

A field of the system bus address and command cycle (cycle 1), which encodes the
transaction type.

commander

A system bus node that participates in arbitration and initiates a transaction.
Also called a commander node.

computer interconnect (CI)

Digital’s high-speed, fault-tolerant, dual-path bus, which has a bandwidth of
70 megabits per second. With the CI, any combination of processor nodes and
intelligent I/O subsystem nodes—up to 16 in number—can be coupled loosely in a
computer-room environment.

concurrency

Simultaneous operations by multiple agents on a shared object.

conditional invalidation

Invalidation of a cached location based upon a set of conditions, which are the
state of other caches, or the source of the information causing the invalidate.
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console mode

The state in which the system and the console terminal operate under the control
of the console program.

console password

The password used to access privileged console commands.

console program

The code that the CPU executes during console mode.

console subsystem

The subsystem that provides the user interface for a system when operating
system software is not running. The console subsystem consists of the following
components:

console program
console terminal
console terminal port
remote access device
remote access port
Ethernet ports

console terminal

The terminal connected to the console subsystem. The console is used to start
the system and direct activities between the computer operator and the computer
system.

console terminal port

The connector to which the console terminal cable is attached.

control and status register (CSR)

A device or controller register that resides in the processor’s I/O space. The CSR
initiates device activity and records its status.

CPU

See central processing unit.

CSR

See control and status register.

cycle

One clock interval.

data alignment

An attribute of a data item that refers to its placement in memory (therefore its
address).

data bus

A bus used to carry signals between two or more components of the system.

D-bus

On the DEC 4000 AXP system, the bus between the 21064 CPU chip and the
‘‘D-bus micro’’ and the serial ROMs.
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D-cache

Data cache. A high-speed memory reserved for the storage of data. Contrast with
I-cache.

DC-DC converter

A device that converts one DC voltage to another DC voltage.

deassert

To cause a signal to change to its logical false state.

DECchip 21064 processor

The CMOS-4, Alpha AXP architecture, single-chip processor used on Alpha AXP
based computers.

DECnet

Networking software designed and developed by Digital. DECnet is an
implementation of the Digital Network Architecture.

DEC OSF/1 AXP operating system

A general-purpose operating system based on the Open Software Foundation
OSF/1 1.0 technology. DEC OSF/1 V1.2 runs on the range of Alpha AXP systems,
from workstations to servers.

DEC VET

Digital’s DEC Verifier and Exerciser Tool. DEC VET is a multipurpose system
maintenance tool that performs exerciser-oriented maintenance testing.

Dhrystone

A benchmark for computer system performance that measures integer
performance. Dhrystone is part of the suite of SPEC benchmarks.

direct-mapping cache

A cache organization in which only one address comparison is needed to locate
any data in the cache, because any block of main memory data can be placed in
only one possible position in the cache.

direct memory access (DMA)

Access to memory by an I/O device that does not require processor intervention.

dirty

Used in reference to a cache block in the cache of a system bus node. The cache
block is valid and has been written so that it differs from the copy in system
memory.

dirty victim

Used in reference to a cache block in the cache of a system bus node. The cache
block is valid but is about to be replaced due to a cache block resource conflict.
The data must therefore be written to memory.
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disk fragmentation

The writing of files in noncontiguous areas on a disk. Fragmentation can cause
slower system performance because of repeated read or write operations on
fragmented data.

disk mirroring

See volume shadowing.

distributed processing

A processing configuration in which each processor has its own autonomous
operating environment. The processors are not tightly coupled and globally
controlled as they are with multiprocessing. A distributed processing
environment can include multiprocessor systems, uniprocessor systems, and
cluster systems. It entails the distribution of an application over more than one
system. The application must have the ability to coordinate its activity over a
dispersed operating environment. Contrast with symmetric multiprocessing.

DRAM

Dynamic random-access memory. Read/write memory that must be refreshed
(read from or written to) periodically to maintain the storage of information.

DSSI

Digital’s proprietary data bus that uses the System Communication Architecture
(SCA) protocols for direct host-to-storage communications.

DSSI VMScluster

A VMScluster system that uses the DSSI bus as the interconnect between DSSI
disks and systems.

ECC

Error correction code. Code and algorithms used by logic to facilitiate error
detection and correction. See also ECC error; EDC logic.

ECC error

An error detected by EDC logic, to indicate that data (or the protected ‘‘entity’’
has been corrupted. The error may be correctable (ECC error) or uncorrectable
(ECCU error). See also EDC logic.

EDC logic

Error detection and correction logic. Used to detect and correct errors. See also
ECC; ECC error.

EEPROM

Electrically erasable programmable read-only memory. A memory device that can
be byte-erased, written to, and read from. Contrast with FEPROM.

emitter-coupled logic

A form of current-mode logic in which only one transistor conducts at a time.
The emitters of the two transistors are tied together to a single current-carrying
resistor.
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environment variable

Global data structures that can be accessed from console mode. The setting
of these data structures determines how a system powers up, boots operating
system software, and operates.

Ethernet

A local area network that was originally developed by Xerox Corporation and has
become the IEEE 802.3 standard LAN. Ethernet LANs use bus topology.

Ethernet ports

The connectors through which the Ethernet is connected to the system.

extents

The physical locations in a storage device allocated for use by a particular data
set.

Factory Installed Software (FIS)

Operating system software that is loaded into a system disk during manufacture.
On site, the FIS is bootstrapped in the system, prompting a predefined menu of
questions on the final configuration.

fast SCSI

An optional mode of SCSI-2 that allows transmission rates of up to 10 MB/s. See
also SCSI.

FDDI

Fiber Distributed Data Interface. A high-speed networking technology that uses
fiber optics as the transmissions medium.

FEPROM

Flash-erasable programmable read-only memory. FEPROMs can be bank- or
bulk-erased. Contrast with EEPROM.

FIFO

First in/first out; the order in which data is accessed.

FIS

See Factory Installed Software.

firmware

Software code stored in hardware.

fixed-media compartments

Compartments that house nonremovable storage media.

floating-point

Arithmetic operations in which the location of the decimal point will be place
automatically in its correct position.
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front end unit (FEU)

One of four modules in the DEC 4000 AXP system power supply. The FEU
converts alternating current from a wall plug to 48 V DC that the rest of the
power subsystem can use and convert.

FRU

Field-replaceable unit. Any system component that the service engineer is able to
replace on-site.

full-height device

Standard form factor for 5 1/4-inch storage devices.

Futurebus+

A computer bus architecture that provides performance scalable over both time
and cost. It is the IEEE 896 open standard.

Futurebus+ Profile B

A profile is a specification that calls out a subset of functions from a larger
specification. Profile B satisfies the requirements for an I/O bus. See also
Futurebus+.

granularity

A characteristic of storage systems that defines the amount of data that
can be read and/or written with a single instruction, or read and/or written
independently. VAX systems have byte or multibyte granularities, whereas disk
systems typically have 512-byte or greater granularities. For a given storage
device, a higher granularity generally yields a greater throughput.

half-height device

Standard form factor for storage devices that are not the height of full-height
devices.

halt

The action of transferring control to the console program.

hard error

An error that has induced a nonrecoverable failure in a system.

hexword

Short for ‘‘hexadecimalword.’’ Thirty-two contiguous bytes (256 bits) starting on
an addressable byte boundary. Bits are numbered from right to left, 0 through
255.

high-level language

A language for specifying computing procedures or organization of data within
a digital computer. High-level languages are distinguished from low-level
languages, such as assembly and machine languages, by the omission of
machine-specific details required for direct execution on a given computer. See
also low-level language.

hit

Indicates that a valid copy of a desired memory location is currently in cache.
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I-cache

Instruction cache. A high-speed memory reserved for the storage of instructions.
Contrast with D-cache.

image section

A group of program sections with the same attributes (such as read-only access,
read/write access, absolute, relocatable, and so on) that is the unit of virtual
memory allocation for an image.

initialization

The sequence of steps that prepare the system to start. Initialization occurs after
a system has been powered up.

intelligent refresh control

Scheduling DRAM ‘‘refresh’’ operations on an opportunistic basis. This process
serves to reduce average memory latency.

interleaving

See memory interleaving.

interlocked instruction

An instruction that performs some action in a way that guarantees the complete
result atomically in a multiprocessing environment. Since other potentially
conflicting operations may be blocked while the interlocked instruction completes,
interlocked instructions can negatively affect performance.

internal processor register (IPR)

A register internal to the CPU chip.

interoperable

Describes a characteristic of a programming function that allows it to work
properly within a heterogeneous computing environment.

LAN (local area network)

A network that supports servers, PCs, printers, minicomputers, and mainframe
computers that are connected over limited distances.

latency

The amount of time it takes the system to respond to an event.

LED

Light-emitting diode. A semiconductor device that glows when supplied with
voltage.

Linpack

A benchmark for computer system performance that measures floating- point
performance. Part of the suite of SPEC benchmarks.

load/store architecture

A characteristic of a machine architecture where data items are first loaded into
a processor register, operated on, and then stored back to memory. No operations
on memory other than load and store are provided by the instruction set.
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local area VMScluster system

Digital’s VMScluster configuration in which cluster communication is carried out
over the Ethernet by software that emulates certain computer interconnect (CI)
port functions.

longword

Four contiguous bytes starting on an arbitrary byte boundary. The bits are
numbered from right to left, 0 through 31.

loopback tests

Diagnostic tests used to isolate a failure by testing segments of a particular
control or data path.

low-level language

Any language that exposes the details of the hardware implementation to the
programmer. Typically this refers to assembly languages that allow direct
hardware manipulation. See also high-level language.

machine check

An operating system action triggered by certain system hardware-detected errors
that can be fatal to system operation. Once triggered, machine check handler
software analyzes the error.

mailbox

A memory data structure used to communicate between different components of
the system.

masked write

A write cycle that only updates a subset of a nominal data block.

mass storage device

An input/output device on which data is stored. Typical mass storage devices
include disks, magnetic tapes, and floppy disks.

memory interleaving

The process of assigning consecutive physical memory addresses across multiple
memory controllers. Improves total memory bandwidth by overlapping system
bus command execution across two or four memory modules.

memory-like

Refers to regions that have predictable behavior. For example, all locations are
read/write; a write to a location followed by a read from that location returns
precisely the bits written. See also non-memory-like.

MFLOPS

Millions of floating-point operations per second. An estimation of the theoretical
peak performance of vector operations. A more useful means of measurement
is to express MFLOPS in an industry-standard benchmark, such as Linpack
MFLOPS.

MIPS

Millions of instructions per second.
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miss

Indicates that a copy of a desired memory location is not in a cache.

mixed-interconnect VMScluster system

Digital’s VMScluster system that uses multiple interconnect types between
systems; for example, CI, Ethernet, DSSI, or FDDI.

MOP

Maintenance Operations Protocol. The transport protocol for network bootstraps
and other network operations.

multiprocessing system

A system that executes multiple tasks simultaneously.

multiplex

To transmit several messages or signals simultaneously on the same circuit or
channel.

NAS

See Network Applications Support.

naturally aligned data

Data stored in memory such that the address of the data is evenly divisible by
the size of the data in bytes. For example, an aligned longword is stored such
that the address of the longword is evenly divisible by 4.

Network Applications Support

A comprehensive set of software supplied by Digital Equipment Corporation that
enables application integration across a distributed multivendor environment.
NAS consists of well-defined programming interfaces, toolkits, and products
that help developers build applications that are well-integrated and more easily
portable across different systems.

node

A device that has an address on, is connected to, and is able to communicate
with other devices on the bus. In a computer network, an individual computer
system connected to the network that can communicate with other systems on
the network.

non-memory-like

Regions that may have arbitrary behavior. For example, there may be
unimplemented locations or bits anywhere; some locations or bits may be
read-only and others write-only, and so on. See also memory-like.

NVRAM

Nonvolatile random-access memory. Memory that retains its information in the
absence of power such as magnetic tape, drum, or core memory.

octaword

Sixteen contiguous bytes starting on an arbitrary byte boundary. The bits are
numbered from right to left, 0 through 127.
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open system

A system that implements sufficient open specifications for interfaces, services,
and supporting formats to enable applications software to:

• Be ported across a wide range of systems with minimal changes

• Interoperate with other applications on local and remote systems

• Interact with users in a style that facilitates user portability

Open Systems Interconnect standards

Communications reference model defined by the ISO (International Organization
for Standards). The OSI reference model consists of seven layers and defines
protocols for the physical transmission of data, as well as the structuring and
organization of data, so that it can be sent and received in a form that can be
understood by conforming implementations. Conformance to the OSI standard
will enable communication among computer systems from different vendors.

OpenVMS AXP operating system

Digital’s open version of the VMS operating system, which runs on Alpha AXP
machines. See also open system.

operand

The data or register upon which an operation is performed.

operating system mode

The state in which the system console terminal is under the control of the
operating system software. Also called program mode.

operator control panel

The panel on the top right side of the DEC 4000 AXP system that contains the
power, Reset, and Halt switches and system status lights.

OSI standards

See Open System Interconnect standards.

page size

A number of bytes, aligned on an address evenly divisible by that number, which
a system’s hardware treats as a unit for virtual address mapping, sharing,
protection, and movement to and from secondary storage.

PAL

Programmable array logic (hardware), a device that can be programmed by a
process that blows individual fuses to create a circuit.

PALcode

Alpha AXP Privileged Architecture Library code, written to support Alpha AXP
processors. PALcode implements architecturally defined behavior.

parity

A method for checking the accuracy of data by calculating the sum of the number
of ones in a piece of binary data. Even parity requires the correct sum to be an
even number, odd parity requires the correct sum to be an odd number.
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pipeline

A CPU design technique whereby multiple instructions are simultaneously
overlapped in execution.

portability

Degree to which a software application can be easily moved from one computing
environment to another.

porting

Adapting a given body of code so that it will provide equivalent functions
in a computing environment that differs from the original implementation
environment.

POSIX

Portable Operating System Interface. An IEEE standard that refers to a set of
standards designed to enhance application portability. POSIX is also commonly
used to refer specifically to the first of a series of such standards to be ratified:
the 1003 standard that defines an operating system interface specification.

power-down

The sequence of steps that stops the flow of electricity to a system or its
components.

power system controller (PSC)

One of four units in the DEC 4000 AXP power supply subsystem. The H7851AA
PSC monitors signals from the rest of the system including temperature,
fan rotation, and DC voltages, as well as provides power-up and power-down
sequencing to the DC-DC converters and communicates with the system CPU
across the serial control bus.

power-up

The sequence of events that starts the flow of electrical current to a system or its
components.

prefetch

Refers to read lookahead activity in which DEC 4000 AXP memory modules fetch
DRAM data prior to an actual read request for that data. See also read stream
buffers.

primary cache

The cache that is the fastest and closest to the processor.

probe

The act of using the current operation address on the DEC 4000 AXP bus or
processor to perform a cache line lookup to determine if the line is valid and/or
must be invalidated, updated, or returned.

processor module

Module that contains the CPU chip.
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program counter

That portion of the CPU that contains the virtual address of the next instruction
to be executed. Most current CPUs implement the program counter (PC) as a
register. This register may be visible to the programmer through the instruction
set.

program mode

See operating system mode.

quadword

Eight contiguous bytes starting on an arbitrary byte boundary. The bits are
numbered from right to left, 0 through 63.

R400X mass storage expander

A Digital enclosure used for mass storage expansion.

RAID

Redundant array of inexpensive disks. A technique that organizes disk data to
improve performance and reliability. RAID has three attributes:

1. It is a set of physical disks viewed by the user as a single logical device.

2. The user’s data is distributed across the physical set of drives in a defined
manner.

3. Redundant disk capacity is added so that the user’s data can be recovered
even if a drive fails.

Contrast with striping.

read data wrapping

Memory feature that reduces apparent memory latency by allowing octawords
within a selected hexword block to be accessed in reverse order.

read-merge

Indicates that an item is read from a responder/bystander, and new data is
then added to the returned read data. This occurs when a masked write cycle
is requested by the processor or when unmasked cycles occur and the CPU is
configured to allocate on full block write misses.

read-modify-write operation

A hardware operation that involves the reading, modifying, and writing of a piece
of data in main memory as a single, uninterruptible operation.

read stream buffers

Arrangement whereby each memory module independently prefetches DRAM
data prior to an actual read request for that data. Reduces average memory
latency while improving total memory bandwidth.

read-write ordering

Refers to the order in which memory on one CPU becomes visible to an execution
agent (a different CPU or device within a tightly coupled system).
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register

A temporary storage or control location in hardware logic.

redundant

Describes duplicate or extra computing components that protect a computing
system from failure.

reliability

The probability a device or system will not fail to perform its intended functions
during a specified time interval when operated under stated conditions.

remote access device

Hardware other than the local console terminal that can access a system’s console
user interface. The remote device is connected to the system through the system’s
auxiliary serial port or Ethernet.

removable-media compartment

Compartment in the enclosure that houses removable media.

responder

A system bus node that accepts or supplies data in response to an address and
command from a system bus commander. Also called a responder node.

reset

A hardware condition where by a switch is pushed causing the processor to start
and initialize.

ring topology

A circular LAN configuration that connects a group of nodes.

RISC

Reduced instruction set computer. A computer with an instruction set that is
reduced in complexity.

scalability

The ability to add computing and storage resources to an existing system
configuration without making software modifications or application conversions,
and without shutting down the system.

scratchpad memory

A small memory for holding instructions and data that can be accessed quickly.
Similar to cache memory. Also called scratch memory.

script

A data structure that points to various tests and exercisers and defines the order
in which they are run.

SCSI

Small Computer System Interface. An ANSI-standard interface for connecting
disks and other peripheral devices to computer systems. See also fast SCSI.
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SDD

See symptom-directed diagnostics.

self-test

A test that is invoked automatically when the system powers up.

serial control bus

A two-conductor serial interconnect that is independent of the system bus. This
bus links the processor modules, the I/O, the memory, the power subsystem, and
the operator control panel. It reports any failed devices to the processor module
so the processor module can illuminate LEDs on the operator control panel.

shadowing

See volume shadowing.

shadow set

In volume shadowing, the set of disks on which the data is duplicated. Access to
a shadow set is achieved by means of a virtual disk unit. After a shadow set is
created, applications and users access the virtual disk unit as if it were a physical
disk. See also volume shadowing.

shared

With reference to a cache block in the cache of a system bus node, the cache block
is valid, and it is valid in at least one other cache of another system bus node.

SMP

See symmetric multiprocessing.

snoop

For a cached node, the act of monitoring system bus transactions to determine
whether the node has a copy of a cache line.

snooping protocol

A cache coherence protocol whereby all nodes on a common system bus monitor
all bus activity. This allows a node to keep its copy of a particular datum
up-to-date and/or supply data to the bus when it has the newest copy.

soft error

Soft errors are errors that are dynamically correctable.

SPEC

System Performance Evaluation Cooperative. A nonprofit organization that
creates and maintains a suite of benchmarks to compare the performance of
computer systems across vendors.

SPECmark

The geometric mean of the normalized results from the benchmarks defined by
SPEC. Measures the performance of a single CPU.See also SPEC.

SPECthruput

A measure of how well a multiprocessing system scales with additional CPUs.
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SROM

Serial read-only memory.

stack

An area of memory set aside for temporary data storage or for procedure and
interrupt service linkages. A stack uses the last-in/first-out concept. As items
are added to (pushed on) the stack, the stack pointer decrements. As items are
retrieved from (popped off) the stack, the stack pointer increments.

star topology

A LAN configuration in which nodes are connected through a central point.

storage array

A group of mass storage devices, frequently configured as one logical disk.

storage assembly

All the components necessary to configure storage devices into a DEC 4000 AXP
storage compartment. These components include the storage device, brackets,
screws, shock absorbers, and cabling.

storage backplane

One of two backplanes in the BA640 enclosure. Fixed and removable media
devices plug into this backplane. See also backplane.

stripe set

A group of physical disks that are used for disk striping. See also striping.

striping

A storage option that increases I/O performance. With disk striping, a single
file is split between multiple physical disks. Read and write disk performance
is increased by sharing input/output operations between multiple spindles,
which allows an I/O rate greater than that of any one disk member of the stripe
set. In striping, the loss of any one member of the stripe set causes loss of the
set. Striping is particularly useful for applications that move large amounts of
disk-based information, for example, graphic imaging. Contrast with RAID.

superpipelined

Describes a pipelined machine that has a larger number of pipe stages and more
complex scheduling and control. See also pipeline.

superscalar

Describes a machine that issues multiple independent instructions per clock
cycle.

symmetric multiprocessing (SMP)

A processing configuration in which multiple processors in a system operate as
equals, dividing and sharing the workload. OpenVMS SMP provides two forms
of multiprocessing: multiple processes can execute simultaneously on different
CPUs, thereby maximizing overall system performance; and single-stream
application programs can be partitioned into multistream jobs, minimizing the
processing time for a particular program. Contrast with distributed processing.
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symptom-directed diagnostics (SDD)

Online analysis of system errors to locate potential system faults. SDD helps
isolate system problems.

synchronization

A method of controlling access to some shared resource so that predictable,
well-defined results are obtained when operating in a multiprocessing
environment.

system backplane

One of two backplanes in the BA640 enclosure. CPU, memory, I/O, Futurebus+,
and power modules plug into this backplane. See also backplane.

system bus

The private interconnect used on the DEC 4000 AXP CPU subsystem. This bus
connects the B2001 processor module, the B2002 memory module, and the B2101
I/O module.

system disk

The device on which operating system software resides.

system fatal error

An error that is fatal to the system operation, because the error occurred in the
context of a system process or the context of an error cannot be determined.

system integration

The assembly of various hardware and software components into a single
operating environment (usually to solve some business need).

TCP/IP

Transmission Control Protocol/Internet Protocol. A set of software
communications protocols widely used in UNIX operating environments.
TCP delivers data over a connection between applications on different computers
on a network; IP controls how packets (units of data) are transferred between
computers on a network.

thickwire

An IEEE standard 802.3-compliant Ethernet network made of standard Ethernet
cable, as opposed to ThinWire Ethernet cable. Also called standard Ethernet.
Contrast with ThinWire.

ThinWire

Digital’s proprietary Ethernet products used for local distribution of data
communications. Contrast with thickwire.

TPS

Transactions per second. Measurement of CPU and I/O performance of a system.
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UETP

User Environment Test Package. An OpenVMS AXP software package designed
to test whether the OpenVMS operating system is installed correctly. UETP puts
the system through a series of tests that simulate a typical user environment, by
making demands on the system that are similar to demands that might occur in
everyday use.

uninterruptible power supply (UPS)

A battery-backup option that maintains AC power if a power failure occurs.

unmasked write

In memory, a write cycle that updates all locations of a nominal data block. That
is, a hexword update to a cache block.

UPS

See uninterruptible power supply.

victim

Used in reference to a cache block in the cache of a system bus node. The cache
block is valid but is about to be replaced due to a cache block resource conflict.

victim processing

The process of replacing the victim in the cache. See also victim.

VMScluster system

A highly integrated organization of Digital’s VMS systems that communicate
over a high-speed communications path. VMScluster configurations have all the
functions of single-node systems, plus the ability to share CPU resources, queues,
and disk storage.

volume shadowing

The process of maintaining multiple copies of the same data on two or more disk
volumes. When data is recorded on more than one disk volume, you have access
to critical data even when one volume is unavailable. Also called disk mirroring.

warm swap

The shutdown and removal and replacement of a failing DSSI disk from an active
bus.

Whetstone

A benchmark for computer system performance that measures floating-point
performance. Part of the suite of SPEC benchmarks.

word

Two contiguous bytes (16 bits) starting on an arbitrary byte boundary. The bits
are numbered from right to left, 0 through 15.

writeable global section

A data structure (for example, FORTRAN global common) or shareable image
section potentially available to all processes in the system.
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write back

A cache management technique in which data from a write operation to cache is
written into main memory only when the data in cache must be overwritten. This
results in temporary inconsistencies between cache and main memory. Contrast
with write through.

write-enabled

A device is write-enabled when data can be written to it. Contrast with
write-protected.

write-protected

A device is write-protected when transfers are prevented from writing information
to it. Contrast with write-enabled.

write through

A cache management technique in which data from a write operation is copied to
both cache and main memory. Cache and main memory data is always consistent.
Contrast with write back.
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Index

A
A32 Futurebus+ address space, 15–1
A64 Futurebus+ address space, 15–2
A-box control register, 4–23
A-box IPRs, 4–19
A-BOX_CTL, 4–23
Access doors, 1–5
AC power connector port, 1–48
ADDER, 18–47
Address decoding

SCSI controller, 16–1
Addresses

D-bus microcontroller, 1–43
I/O port to serial control bus, 1–43
memory module serial bus, 1–43
OCP serial bus, 1–43
PSC 8-bit register, 1–43
vterm 8-bit register, 1–43
256X8 NVRAM, 1–43

Address field, 19–11
for 1-MB cache, 19–11
for 4-MB cache, 19–11

Addressing, 3–1
Lbus, 16–1

Address mapping, 13–1
Address space, 19–1
Algorithms

bootstrap, 23–2
update vs. invalidate, 5–19

alloc command, D–2
Alpha AXP architecture, 3–1
Alternate processor mode register, 4–24
ALT_MODE, 4–24
Arbitration signals, 19–9
ASTER, 4–17
ASTRR, 4–15
Asynchronous system trap enable register, 4–17
Asynchronous trap request register, 4–15
ASYNC_RESET L, 19–17
ASYNC_RESET_L, 21–5
AUTO_ACTION, 24–2
Auxiliary serial line, 16–2
Auxiliary serial port, 16–2
AUX_CTRL, 16–4
AUX_Data register, 16–4

B
BA640 enclosure

description, 1–5
Backplane assembly, 1–10
Backup cache, 5–1

access time, 5–17
behavior on tag control parity error, 9–7
behavior on tag parity errors, 9–7
initialization, 11–1
memory devices, 1–21

Backup cache control register, 5–3
Backup cache correctable error address register,

5–11
Backup cache correctable error register, 5–8
Backup cache tag register, 4–36
Backup cache uncorrectable error address register,

5–15
Backup cache uncorrectable error register, 5–12
BARRIER, 7–1
BARRIER transaction, 7–6
Baud rates, 1–9
Bcache

See Backup cache
BCCEA, 5–11
BCREQ L, 19–10
BC_TAG, 4–36
bin command, D–3
BIP flag, 24–2
BIU, 19–1
BIU_ADDR, 4–32
BIU_CTL, 4–26
BIU_STAT, 4–31
Block count, 23–5
Block diagrams

I/O expansion area, 1–37
I/O module, 1–22
initialization, 21–2
KN430 CPU subsystem, 1–15
KN430 processor module, 1–18
mass storage area, 1–34
operator control panel, 1–7
power supply, 1–39

Boot block calling interface, 23–4
boot command, D–4
Boot devices, 23–5
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Booting
BOOTP, 23–8
disk, 23–6
Ethernet, 23–6
MOP, 23–7
tape, 23–6

Boot message register format, 17–26
Boot parameters, 23–5
BOOTP booting, 23–8
BOOTP bootstrap, 23–10
Boot processor, 23–2
Bootstrap, 23–2

BOOTP, 23–10
cold start flag, 23–2

Bootstrap in progress flag, 23–2
Bus

Futurebus+, 1–36
secondary, 1–33
system, 1–29

Bus interface control unit register, 4–26
Bus interface unit, 19–1
Bus interface unit address register, 4–32
Bus interface unit status register, 4–31
Bus master

serial control bus, 1–43
Byte, 3–1
Byte offset

as address argument, 25–8
Byte stream, 25–7

See device
Byte swapping

using the eval command (example), 25–15

C
C3 revision register, 6–18
Cache block merge buffer, 5–17
Cache block prefetch, lack of, 5–22
Cache invalidate management, 8–1
Cache line buffers, 1–22
Cache line format, 19–3
Cache protocol, 19–3
CAD<127:0>, 19–10
CAD parity coverage, 19–13
CA L, 19–14
Callbacks, 23–3
cat command, D–6
cbcc command, D–7
CC, 4–25
CCITT V.10, 16–2
CCITT V.28, 16–2
CC_CTL, 4–25
CDIRTY L, 19–15
cdp command, D–9
CD register, 16–5
CERR1, 13–11
CERR2, 13–17
CERR3, 13–18

CHALT L, 19–18
check command, D–11
Checksum, 23–5
Chips

85C30, 16–2
accessing internal registers, 16–3

87C652
startup, 21–6

system bus interface, 6–1
chmod command, D–12
chown command, D–13
CID<2:0>, 19–13
CINT_TIM, 19–17
CIRQ L<1:0>, 19–17
clear command, D–14
Clock frequencies

151.51 Mhz, 1–33
Clocking signals, 19–18
Clocks, 1–33

differential clock signals, 1–33
ECL, 1–33
generation, 1–33
interval timer interrupt, 1–31
PECL, 1–21
power/detect, 1–21
system bus, 1–21, 6–22
TOY registers, 1–25

cmp command, D–15
Command address cycle format, 19–6
Command and address format, 19–9
Command CID assignments, 19–13
Commander, 1–29, 19–19
Commands

alloc, D–2
bin, D–3
boot, D–4
cat, D–6
cbcc, D–7
cdp, D–9
check, D–11
chmod, D–12
chown, D–13
clear, D–14
cmp, D–15
continue, D–17
crc, D–18
date, D–19
deposit, D–20
dynamic, D–23
echo, D–25
edit, D–26
eval, D–29
examine, D–31
exer, D–34
exer_read, D–40
exer_write, D–41
exit, D–42
fbus_diag, D–43
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Commands (Cont.)
fbus_sizer, D–45
find_field, D–46
free, D–47
grep, D–48
hd, D–50
help, D–51
initialize, D–53
io_diag, D–54
kill, D–55
kill_diags, D–56
line, D–57
ls, D–58
memexer, D–59
memexer_mp, D–60
memtest, D–61
net, D–64
nettest, D–67
ps, D–70
psc, D–71
rm, D–72
sa, D–73
semaphore, D–74
set, D–75, D–77
sh, D–79
show, D–80, D–83, D–84, D–85, D–87, D–89,

D–90, D–91, D–92
show_status, D–93
sleep, D–94
sort, D–95
sp, D–96
start, D–97
stop, D–98
sw, D–99
test, D–100
tr, D–102
uniq, D–103
update, D–104
used as abbreviations, 25–8
wc, D–106

Conditional branching
in if, while, until loops, 25–15

Connectors
CPU clock, 19–8
memory, 1–29

Console
preparing for BOOTP boot, 23–8
services, 1–46

Console command option -n
specifying repeat count, 25–9

Console commands
contrasted with VAX, 25–4
frequently used (table), 25–4
summarized, 25–18

Console diagnostics
structure of, 1–45

Console EEPROM, 1–46
Console serial line, 16–2

Console serial ports, 16–2
Console shell operators (table), 25–16
Console tasks

examining and depositing stuff, 25–7
examining registers, 25–9

continue command, D–17
Continuous system bus transactions, 1–30
Control store, 5–1
CON_CTRL, 16–5
CPU 2ID L, 19–18
CPU clock connector

initialization signal, 19–17
CPUG L, 19–10
CPU LEDs

and CRESET L, 21–4
CPU module

subsystems, 2–2
transactions, 7–1

CPUREQ L, 19–10
CPU specific buffer, 5–17
CPU system bus register definitions, 6–1
crc command, D–18
Creating scripts

using the output creation operator (>), 25–13
CRESET L, 6–21, 19–18

and the system bus clock, 6–22
CRESET_L, 21–5
CSHARED L, 19–15
CSR0, 5–3
CSR1, 5–8
CSR10, 6–13
CSR11, 6–14
CSR2, 5–11
CSR3, 5–12
CSR4, 5–15
CSR5, 5–20
CSR6, 6–1
CSR7, 6–4
CSR8, 6–10
CSR9, 6–11
CSR map, 17–1
CSR read time, 1–33
CSTALL0 L and CSTALL1 L, 19–14
CSYS_EVENT L, 19–17
CTEST0, 18–24
CTEST1, 18–25
CTEST2, 18–26
CTEST3, 18–27
CTEST4, 18–28
CTEST5, 18–29
CTEST6, 18–31
CTEST7, 18–32
CTEST8, 18–37
CUCERR L, 19–17
CXACK L, 19–14
Cycle counter control register, 4–25
Cycle counter register, 4–25
C_ERR, 14–2
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C_ERR L, 19–16

D
Data cache status register, 4–29
Data integrity, 5–22
Data store, 5–2
Data translation buffer ASM register, 4–22
Data translation buffer invalidate signal register,

4–22
Data translation buffer page table entry register,

4–19
Data translation buffer page table entry temporary

register, 4–20
Data translation buffer zap register, 4–22
Data types, 3–1
Data width options, 25–8
Data wrap, 1–30
Data write, 1–43
date command, D–19
DBC, 18–39
D-bus, 6–19
DC3, 1–42
DC5, 1–42
DCMD, 18–39
DCNTL, 18–45
DC on/off switch, 1–8
DC_STAT, 4–29
DECchip 21064 microprocessor

A-box, 4–19
cycle types, 7–1
features, 4–1
startup, 21–6
supported data types, 4–1
transactions

allocate-invalid, 7–8
BARRIER, 7–6
cacheable, 7–7
fast external cache read hit, 7–2
fast external cache write hit, 7–3
FETCH, 7–7
FETCHM, 7–7
LDxL, 7–6
non-cacheable, 7–7
READ_BLOCK, 7–4
STxC, 7–6
WRITE_BLOCK, 7–5

DECchip TM

startup code, 1–45
deposit command, D–20

accessing physical memory (example), 25–8
Descriptor lists, 17–28
Descriptors and buffers format, 17–28
Device, 25–7
Devices

platform-specific (list), 25–8
DFIFO, 18–33
DIAGCSR, 13–20

Diagnostic mode address registers, 13–5
Diagnostic mode data registers, 13–4
Diagnostics

structure of, 1–45
DIEN, 18–43
Disk power source voltages, 1–34
DMA watchdog timer register, 18–44
DMODE, 18–42
DNA CSMA/CD counters and events support,

17–51
DNAD, 18–40
Documentation conventions, xxxii
Driver initialization, 21–15
Drivers

as access mechanisms, 25–7
for Alpha AXP devices (list), 25–7

DSA, 18–23
DSP, 18–40
DSPS, 18–41
DSTAT, 18–17
DTBASM, 4–22
DTBIS, 4–22
DTBZAP, 4–22
DTB_PTE, 4–19
DTB_PTE_TEMP, 4–20
Duplicate primary data cache tag store, 5–18
Duplicate tag error register, 5–20
Duplicate tag store initialization, 11–3
DWT, 18–45
DWT register, 18–44
dynamic command, D–23
D_floating, 3–5

E
ECHADR<15:0>, 19–11
echo command, D–25
ECL clock, 1–33
EDC

See Error Dectection and Correction
edit command, D–26
EEPROM, 16–2

console, 1–46
for serial control bus, 1–47
write cycle time, 1–43

EIA 423, 16–2
Environment variables, 23–2
Error detection and correction, 4–37
Error logging EEPROM, 6–23
Errors

backup cache tag control parity, 9–7
bcache data single bit EDC, 9–7
bcache data uncorrectable EDC, 9–7
bcache single bit EDC, 9–15
bcache tag or tag control parity, 9–8
bcache tag parity, 9–15
current CPU BCTC parity error processor

detected, 9–7
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Errors (Cont.)
DECchip 21064 microprocesor

data bus uncorrectable EDC, 9–8
DECchip 21064 microprocessor

data bus single bit EDC, 9–8
EDC, 4–29
EDC uncorrectable, 9–9
hardware 0, 9–15
hardware interrupt, 14–2
invalidate system bus address, 9–9
miscellaneous CPU, 9–9
parity, 4–29
system bus parity, 9–9, 9–16
tag control store, 9–8
tag store, 9–8
TGEC heartbeat collision, 17–34
uncorrectable EDC, 9–15

Ethernet
booting, 23–6
interface selection, 17–1

Ethernet adapter, 17–1
Ethernet controllers, 1–24
Ethernet ports, 1–48
Ethernet station address ROM, 1–46, 18–48
eval command, D–29
examine command, D–31

accessing pmem device (example), 25–8
referencing registers, 25–9
used as abbreviation (example), 25–8
with address implied, 25–8
with explicit address, 25–8

Exception address register, 4–8
Exception handling, 9–2
Exceptions, 9–1

causes, 9–1
machine checks, 9–2
multiple, 9–1
PALcode 0020 entry characteristics, 9–3
PAL priority level, 9–3
PAL routine behavior, 9–7
parse tree PALcode entry 0020, 9–3

Exception summary register, 4–11
EXC_ADDR, 4–8
EXC_SUM, 4–11
exer command, D–34
exer_read command, D–40
exer_write command, D–41
exit command, D–42

F
F0-F31, 3–12
F31, 3–12
Fan startup, 21–4
Fast External Cache Write Hit, 7–3
Fault management, 10–1
fbus_diag command, D–43
fbus_sizer, D–45

FEPROM, 1–24, 18–48
code structure, 1–45
defined, 1–45

FEPROMS, 1–45
FEPROM unloading, 21–10
FERR1, 13–22
FERR2, 13–23
FETCH, 5–22
FETCH cycle, 7–1
FETCHM, 5–22
FETCHM cycle, 7–1
FETCHM transaction, 7–7
FETCH transaction, 7–7
FEU, 1–41
FHVECT, 13–22
FIFO queue, 14–1
Fill address register, 4–33
Fill syndrome register, 4–34
FILL_ADDR, 4–33
FILL_SYNDROME, 4–34
Filtering output

using pipes and grep, 25–10
find_field command, D–46
Firmware

console emulation and diagnostics, 1–45
defined, 1–43
overview, 1–43
upgrade time, 1–45

FIVECT, 13–21
Flags, 23–5

BIP, 24–2
bootstrap in progress, 23–2
cold start, 23–2
inverse filtering, 17–40

Flash-erase PROM, 18–48
Flash PROM

See FEPROM
Floating-point registers, 3–12
Flow control

syntax for constructs, 25–14
Flush instruction cache ASM register, 4–22
Flush instruction cache register, 4–22
FLUSH_IC, 4–22
FLUSH_IC_ASM, 4–22
FMBPR, 13–19
free command, D–47
Futurebus+

routing, 1–13
Futurebus+ adapters, 15–1
Futurebus+ address space, 15–1, 15–2
Futurebus+ interrupts, 14–1
Futurebus+ mailbox command field, 13–31
Futurebus+ mailbox status field, 13–33
Futurebus+ slots, 1–36
F_floating, 3–3
F_floating load exponent mapping, 3–3
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G
grep command, 25–10, D–48

See also pipe( | ) command
G_floating, 3–4

H
H7178, 1–42
H7179, 1–42
H7851, 1–41
H7853, 1–41
Halt switch, 1–9

and system interrupts, 14–3
Hard errors

defined, 1–31
Hardware error interrupts, 14–2
Hardware interrupt enable register, 4–16
Hardware interrupt request register, 4–13
Hardware invalidates, 5–22
Hardware restart parameter block, 23–3
hd command, D–50
Heartbeat collision check, 17–34
help command, D–51
hex dump (example), 25–9
hex dump command

dumping memory, 25–9
Hexword read transactions

non-cacheable, 1–29
Hexword write transactions

non-cacheable, 1–29
HIER, 4–16
HIRR, 4–13
HWRPB, 23–3
HWRPB$Q_RESTART, 24–2

I
I/O

for removable media, 1–2
I/O expansion slots, 1–36
I/O module

diagnostic address register map, 13–5
functional diagram, 1–22
Futurebus+ diagnostic register map, 13–3
hardware error interrupt conditions, 14–2
lbus diagnostic register map, 13–3
register map, 13–2

I/O redirection
to other devices, 25–11

I-box internal processor registers, 4–2
ICCSR, 4–4
ID, 18–8

for environment variables, 23–2
Idle bus, 19–13
Idle cycles, 1–30
Imperfect filtering, 17–42

Initialization, 21–6
and reset, 11–3
and the backup cache, 11–1
and the CPU clocks, 11–3
of the duplicate tag store, 11–3
of the system bus interface, 11–3

Initialization flow diagram, 21–7, 21–9, 21–11
initialization signal, 19–17
initialize, D–53
Instruction cache control and status register, 4–4
Instruction formats, 3–12
Instruction translation buffer ASM, 4–10
Instruction translation buffer IS register, 4–10
Instruction translation buffer page table entry

register, 4–3
Instruction translation buffer page table entry

temporary register, 4–7
Instruction translation buffer zap register, 4–10
Interleave, 1–30
Internal processor register format, 4–8
Internal processor registers

and initialization, 11–1
Interprocessor interrupt request register, 6–14
Interrupt encoding, 14–1
Interrupt handling, 9–10
Interrupts, 1–31, 9–1, 14–1

and the interrupt vector register, 14–2
CIRQ_L[0], 14–2
entry into PALcode, 9–10
Futurebus+, 14–1
hardware error, 14–2
local I/O, 14–2
non-processor generated, 9–9
processor generated, 9–1
TGEC, 17–45

Interrupts and exceptions
backup cache tag parity error, 9–7

Invalidates
system bus caused, 8–1

Inverse_filtering flag, 17–40
IOCSR, 13–6
IOG L, 19–10
IOREQ L, 19–10
io_diag, D–54
ISTAT, 18–34, 18–35
ITBASM, 4–10
ITBIS, 4–10
ITBZAP, 4–10
ITB_PTE, 4–3
ITB_PTE_TEMP, 4–7

K
KFA40 I/O module, 1–22
kill command, D–55
kill_diags command, D–56
KN430 CPU subsystem, 1–14
KN430 processor, 2–2
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L
Lbus addressing, 16–1
Lbus mailbox command field, 13–35
Lbus mailbox status field, 13–36
LCRC, 18–38
LDxL cycle, 7–2
LDxL transaction, 7–6
LERR1, 13–26
LERR2, 13–27
line command, D–57
LINT, 13–24
Listing contents of a script

using cat command, 25–12
LMBPR, 13–18
Local I/O bus

routing, 1–13
Local I/O devices, 16–1
Local I/O interrupts, 14–2
Lock registers, 3–12
Longword, 3–2
Longword integer format in FPU, 3–9
Loopback

and the TGEC, 17–50
ls command, D–58

M
Machine checks, 9–2
Mailbox, 13–28

defined, 1–33
format, 13–29
mapping, 16–2

Mailbox pointer register, 13–29
Mass storage

front panel, 1–36
Mass storage area, 1–34
memexer command, D–59
memexer_mp command, D–60
Memory

bad on power-up, 11–3
configuring, 26–9

Memory exchange transactions, 19–26
Memory-like locations

defined, 7–7
Memory management control and status register,

4–21
Memory move

and SFBR, 18–15
Memory prefetch register, 3–12
Memory slot ID code, 19–19
Memory testing, 21–13
Memory write transactions, 19–28
memtest command, D–61
Microcontroller

startup firmware, 1–45
MID<1:0>, 19–19

Miss address register, 6–17
MM_CSR, 4–21
Module order, 1–17
Modules

front end unit, 1–41
KFA40, 1–22
KN430 processor, 1–17, 1–19
memory, 1–26
power system controller, 1–41
storage backplane, 1–11
system backplane, 1–13
5 volt converter, 1–42
3 volt converter, 1–42

Monarch processor, 15–1
Monitoring status

using ps command (example), 25–12
using show-status command (example), 25–12

MOP
must transact operaton, 23–7

Mop booting, 23–7
Multiple exceptions, 9–1
Multiprocessor configuration CSR definitions,

6–13

N
net command, D–64
nettest command, D–67
Network listening, 23–7
Noncacheable address sapce write transaction,

19–30
Non-memory like locations

defined, 7–7
Non-stalled transaction times, 19–2
Nonvolatile EEPROM, 6–23
Null, 19–24
Numbering Conventions, xxxii
NUT, 19–24

O
OCP

See Operator control panel
OCP halt request buffer, 6–23
On-line help

available topics, 25–6
brief, 25–5
| more, 25–7
multiple topics, 25–6
screen display, 25–5
wildcarding (example), 25–7

Operating system restart, 24–2
Operator control panel, 1–6
Ownership flag, 1–31
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P
PALcode entry characteristics, 9–10
PAL priority level, 9–10
PAL_BASE, 4–13
PAL_TEMPs, 4–28
Parse trees

PALcode entry, 9–11
PC, 3–11
PCD8584, 18–48
PECL, 1–21
Perfect filtering, 17–40
PHI1 and PHI1 L, 19–18
PHI3 and PHI3 L, 19–18
Physical address space, 1–32, 1–33
Physical cache, 8–1
Pipe ( | ) command, 25–10

See also grep command
pmem:

physical memory, 25–8
Ports

AC power, 1–48
Ethernet, 1–48
SCSI storage expansion, 1–48
serial line, 1–47

Power-down mode, 18–25
Power supply

and system event, 14–3
indicators, 1–38

Power-up
with bad main memory, 11–3

Power-up baud rate switch, 1–9
Power-up sequence, 11–3
Primary processor functions, 1–18
Privileged architecture library base register, 4–13
Processor caused invalidates, 8–1
Processor initiated transactions, 7–2
Processor mailbox register, 6–13
Processor module

configurations, 1–14
differences, 1–14

Processor registers
symbolic reference, 25–10

Processor status register, 4–11
Process registers

pc, sp, ps (example), 25–10
Protocol signals, 19–10
PS, 3–11, 4–11
PSC, 1–41

startup firmware, 1–44
psc command, D–71
ps command, D–70

Q
Quadword, 3–2
Quadword integer format in FPU, 3–9

R
R30, 3–11
R31, 3–11
RAM

for SCSI controllers, 1–46
RDES0 word, 17–29
RDES1 word, 17–31
RDES2 word, 17–32
RDES3 word, 17–32
Read

to secondary bus, 13–36
Read and write transactions, 19–20
READ_BLOCK, 7–1, 7–4
Reboot

limitations on a secondary processor, 24–2
Receive descriptors, 17–28
Receive descriptor status validity, 17–33
Redirecting output, 25–11

using append operator (>>), 25–14
using redirection operator (>), 25–11

Redirecting output (example), 25–11
Registers

A-box control, 4–23
adder sum output, 18–47
Alpha IPRs, 3–12
Alpha optional, 3–12
alternate processor mode, 4–24
asynchronous system trap enable, 4–17
asynchronous trap request, 4–15
AUX_CTRL, 16–4
AUX_Data, 16–4
backup cache control, 5–3
backup cache correctable error, 5–8
backup cache correctable error address, 5–11
backup cache tag, 4–36
backup cache uncorrectable error, 5–12
backup cache uncorrectable error address, 5–15
bus interface control unit, 4–26
bus interface unit address, 4–32
bus interface unit status, 4–31
C3 revision, 6–18
chip test eight, 18–37
chip test five, 18–29
chip test four, 18–28
chip test one, 18–25
chip test seven, 18–32
chip test six, 18–31
chip test three, 18–27
chip test two, 18–26
chip test zero, 18–24
console control, 16–5
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Registers (Cont.)
console data, 16–5
cycle counter, 4–25
cycle counter control, 4–25
data cache status, 4–29
data structure address, 18–23
data translation buffer ASM, 4–22
data translation buffer invalidate signal, 4–22
data translation buffer page table entry, 4–19
data translation buffer page table entry

temporary, 4–20
data translation buffer zap, 4–22
descriptor list addresses register, 17–9
diagnostic control and status, 13–20
DMA byte counter, 18–39
DMA command, 18–39
DMA control, 18–45
DMA FIFO, 18–33
DMA interrupt enable, 18–43
DMA mode, 18–42
DMA next data address, 18–40
DMA scripts pointer save, 18–41
DMA status, 18–17
DMA watchdog timer, 18–45
DMS scripts pointer, 18–40
duplicate tag error, 5–20
exception address, 4–8
exception summary, 4–11
explicit reference, 25–9
fill address, 4–33
fill syndrome, 4–34
floating-point, 3–12
flush instruction cache, 4–22
flush instruction cache ASM, 4–22
Futurebus+ error 1, 13–22
Futurebus+ error 2, 13–23
Futurebus+ halt vector, 13–22, 14–4
Futurebus+ interrupt vector, 13–21
Futurebus+ mailbox pointer, 13–19
GTEC command and mode, 17–17
hardware interrupt enable, 4–16
hardware interrupt request, 4–13
I/O control and status, 13–6, 14–4
I/O diagnostic mode address, 13–5
implicit reference, 25–9
instruction cache control and status, 4–4
instruction translation buffer ASM, 4–10
instruction translation buffer page table entry,

4–3
instruction translation buffer page table entry

temporary, 4–7
instruction translation buffer zap, 4–10
integer, 3–11
interprocessor interrupt, 1–31
interprocessor interrupt request, 6–14
interprocessor mailbox, 1–31
interrupt status, 18–34, 18–35
intr-flag, 3–12

Registers (Cont.)
intruction translation buffer IS, 4–10
Lbus error 1, 13–26
lbus error 2, 13–27
Lbus mailbox pointer, 13–18
local interrupt, 13–24, 14–2
lock, 3–12
longitudinal parity, 18–38
mailbox pointer, 13–29
memory management control and status, 4–21
memory prefetch, 3–12
miss address, 6–17
multiprocessor configuration CSR, 6–13
noncacheable address space silo, 1–31
privileged architecture library base, 4–13
processor mailbox, 6–13
processor status, 3–11, 4–11
program counter, 3–11
readable noncacheable address space device

request, 1–31
receive polling register, 17–8
scratch register, 18–41
SCSI bus control lines, 18–16
SCSI bus data lines, 18–16
SCSI chip ID, 18–9
SCSI control, 18–4
SCSI control 1, 18–7
SCSI Destination ID 02 (01), 18–8
SCSI first byte received, 18–15
SCSI input data latch, 18–15
SCSI interrupt enable, 18–9
SCSI output control latch, 18–13
SCSI output data latch, 18–13
SCSI status 0, 18–19
SCSI status 1, 18–21
SCSI status 2, 18–22
SCSI transfer, 18–10
serial line clear, 4–9
serial line receive, 4–10
serial line transmit, 4–18
silo, 1–31
software interrupt enable, 4–17
software interrupt request, 4–15
symbolic reference, 25–9
system bus, 6–1
system bus control, 6–1
system bus error, 6–4
system bus error 1, 13–11
system bus error 2, 13–17
system bus error 3, 13–18
system bus error address high, 6–11
system bus error address low, 6–10
system interrupt clear, 6–14
temporary stack, 18–33
TGEC boot message, 17–26
TGEC command and status, 17–3
TGEC diagnostic, 17–28
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Registers (Cont.)
TGEC identification and missed frame count,

17–25
TGEC reserved, 17–23
TGEC status, 17–12
TGEC system base, 17–22
TGEC vector address, 17–5
TGEC watchdog timer, 17–23
TOY, 1–25, 1–46
TOY A (TOYA), 16–7
TOY B (TOYB), 16–9
TOY C (TOYC), 16–11
TOY clock, 16–6
TOY D (TOYD), 16–12
translation buffer control, 4–19
Transmit polling demand, 17–7
VAX compatibility registers, 3–12
virtual address, 4–22

Relative addresses
symbolic reference (example), 25–9

Remote boot
and system event, 14–3

Removable-media storage, 1–2
Removable-media storage I/O, 1–2
REQ_PROGRAM, 23–7
Reset, 21–5

and the OCP, 21–5
of the TGEC, 17–44

Reset switch, 1–8
Responder, 19–19
Response and interrupt signals, 19–14
Restart, 24–2
Restart and boot code, 1–46
Restart failure, 24–2
Restart parameters, 24–3
rm command, D–72
ROM

Ethernet station address, 1–46, 18–48
Round-robin, 1–30
RS-232, 16–2
Running tasks

in background mode "&", 25–11
in background mode "&" (example), 25–11

S
sa command, D–73
SBCL, 18–16
SBDL, 18–16
SCID, 18–9
SCL signal, 19–19
SCNTL0, 18–4
SCNTL1, 18–7
SCRATCH, 18–41
Script RAM Buffer, 18–47
SCSI controller

revision level, 18–37
SCSI controller address decoding, 16–1

SCSI controllers static RAM, 1–46
SCSI driver

sizing, 26–23
startup, 26–23

SCSI/DSSI Adapters, 18–1
SCSI/DSSI initialization, 21–15
SCSI storage expansion ports, 1–48
SDA signal, 19–19
SDID, 18–8
Secondary buses, 1–33
Secondary bus read, 13–36
Secondary bus write, 13–37
Secondary I/O space, 13–28
semaphore command, D–74
Serial bus bus

interface register map, 18–48
Serial control bus

EEPROM, 1–47
interface, 1–21, 18–48
node addresses, 1–43
routing, 1–13

Serial control bus signals, 19–19
Serial line

units, 1–25
Serial line clear register, 4–9
Serial line receive register, 4–10
Serial lines

differences, 1–47
features, 1–47
ports, 1–47

Serial line transmit register, 4–18
Serial line unit register map, 16–2
Serial line units, 16–2
set command, D–75, D–77
SFBR, 18–15
sh, D–79
show command, D–80, D–83, D–84, D–85, D–87,

D–89, D–90, D–91, D–92
show_status command, D–93
SIDL, 18–15
SIEN, 18–9
SIER, 4–17

and corresponding SIRR bits, 4–15
SIRR, 4–15
sleep command, D–94
SL_CLR, 4–9
SL_RCV, 4–10
SL_XMIT, 4–18
Snooping protocol, 1–29, 19–4
SOCL, 18–13
SODL, 18–13
Soft errors

defined, 1–31
Software interrupt enable register, 4–17
Software interrupt request register, 4–15
sort command, D–95
sp command, D–96
SSTAT0, 18–19
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SSTAT1, 18–21
SSTAT2, 18–22
Stall signals, 19–21
start command, D–97
Start LBN, 23–5
Startup

87C652, 21–6
Status LEDs, 1–10
stop command, D–98
Stopping a process

using the kill command (example), 25–13
Storage backplane, 1–11
STQC cycle, 7–2
STxC cycle, 7–2
STxC transaction, 7–6
sw command, D–99
Switches

DC on/off, 1–8
halt, 1–9
power-up baud rate, 1–9
reset, 1–8

SXFER, 18–10
System backplane, 1–13
System bus, 1–29, 19–1

arbiter, 6–22, 19–2
arbitration, 1–30
clock, 1–21
CRESET L generation, 6–22
cycles, 5–17
cycle time, 19–6
idle cycles, 1–30
interface, 1–21
interface chip, 6–1

initialization, 11–3
routing, 1–13
signals, 19–6, 19–7
supported transactions, 1–29
test, 26–14
transactions, 19–1, 19–2

System bus address map, 13–1
System bus control register, 6–1
System bus error address high register, 6–11
System bus error address low register, 6–10
System bus error register, 6–4
System bus stall, 13–28
System bus transactions, 7–1, 7–9

CPU as bystander, 7–10
CPU as commander, 7–10
CPU as responder, 7–10
null, 1–30
reasons for monitoring, 7–1

System event
causes, 1–31

System event interrupts, 14–3
System features, 1–1
System features summary, 1–3
System I/O, 1–2
System I/O space, 13–2

System initialization, 21–6
System interrupt clear register, 6–14
System memory space, 13–1
S_floating, 3–6

T
Tag store, 5–2
Tape booting, 23–6
TB_CTL, 4–19
TB_TAG, 4–2
TDES0 word, 17–34
TDES1 word, 17–35
TDES2 word, 17–37
TDES3 word, 17–37
TEMP, 18–33
test command, D–100
TGEC, 17–1

See Ethernet controllers
virtual to physical address translation, 17–28

TGEC command and status registers, 17–3
TGEC CSR0, 17–5
TGEC CSR1, 17–7
TGEC CSR10, 17–25
TGEC CSR11, 17–26
TGEC CSR12, 17–26
TGEC CSR13, 17–26
TGEC CSR14, 17–28
TGEC CSR15, 17–28
TGEC CSR2, 17–8
TGEC CSR3, 17–9
TGEC CSR4, 17–9
TGEC CSR5, 17–12
TGEC CSR5 and interrupts, 17–45
TGEC CSR5 status report, 17–15
TGEC CSR6, 17–17
TGEC CSR7, 17–22
TGEC CSR8, 17–23
TGEC CSR9, 17–23
TGEC CSR read, 17–4
TGEC CSR write, 17–4
TGEC loopback, 17–50
TGEC physical CSRs, 17–4
TGEC programming, 17–2
TGEC reception process, 17–46
TGEC register map, 17–1
TGEC reset, 17–44
TGEC setup frame, 17–38
TGEC startup procedure, 17–46
TGEC states, 17–2
TGEC transmission process, 17–48
TGEC transmit descriptors, 17–33
TGEC virtual CSRs, 17–4
Time domains, 1–33
Time-of-year clock, 16–6
TOYA, 16–7
TOYB, 16–9
TOYC, 16–11
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TOY clock, 16–6
TOYD, 16–12
TOY registers, 1–46
TRANS<2:0>, 19–12
Transaction counter, 1–30
Transactions

CPU module, 7–1
memory exchange, 19–26
memory write, 19–28
noncacheable address space write, 19–30
null, 19–24
processor initiated, 7–2
read and read exclusive, 19–20

Transaction timing, 19–19
Translation buffer control register, 4–19
Transmit descriptor status validity, 17–37
tr command, D–102
two-conductor interconnect, 1–43
T_floating, 3–7

U
uniq command, D–103
update, D–104
Using pipes ( | ) and grep

to filter output, 25–10
Using quotes

to write longer scripts, 25–14

V
VA, 4–22
VAX compatibility registers, 3–12
Virtual address register, 4–22
Virtual cache, 8–1
Voltages, 1–42

+24 and -24 VDC, 1–41
disk power source, 1–34

W
wc command, D–106
Word, 3–1
Word tearing, 5–17
Write

to non-cacheable addresses, 7–7
to secondary bus, 13–37

WRITE_BLOCK cycle, 7–1
WRITE_BLOCK transaction, 7–5

Index–12


