Personal Computer

 Service ManualPC-8201

NEC NEC Corporation

All rights reserved. No part of this publication may be reproduced in whole or in part without the prior written permission of NEC Corporation.

CONTENTS

CHAPTER 1 INTRODUCTION
1.1 Specifications 1-1
1.2 Switches and Contrast VR 1-3
CHAPTER 2 EXTERNAL VIEW
CHAPTER 3 FUNCTIONAL SPECIFICATIONS
3.1 Logical Specifications 3-1
3.1.1 CPU 3-1
3.1.2 ROM 3-1
3.1.3 RAM 3-1
3.1.4 LCD Interface 3-3
3.1.5 Printer Interface 3-7
3.1.6 Calendar Clock Interface 3-8
3.1.7 Keyboard Interface 3-9
3.1.8 Serial Interface 3-10
3.1.9 Cassette Interface 3-13
3.1.10 Bar Code Reader Interface 3-13
3.1.11 Interrupt Functions 3-14
3.1.12 I/O Address 3-15
3.2 Physical Specifications 3-21
3.2.1 Signal Lines 3-21
3.2.2 Power Supply 3-29
3.2.3 Structure and Size 3-30
3.3 Interface to Other Hardware 3-30
3.4 Software Interface 3-30
3.5 Human Interface 3-30
3.6 Performance Specification for the PC-8201 3-33
3.7 Accessories 3-33
CHAPTER 4 DISASSEMBLY/REASSEMBLY
4.1 Disassembly 4-1
4.1.1 PC-8201 Cover 4-1
4.1.2 LCD Board 4-2
4.1.3 Keyboard 4-2
4.1.4 Power Supply Board 4-2
4.1.5 Main Board 4-3
4.2 Reassembly 4-3
4.2.1 LCD Board 4-3
4.2.2 Keyboard 4-4
4.2.3 Keyboard Switch 4-4
4.2.4 Power Supply Board 4-5
4.2.5 Main Board 4-5
4.2.6 ROM 4-5
4.3 Installation 4-6
4.3.1 Inserting Cartridge (RAM, ROM) 4-6
4.3.2 Battery Installation 4-7
CHAPTER 5 OPERATION TEST
5.1 Operations Test Flow Chart 5-1
5.2 CPU Peripheral Circuit 5-2
5.2.1 PC-8201 Power Supply Operation Test 5-2
5.2.2 Reset Operation Test 5-2
5.2.3 CPU (80C85) Operation Test 5-3
5.2.4 CPU Clock Operation Test 5-5
5.2.5 Calendar Clock Operation Test 5-5
5.3 I/O Peripheral Circuit 5-6
5.3.1 LCD Operation Test 5-6
5.3.2 SIO2 Port Operation Test 5-8
5.3.3 BCR Interface Operation Test 5-13
5.3.4 RS-232C Interface Operation Test 5-15
5.3.5 SIO1 Interface Operation Test 5-17
5.3.6 Printer Interface Operation Test 5-19
5.3.7 Audio Cassette Interface Operation Test 5-21
5.3.8 I/O Port Operation Test 5-27
5.3.9 Speaker Operation Test 5-31
5.3.10 Keyboard Operation Test 5-31
CHAPTER 6 TROUBLESHOOTING
6.1 Troubleshooting Flowchart 6-2
6.2 CPU Peripheral Circuit 6-7
6.2.1 PC-8201 Abnormal Power Supply 6-7
6.2.2 PC-8201 Abnormal Reset 6-8
6.2.3 PC-8201 Abnormal CPU (80C85) 6-8
6.2.4 Abnormal CPU Clock 6-8
6.2.5 Abnormal Calendar Clock 6-9
6.3 I/O Peripheral Circuit 6-9
6.3.1 Abnormal LCD Display 6-9
6.3.2 Abnormal SIO2 Port 6-9
6.3.3 Abnormal BCR Interface 6-9
6.3.4 Abnormal RS-232C Interface $.6-10$
6.3.5 Abnormal SIO1 Interface $.6-10$
6.3.6 Abnormal Printer Interface $.6-10$
6.3.7 Abnormal Audio Cassette Interface $.6-10$
6.3.8 Abnormal I/O Port 6-11
6.3.9 Abnormal Speaker 6-12
6.3.10 Abnormal Keyboard $6-12$
APPENDIX A OPERATIONAL MISTAKES
APPENDIX B IC REMOVAL
B-1 Necessary Equipment $A P X-B-1$
B-2 ICs on Printed Circuit Board APX-B-1
B-3 ICs with Sockets $\mathrm{APX}-\mathrm{B}-2$
B-4 Drawings of Insertion and Removal of IC $A P X-B-2^{2}$
APPENDIX C PARTS LIST
APPENDIX D CIRCUIT DIAGRAM
APPENDIX E LSI DATA SHEET

CHAPTER 1 INTRODUCTION

1.1 Specifications

(1) Main Components
a) Keyboard

67 keys
Function keys: 5
Cursor lead keys: 4
Others: 58
b) LCD

Effective display area:
$191.2(\mathrm{~W}) \times 50.4(\mathrm{H}) \mathrm{mm}$ 240×64 full dot matrix $0.73 \times 0.73 \mathrm{~mm}$ 0.8 mm

40 (characters) $\times 8$ (rows)
By escape sequence
c) Operation Batteries Batteries:

Operation time:

Battery cassette:
Power OFF:

Low voltage display:
d) Memory Protection Battery (On main P.C.B)

Battery:
Protection time:
Recharge method: Trickle charge by AC adapter or operation batteries
e) LSIs

CPU:
ROM:
RAM:

CLOCK:

f) Dimensions:
(2) $1 / O$ interface
a) RS-232C

Word length:
Parity:
Stop bit length:
Baud rate:
b) SIO 2

Distance of transfer:
Word length:
Baud rate:
Parity:
Stop bit:
c) SIOl

Distance of transfer:
Word length:
Baud rate:
Parity:
Stop bit:
d) CMT

Distance of transfer:
Baud rate:
File format:
Output level:
e) Printer:

80C85
Code and pin compatible with 8085
Standard 32 K bytes
Option 32 K bytes (connect a IC socket)
Standard 16 K bytes
Option 16 K bytes (connect a IC socket)
Option 32 K bytes (connect a IC socket)
Option 32 K bytes (connect a RAM cartridge)
2.4 MHz

Front;
$300(\mathrm{~W}) \times 215(\mathrm{D}) \times 35(\mathrm{H}) \mathrm{mm}$
Back:
$300(\mathrm{~W}) \times 215(\mathrm{D}) \times 61(\mathrm{H}) \mathrm{mm}$
6.7 or 8 bits

Non, EVEN or ODD
1 or 2 bit
$75,110,300,600,1200,2400,4800,9600$. 19200 BPS

3 mMin .
8 bit
19200
Non
1 or 2 bit

3 mMin .
8 bits
19200
Non
1 or 2 bit
1.5 mMin .

1200 or 600 (switchable by software control) Compatible with N-BASIC (binary file only) MIC level

Conforms to Centronics Standards.
f) $B C R$
g) System slot:
(3) Special functions:

For connecting a RAM cartrtdge.
Automatic power OFF
When there is no program operation (awaiting command) for ten minutes, the power is automatically switched off.

1.2 Switches and Contrast VR

(1) POWER Switch

Move this switch towards the rear to turn the power ON. To conserve the batteries, the PC-8201 automatically turns the power off if you do not use it for 10 minutes.
When an automatic power-off occurs, the switch will still be in the ON position even though the power is OFF.
To turn the power ON, move the switch to the OFF position, then back ON.
(2) BACK UP POWER Switch

This switch is for preventing discharge of the $\mathrm{Ni}-\mathrm{Cd}$ battery for RAM back-up.
The PC-8201A will not operate regardless of the setting of the power switch unless this switch is ON. Set this switch to OFF position if the PC-8201 is not to be used for a long time.
Note that the RAM will not be backed up when this switch is set to the OFF position.
(3) RESET Switch

If the PC-8201 "locks-up" (the display will "freeze" and all keys seem to be inoperative), press this button to return to the Main Menu (start-up) screen. It's highly unlikely that the PC-8201 will lock-up when you are using the built-in Application Programs.
However, this situation may occur with customized programs.
(4) PROTECT Switch

This switch is for protecting the contents of 2nd RAM. (BANK \#2)
(5) DISPLAY ADJUSTMENT DIAL

This control is for adjusting the contrast of the LCD display relative to the viewing angle.

CHAPTER 2 EXTERNAL VIEW

Front

Left Side

Rear View

CHAPTER 3 FUNCTIONAL SPECIFICATIONS

3.1 Logical Specifications

3.1.1 CPU

(1) Available CPU

A 80 C 85 is used at 2.4 MHz .
(2) How to Reset

There are two kinds of reset: power on reset and manual reset. Pushing the reset switch initiates a warm-start; pushing it while pushing a shift-key and a control-key. initiates a cold-start.

3.1.2 ROM

(1) Available ROM

Available ROM is CMOS ROM, and the capacity is 32 K byte. (\#0)
(2) User ROM

A user ROM is 32 K byte. The user ROM area is equipped with an IC socket which can be equipped with CMOS ROM. (\#1)

3.1.3 RAM

(1) Available RAM

The eight 2 K -byte CMOS ICs are used as RAM. The system comes with 16 K bytes (STDRAM).
(2) Optional RAM

The PC-8201 is equipped with IC sockets for twenty-four 2K-byte CMOS ICs. 48 K bytes. The first 16 K bytes of this area are combined with the standard 16 K byte RAM to make a 32 K byte RAM area. The remaining 32 K bytes, become RAM \#2. There is also a 32 K -byte RAM cassette (\#3) port for external memory. It can be connected with a system bus output in PC.

Optional RAM \#2 and RAM cassette \#3 have write protect switches, and they can select the address (0 to 7 FFF or 8000 to FFFF) by software control. Memory is controlled at the following I/O port.

| 1010 | 0001 |
| :--- | :--- | OUT A1H

	2				2
	HADA	HADR	LADR	LADR	
	2	1	2	1	

LADR 2 LADR 1 SELECT ADDRESS (0H to 7FFFH)

0	0	BANK \#0(ROM \#0)
0	1	BANK \#1 (ROM \#1)
1	0	BANK \#2(RAM \#2)
1	1	BANK \#3(RAM \#3)

HADR 2 HADR 1 SELECT ADDRESS (8000H to FFFFH)
$0 \quad 0 \quad$ STANDARD ROM

0
1
ROM

0
NOT USED
I
BANK \#2 (RAM \#2)
1
1
BANK \#3 (RAM \#2)

3.1.4 LCD Interface

(1) Available driver

HD44102B (Ten) $\ldots \ldots$| Segment driver |
| :--- |
| Display RAM 200 byte |

HD44103B (Two) \ldots. Common driver
(2) Available LCD

LR-202C Number of dots 240×64
(3) Function of display
I Number of display characters
40 characters x 8 rows
(Display duty is $1 / 32$ s.)
2 Configuration of character
Both alphanumeric characters and graphic characters can be displayed.
3 LCD I/O address. I/O port
Writing the command to LCD
Reading the status from LCD

* Display On/Off

The LCD is divided into the following IC blocks. Each block can be displayed separately.

DISP	DISPLAY
0	Off
1	On

The following OUT command selects which block is displayed on or off as Port A and Port B of 81C55.

B 1 corresponds to PA0, and B2 corresponds to PA1, etc. B10 corresponds to PBI. Al in each I/O port selects the corresponding LCD block, and is deselected by a 0 .

* Address Set

BIT 5 TO BIT $0 \quad 0$ to 49 displayed by binary number

Set the RAM address in address counter at I/O port (Bit 7 to Bit 0).

* Set of starting page

76

Bit 7 Bit 6
Order of displayed page (One-thityseconds duty)

0	0
0	1
1	0
1	1

$0,1,2.3$
1, 2, 3, 0
2, 3. 1, 0
3, 0, 1, 2

* Select address counter count up or count down

| 1111 | 0000 |
| :--- | :--- |\quad OUT FO

0	0	1	1	1	0	1	UP
OOWN							

UP/DOWN	SELECT THE ADDRESS COUNTER
0	Down counter
1	Up counter

This address counter is a loop counter whose max is fifty count. After displaying the data, this counter automatically counts up or count down.

* Read status

7	6	5	4	
BUSY	UP	ON	RESET	

BIT 4

STATE OF RST PIN

0	Normal
1	RST is low level, BUSY in Bit 7 is 1.
BIT 5	DISPLAY ON/OFF 0
BIT 6	Display Off Display On
0	TYPE OF ADDRESS COUNTER
1	Down counter BIT 7
0	Op counter
1	Normal 0

* Write or Read Display Data

$$
\text { BIT } 7 \sim \text { BIT } 0 \quad \text { Displayed data }
$$

This operates access with the RAM whose address has already been selected. After then, the address counter is counted up or counted down.

3.1.5 Printer Interface

The printer interface is an 8 -bit parallel interface (Centronics compatible). The following shows the printer interface port. Data is transmitted to Port A at $81 \mathrm{C55}$. and control signal from printer is transmitted to Port C.

* Data transfer to printer

7	6	5	4	3	2	1	0
PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0

$$
\text { BIT } 7 \sim \text { BIT } 0 \quad \text { Printer data port }
$$

* BUSY, SLCT signal from printer

1011

101
INB

SLCT

0	Deselect Select
1	
BUSY	Printer READY
0	Printer BUSY

* Strobe printer

PSTB	STROBE PRINTER
0	Strobe Off
1	Strobe On

3.1.6 Calendar Clock Interface

Calendar clock interface is equipped with an LSI for watch ($\mu \mathrm{PD} 1990 \mathrm{AC}$). The following shows the I/O port.

* Command data output port

	4	3	2	1	0
	CDO	CCK	$\mathrm{C2}$	Cl	CO

C2, C1, CO	Command output port
CCK	SHIFT CLOCK
0	Clock Off
1	Clock On
CDO	Data output port

The first value is 05 H

* Command Strobe to the Clock

| 1001 | 0000 |
| :--- | :--- | OUT 90

TSTB
COMMAND STROBE TO CLOCK
0
Strobe Off
Strobe On

* Data from Clock

CDI
CLOCK DATA INPUT PORT

3.1.7 Keyboard Interface

The keyboard is sensed by a software scan. It transmits low signals (OUT B9, OUT BA) to Port A or Port B at 81 C 55 , and senses the depressed key by IN E8.

* Keyboard Interface Port

1011	1001	OUT	B9		
	PAT ~ PAO		Key		
	00000001		L	\sim	z
	00000010		K	\sim	A
	00000100		1	\sim	0
	00001000		$\wedge_{\}}^{\}}$		0
	00010000		81	\sim	$1^{\text {! }}$
	00100000		$\begin{aligned} & \text { PAST } \\ & \text { INS } \end{aligned}$		9.
	01000000		\circlearrowright		$\begin{aligned} & \text { DEL } \\ & \text { BS } \end{aligned}$
	10000000		STOP ~		1

PB7~PB0	Key
00000001	CAPS~SHIFT

3.1.8 Serial Interface

The serial interface uses an RS-232C, SIO1, or SIO 2 , switching them one another, by USART IM6402.

* Interface Switching

7	6	
SEL A	SEL B	

SEL A	SEL B	
0	0	NOT USED
0	1	SIO2
1	0	SIO1
1	1	RS-232C

* Load to USART and control register

SBS		STOP BIT SELECT
0		Stop bit length 1 bit
1		If the length of data is 5 bits, it is 5 bits. In other cases, it is 1.5 bits
EPE		ODD PARITY/EVEN PARITY
0		Odd parity
1		Even parity
PI		DISPLAY PARITY
0		Parity generation check
1		Disable parity generation check
CLS 2	CLS 1	DATA LENGTH
0	0	5 bits
0	1	6 bits
1	0	7 bits
1	1	8 bits
		-10

* USART I/O data

7	6	5	4	3	2	1	0
D7	$D 6$	$D 5$	$D 4$	$D 3$	$D 2$	$D 1$	$D 0$

$$
\text { D7 ~ D0 } \quad \text { USART DATA PORT }
$$

* USART Status Read

| 1101 | 1000 | IN 08 |
| :--- | :--- | :--- | :--- |

7		4	3	2	1	0
LPS		TBRE	PE	FE	OE	$\overline{\mathrm{DCD}} / \overline{\mathrm{RD}}$

$\overline{\mathrm{DCD}} / \overline{\mathrm{RD}}$	DATA CARRIER DETECT/RING DETECT
0	On
1	Off
OE	OVERRUN ERROR 1
Generate an overrun error	
FE	FRAMING ERROR
1	Generate a framing error
PE	PARITY ERROR 1
Generate a parity error	
TBLE	TRANSMITTER BUFFER REGISTER EMPTY
1	Able to transmit data
LPS	LOW POWER SIGNAL 1
	Dropped Power Voltage

* 81C55 Timer control for establishing UART Baud Rate

The OUT BD command loads the time constant to the time constant register (Bit 0 to Bit 13), and also loads the mode of timer to bit 14 and bit 15.
The IN BD command reads the contents of the counter (count data) and the mode bit.

3.1.9 Cassette Interface

The cassette interface uses SID (Serial Input Data) and SOD (Serial Output Data) at 80C85.

* Cassette Motor control

REMOTE	MOTOR CONTROL
0	Motor Off
1	Motor On

3.1.10 Bar Code Reader Interface

* Data from bar code reader

BCR
Data from Bar Code Reader

3.1.11 Interrupt Functions

The PC-8201 is equipped with a 4-priority level interrupt control logic. The interrupts are input to the 80 C 85 (TRAP, RST 7.5. 6.5,5.5). TRAP is nonmaskable; the others can be masked by software control.

Priority	Interrupt Channel	Function
High	TRAP	POWER TRAP
Low 7.5	KEY INT	
RST 6.5	UART	
RST 5.5	BCR	

POWER TRAP

KEY INT

UART

BCR

Power voltage is low. If it becomes less than a certain value, the interrupt is enabled and power automatically turns off.

Searches the input key by the 256 kHz clock which is transmitted from the timer chip. μ PD 1990AC.

Received interrupt from UART IM6402
Interrupt from bar code reader

All interrupts except TRAP have an exclusive use mask flag, so each can be individually masked. The mask flag is set or reset by the SIM (Set Interrupt Mask) command.

See the command of $80 C 85$.

3.1.12 I/O Address

UPPER I/O ADDRESS MSB	FUNCTION	*
1000	ROM Cassette	
1001	System Contral Port	
1010	Bank Control Port	
1011	PIO 81C55 Port	
1100	UART DATA Port	
1101	UART Contral Port	
1110	Keyboard	
1111	LCD	

(1) System Control

7	6	5	4	3	
SEL A	SEL B	PSTB	TSTB	RE. MOTE	

REMOTE	CASSETTE MOTOR CONTROL
0	Motor Off
1	Motor On
TSTB	CLOCK COMMAND STROBE
0	Strobe Off
1	Strobe On
PSTB	PRINTER STROBE
0	Strobe Off
1	Strobe On

SEL A	SEL B	SERIAL INTERFACE SELECT
0	0	Not Used
0	1	SIO2
1	0	SIO1
1	1	RS-232C

(2) Bank Control

LADR 2	LADR 1
0	0
0	1
1	0
1	1

SELECT ADDRESS OH TO 7FFFH
Bank \#0 (ROM \#O)
Bank \#1 (ROM \#1)
Bank \#2 (RAM \#2)
Bank \#3 (RAM \#3)
HADR 2 HADR 1
$0 \quad 0$
0
$1 \quad 0$

SELECT ADDRESS 8000H to FFFFH
Standard RAM
Not Used
Bank \#2 (RAM \#2)
Bank \#3 (RAM \#3)
(3) Bank Status

| 1010 | 0000 |
| :--- | :--- | in ao

BIT 1	BIT 0	STATUS OF OH TO 7FFFH
0	0	Bank \#0 (ROM \#0)
0	1	Bank \#1 (ROM \#1)
1	0	Bank \#2 (RAM \#2)
1	1	Bank \#3 (RAM \#3)
BIT 3	BIT 2	STATUS OF ADDRESS 8000H TO FFFFH
0	0	Standard RAM
0	1	Not Used
1	0	Bank \#2 (RAM \#2)
1	1	Bank \#3 (RAM \#3)
BIT 7	BIT 6	STATUS OF SERIAL INTERFACE
0	0	Sot Used
0	1	SIO2
1	0	RS-232C
1	1	

(4) PIO 81C55 Address

* Port A output

PA7 to PA0	LCD Chip Select
PD7 to PD0	Printer Data Port
KS7 to KS0	Keyboard
C2 to C0	Clock Command Output Port
CDO	Clock Data Output Port
CCK	Calendar Shift Clock 0 1

* Port B Output

PB1 ~PBO
$\overline{\mathrm{MC}}$ 0

1
$\mathrm{DCD} / \overline{\mathrm{RD}}$
0
1

APO
0
1

BELL
0
I
$\overline{\mathrm{DTR}}$
$\overline{\mathrm{RTS}}$

LCD Chip Select
MELODY CONTROL OUTPUT
On
Off
DCD/RD SELECT OF THE RS-232C
Ring Detect
Data Carrier Detect

AUTO POWER OFF OUTPUT
Output Off
Output On
BUZZER OUTPUT
Ring
Not Ring
RS-232C DTR output Active Low
RTS output Active Low

* Port C Input

1011	1011

INBB

CDI	Clock Data Input Port
SLCT	PRINTER BUSY
0	Printer Ready
1	Printer Busy
BCR	Bar Code Reader Data Input Port
$\overline{\mathrm{CTS}}$	CTS Input Active Low
$\overline{\mathrm{DSR}}$	RS-232C DSR Input Active Low

(6) USART Data I/O Port

USART DATA PORT
(7) Usart Control Port

* Command Write

SBS		STOP BIT SELECT
0		Stop bit length is 1 bit.
1		If data length is 5 bits, stop bit length is 1.5 bits. In the other case, it is 2 bit.
EPE		EVEN PARITY ENABLE
0		Odd Parity
1		Even Parity
PI		PARITY INHIBIT
0		Generate parity and check
1		Inhibit generating parity and check
CLS 2	CLS 1	CALENDAR LENGTH SELECT
0	0	Data Length 5 bits
0	1	Data Length 6 bits
1	0	Data Length 7 bits
1	1	Data Length 8 bits

* Status read

7		4	3	2	1	0
LPS		TBRE	PE	FE	OE	DCD

DCD/RD	
0	On
1	Off

OE	Overrun Error Detected
1	
FE	Framing Error
1	Detected
PE	Parity Error
1	Detected
TBRE	Transmitter Buffer-register Empty
1	ready to receive data to transmit
LPS	LOW POWER SIGNAL
1	low power voltage

3.2 Physical Specifications

3.2.1 Signal Lines

(1) Printer Interface

- Printer 26 pin connector using a flat cable

Pin number	Signal name	Remarks	Pin number	Signal name	Remarks
1	STROBE	Write strobe	2	GND	Signal ground
3	PD0	Parallel data 0	4	GND	Signal ground
5	PD1	Parallel data 1	6	GND	Signal ground
7	PD2	Parallel data 2	8	GND	Signal ground
9	PD3	Parallel data 3	10	GND	Signal ground
11	PD4	Parallel data 4	12	GND	Signal ground
13	PD5	Parallel data 5	14	GND	Signal ground
15	PD6	Parallel data 6	16	GND	Signal ground
17	PD7	Parallel data 7	18	GND	Signal ground
19	NC		20	GND	Signal ground
21	BUSY	Printer busy	22	GND	Signal ground
23	NC		24	GND	Signal ground
25	SLCT	Printer select	26	NC	

(2) CMT Interface

Pin number	Signal name	Remarks
1	T \times C	TTL level output
2	GND	Signal ground
3	GND	Electrical power ground
4	MIC	Output to MIC
5	EAR	Input from EAR
6	REM1	Remote terminal
7	REM2	Remote terminal
8	Vcc	$+5 V$

(3) RS-232C Interface

Pin number	Signal name	Remarks
1	GND	Protective ground
2	TxD	Transmit data
3	RxD	Receive data
4	RTS	Request to send
5	CTS	Transmission authorized
6	DSR	Data set relay
7	GND	Signal ground
8	DCD	Data carrier detect
2		
20	DTR	Data carrier ready
22	RD	Bell detect
25	\cdots	

Either 8-pin (DCD) or 22-pin (RD) can be selected by software control.
(4) Bar Code Reader Interface

- BCR $9-p i n$ D SUB CONNECTOR

Pin number	Signal name	Remarks
1	NC	Not connected
2	R \times DB	Receive data
3	NC	Not connected
4	NC	Not connected
5	GND	Signal ground
6	NC	Not connected
7	GND	Signal ground
8	NC	Not connected
9	Vcc	$+5 V$

(5) SIO1 Interface

SIOI

Pin number	Signal name	Remarks
1	GND	Signal ground
2	T×D	Transmit data
3	R×R	Receive data 4
5	RTS	Request to send
6	VCC	Transmission authorized
7	NC	Not connected
8	NC	Not connected

(6) SIO 2 Interface

Pin number	Signal name	Remarks
1	GND	Signal ground
2	T×D	Transmit data
3	R×R	Receive data
4	RTS	Request to send
5	Vcc	Transmission authorized
$+5 V$		

(7) ROM Cassette/System Bus

Pin number	Signal name	Remarks
1	VDD	+5V
2	VDD	+5V
3	ADO	Address/Data 0
4	AD4	Address/Data 4
5	AD1	Address/Data 1
6	AD5	Address/Data 5
7	AD2	Address/Data 2
8	AD6	Address/Data 6
9	AD3	Address/Data 3
10	AD7	Address/Data 7
11	NC	No Connection
12	NC	No Connection
13	A8	Address 8
14	A12	Address 12
15	A9	Address 9
16	A13	Address 13
17	A10	Address 10
18	A14	Address 14

(Cont)

Pin number	Signal name	Remarks
19	A11	Address 11
20	A15	Address 15
21	A16	Address 16
22	A18	Address 18
23	A17	Address 17
24	A19	Address 19
25	NC	No Connection
26	NC	No Connection
27	$\overline{\mathrm{RD}}$	Read
28	$\overline{W R}$	Write
29	10/M	IO OR Memory
30	ALE	Address Latch Enable
31	HOLD	HOLD
32	HOLDA	HOLD Acknowledge
33	INTR	INTERRUPT
34	$\overline{\text { INTA }}$	INTER Acknowiedge
35	RESET	RESET
36	READY	READY
37	ROME	ROM Enable
38	E	Enable
39	BANK \# 3	ROM Cassette Select signal
40	NC	No Connection
41	HADRD	High Address Disable
42	LADRD	Low Address Disable

Pin number	Signal name	Remarks
43	CLK	Clock
44	POWER	RAM Protect signal
45	GND	Ground
46	GND	Ground
47	NC	No Connection
48	NC	No Connection

3.2.2 Power Supply

The PC-8201 can operate with the three types of power supply.
(1) SUM-3 dry cells (Four)

AM-3 (Alkali Manganese dry cell)
This can be used for more than 18 hours.
(Normal: at standby: 16K RAM)
SM-3 (Manganese dry cell)
This can be used for more than 6 hours.
(Normal: at standby: 16K RAM)
(2) Ni-Cd battery PC-8201-90

This can be used for more than 5.5 hours.
(Normal temperature: at standby: 16K RAM)
It is possible to floating charge.
charge 48 H
No time limit for recharging
It is charged in spite of power on or off of the PC-8201.
(3) AC adapter PC -8271-01

The AC adapter specifications are based on the functional specifications of the PC-8271-01. The PC-8201 has an EMERGENCY battery.

Backup time:

System equipped with 64 K	More than 7 days (Normal)
System equipped with 16 K	More than 26 days (Normal)

Battery is changed by AC adapter or operation battery.
A backup power switch can disable to backup or floating charge.

3.2.3 Structure and Size

The mechanism is shown in appendix, also the color, the display characters, and the case style are shown in it.

3.3 Interface to Other Hardware

(1) RS-232C

This port is compatible with the RS-232C standard.
(2) Printer

Can be directly connected with printers with Centronics compatible port.
(3) Bar Code Reader

Can be directly connectes with a bar code reader with a Centronics compatible parallel port.
(4) Audio Cassette Tape Recorder

Can be directly connected with commercial audio cassette tape recorder.
(5) Serial I/O

Can be directly connected with peripheral interfaces having a CMOS serial interface.
(6) ROM/RAM Cartridge

Use to expand the system bus slot.
(7) Other Peripheral Circuits

Via system bus slot

3.4 Software Interface

The PC-8201 is a peripheral computer which uses 8 -bit CMOS and an 80 C 85 CPU . The command set is the same as the 8085 .

3.5 Human Interface

(1) LCD display

A 240×64 dot full graphic LCD display is used. The standard display character is 40 characters $\times 8$ rows.

It is possible to control the contrast by volume. The contrast is changed by view angle.
(2) Keyboard

The following show the key arrangement of keyboard unit and a table of character codes. The F-key and J-key, which is key tops of home position, have tubarcles. The key tops are made from standard plates made by Alps.
1 PC-8201 Keyboard
Character codes 60 H and 7EH cannot be transmitted from the keyboard.
2 Graphic key combination input
Character codes 80 H to 9 FH can be input by depressing key together with the graphic key. Character codes AOH to BFH can be input by combining the graphic key and shift key.
3 User Defined Characters
Character codes 83 H to FFH can be defined by the user.

PC-8201 Key Arrangement

PC-8201 Character Code

L_{L}^{H}	$\begin{gathered} 0 \\ 0000 \end{gathered}$	$\begin{gathered} 1 \\ 0001 \end{gathered}$	$\begin{gathered} 2 \\ 0010 \end{gathered}$	$\begin{gathered} 3 \\ 0011 \end{gathered}$	$\left\|\begin{array}{c} 4 \\ 0100 \end{array}\right\|$	$\begin{gathered} 5 \\ 0101 \end{gathered}$	$\left\|\begin{array}{c} 6 \\ 0110 \end{array}\right\|$	$\begin{gathered} 7 \\ 0111 \end{gathered}$	$\begin{gathered} 8 \\ 1000 \end{gathered}$	$\begin{gathered} 9 \\ 1001 \end{gathered}$	$\left.\begin{gathered} A \\ 1010 \end{gathered} \right\rvert\,$	$\begin{array}{\|c\|} \hline B \\ 1011 \end{array}$	$\left\lvert\, \begin{gathered} c \\ 1100 \end{gathered}\right.$	$\left\|\begin{array}{c} 0 \\ 1101 \end{array}\right\|$	E 1110	F 1111								
$\begin{array}{\|c} 0 \\ 0000 \end{array}$	c/@	C/P	ISPACE,	0	@	P	,	p	$\begin{aligned} & \mathrm{G} / \mathrm{Z} \\ & \hline \end{aligned}$	G/Q	GS/Z	Gs/o												
$\begin{gathered} 1 \\ 0001 \end{gathered}$	C / A	$\left\lvert\, \begin{aligned} & \mathrm{c} / \mathrm{a} \\ & \mathrm{c} /\llcorner \end{aligned}\right.$	$!$	1	A	0	a	व	$\begin{gathered} \mathrm{G} / \mathrm{X} \\ \hline \end{gathered}$	G/W	GS/X	GS/w												
$\begin{gathered} 2 \\ 0010 \end{gathered}$		$\begin{aligned} & \mathrm{C} / \mathrm{R} \\ & \text { INS } \\ & \mathrm{C} / \rightarrow \end{aligned}$	"	2	B	R	b	r	G / C	G/E	GS/C	GS/E												
$\begin{gathered} 3 \\ 0011 \end{gathered}$	$\left.\begin{array}{\|l\|} \hline \mathrm{C} / \mathrm{C} \\ \mathrm{STOP} \end{array} \right\rvert\,$	c/s	\#	3	C	S	c	s	G/V	G/R	GS/V	GS/R												
$\begin{gathered} 4 \\ 0100 \end{gathered}$	cio	$\left\|\begin{array}{l} c / T \\ s=1,1 / T M \end{array}\right\|$	\$	4	D	T	d	t	G/B	G/T	GS/B	GS/T												
$\begin{gathered} 5 \\ 0101 \end{gathered}$	C/E	c/u	\%	5	E	u	e	u	G/N	G/Y	GS/N	GS/Y												
$\begin{gathered} 6 \\ 0110 \end{gathered}$	$\begin{array}{l\|} \hline \mathrm{C} / \mathrm{F} \\ \mathrm{smi}:-\mathrm{A} \end{array}$	c/v	\&	6	F	v	;	\checkmark	G/M	G/U	GS/M	GS/U												
$\begin{gathered} 7 \\ 0111 \end{gathered}$	C/G	$\left\lvert\, \begin{aligned} & c / w \\ & c / \uparrow \end{aligned}\right.$	-	7	G	w	9	w	G/L	G/1	GS/L	GS/I												
$\begin{gathered} 8 \\ 1000 \end{gathered}$	$\begin{array}{r} \mathrm{C} / \mathrm{H} \\ \mathrm{BS} \end{array}$	c/x	1	8	H	x	h	\times	G/A	G/O	GS/A	GS/O												
$\begin{gathered} 9 \\ 1001 \end{gathered}$	C/I	C/Y	1	9	1	Y	i	\checkmark	G/S	G/P	GS/S	GS/P												
$\begin{gathered} A \\ 1010 \end{gathered}$	c/J	$\left\lvert\, \begin{aligned} & \mathrm{c} / 2 \\ & \mathrm{c} / 4 \end{aligned}\right.$	*	:	J	z	1	z	G/D	G/@	GS/D	GSA												
$\begin{gathered} \mathrm{B} \\ 1011 \end{gathered}$	C/K	ESC	+	:	K	[k	$\{$	G/F	G $\$ & GS/F & GS/: & & & & \hline $\begin{gathered} c \\ 1100 \end{gathered}$ & C/L & \rightarrow	.	<	L	1	1	:	G/G	G/.	GS/G	GS/<				
$\begin{gathered} \hline D \\ 1101 \end{gathered}$	C/M	\leftarrow	-	$=$	M	1	m	$\}$	G/H	G/.	GS/H	GS/>												
$\begin{gathered} E \\ 1110 \end{gathered}$	C / N	\uparrow		>	N	\wedge	n	\sim	G/J	G/,	GS/J	GS/?												
$\begin{gathered} F \\ 1111 \end{gathered}$	c/o	\downarrow	1	?	0	-	-	(DEL)	G/K	G/l	GS/K	GS/\}												
Notes:																								

3.6 Performance Specification for the PC-8201

CPU	80 C 852.4 MHz operation
ROM	32 K bytes (Max 64 K bytes)
RAM	16 K bytes (Max 64 K bytes)
LCD display	240×64 dots (40 characters $\times 8$ rows)
Printer I/F	Centronics specification; one chamel
Calendar watch	D1990AC
Keyboard	Keyboard (See Item 4.5.)
Serial I/F	300 to 19200 baud C.MOS level
	two connectors
RS-232CI/F	300 to 19200 baud 5 V output one channel (Serial I/F uses the same serial channel as the RS-232C I/F by switching.)
CMT I/F	Compatible with the PC-8001
Bar Code Reader	Based on HREDS-3050 interface made by Hewlett-Packard.

3.7 Accessories

(1) CMT cable 1
(2) Demo tape 1
(3) Soft case I
(4) Users manual 1
(5) Reference manual 1
(6) Warranty I

CHAPTER 4 DISASSEMBLY/REASSEMBLY

4.1 Disassembly

* Save any data caution in the RAM before continuing.
* Turn off the PC-8201 power. Remove the battery case, turn off the backup power switch. (If using an AC adapter, remove it also.)

4.1.1 PC-8201 Cover

Turn the PC-8201 over, and unscrew. (eleven points)

Uncovered PC-8201

4.1.2 LCD Board

Remove LCD connector and LED connector; unscrew LCD board. (Four points)

4.1.3 Keyboard

Remove the two keyboard connectors: unscrew the keyboard. (Five Points)

4.1.4 Power Supply Board

Remove power supply connector; unscrew the power supply board.

4.1.5 Main Board

* Remove the battery cassette before continuing.

If removing the main board, unscrew the followings.

* Printer connector (Two)
* Speaker connector
* Slot cover (Four)
* Main board (Five)

4.2 Reassembly

CAUTION

Before continuing, save any data in RAM using the cassette tape. After completing adjustments, reload RAM from the cassette.

4.2.1 LCD Board

(1) Turn off the power; remove the battery case: turn off the backup power switch. (If using an AC adapter, remove it also.)
(2) Remove the PC-8201 cover Remove the LCD board
(3) Replace the LCD board
(4) To reassemble. follow these steps in reverse.

4.2.2 Keyboard

(1) Turn off the power; remove the battery case; turn off the backup power switch. (If using an AC adapter, remove it also.)
(2) Remove the PC-8201 cover.

Remove the keyboard.
(3) Replace the keyboard.
(4) To reassemble follow these steps in reverse.

4.2.3 Keyboard Switch

(1) Turn off the power; remove the battery case; turn off the backup power switch. (If using an AC adapter, remove it also.)
(2) Remove the PC-8201 cover.

Remove the keyboard switch.
(3) Search for the key number of the keyboard switch to be changed. The key number is written on the keyboard printed circuit board.
(4) Remove the solder from the key switch to be changed. (When removing solder, be careful not to damage or cut the pattern.)
(5) Pull out the key top.
(6) Remove the key switch. (Pull up. pinching the lock with pliers.)
(7) When installing a new switch, press it down until it comes into contact with the base plate.
(8) Solder the new key switch to the keyboard printed circuit board.
(9) Insert the key top.
(10) Reassemble in reverse order.

Key Number

4.2.4 Power Supply Board

(1) Turn off the power: remove the battery case: turn off the backup power switch. (If using an AC adapter, remove it also.)
(2) Remove PC-8201 cover.

Remove power supply connector.
Remove power supply board.
(3) Replace power supply board.
(4) Reassemble in reverse order.

4.2.5 Main Board

(1) Turn off the power; remove the battery case; turn off the backup power switch. (If using an AC adapter, remove it also.)
(2) Remove PC-8201 cover.

Remove LCD connector.
Remove LED connector.
Remove keyboard connector.
Remove power supply connector.
Remove main board.
(3) Replace the main board.
(4) Reassemble in reverse order.

4.2.6 ROM

(1) Turn off the power; remove the battery case; turn off the backup power switch. (If using an AC adapter, remove it also.)
(2) Unscrew the ROM cover. (Three points)

ROM Cover Screws
(3) Remove the two old ROM chips. (Use a screwdriver between the socket and the ROM and gently pry up.)
(4) Insert new ROM chips in socket.
(5) Replace ROM cover.

4.3 Installation

4.3.1 Inserting Cartridge (RAM, ROM)

Left Side

- System Slot -

When using RAM cartridge or ROM cartridge insert into the system slot.

* If inserting the cartridge, turn off the power and insert cartridge firmly.

4.3.2 Battery Installation

The PC-8201 is operated by four SUM-3 batteries. The PC-8201 is not shipped with batteries inserted. The following procedure explains how to insert.
(1) Turn off the power, and turn unit upside down.

(2) Applying pressure on points A and B, slide the battery cassette out from the main unit.

(3) Remove the battery cassette. Set it like following.

(4) Insert a coin in the guide groove, and twist to the arrow to remove the upper cover.

(5) Insert batteries. The spring side is the negative pole. Set the cells carefully like following.

(6) Replace the cover. If it closed. it snaps. Then reassemble in reverse order.

CHAPTER 5 OPERATION TEST

Preparation

The following is needed for the operations test.
(1) Oscilloscope (100 MHz)
(2) Tester
(3) Test Connector
5.1 Operations Test Flow Chart

5.2 CPU Peripheral Circuit

5.2.1 PC-8201 Power Supply Operation Test

(Reference) Chapter 4 DISASSEMBLY/REASSEMBLY
(1) Measured power supply

```
PIN No. }
-5 V
PIN No. }
5V
(within +10% to -5%)
```

* If power supply operation is abnormal, see Item 6.2.1 "PC-8201 Abnormal Power Supply'.

5.2.2 Reset Operation Test

As soon as the power supply is turned on or reset is depressed, the RESET signal in U17, 80C85, (P36) changes from "H" level to "L" level and the RESET OUT signal in U17 (P3) changes from " L " level to " H " level.

Figure 5.1 Reset Operating Test

* If reset is abnormal. see Item 6.2.2 "PC-8201 Abnormal Reset".

5.2.3 CPU (80C85) Operation Test

Figure 5.280 C 85 Terminal Connection (Top view)
(1) 80C85 Terminal Signals

When turning on the PC-8201 power supply or depressing the reset switch. if each terminal of U17 (80C85) operates correctly, you can confirm the pulse changing to the opposite level at each terminal.
Following signals are like next.

RESET	(P36)	"H" level	$(+5 \mathrm{~V})$
RESET OUT	(P3)	"L" level	$(+0 \mathrm{~V})$
HLDA	(P38)	"L" level	$(+0 \mathrm{~V})$
TRAP	(P6)	"L" level	$(+0 \mathrm{~V})$
VDD $(+5 \mathrm{~V})$	(P40)	"H" level	$(+5 \mathrm{~V})$
GND	(P20)	"L" level	$(+0 \mathrm{~V})$

Then the contents of Figure 5.3 are displayed on the monitor.

Figure 5.3 Start Message
(2) 80C85 Operation Signal

If the PC-8201 operates correctly, you can confirm the signal in Figure 5.4.

Figure 5.480 C 85 Operating Test
(If the CPU (80C85) is abnormal, see Item 6.2.3 "Abnormal CPU".)

5.2.4 CPU Clock Operation Test

Measure U17, 80C85, (P37) of the CPU clock. Figure 5.5 shows the signal at U17 (P37).

Figure 5.5 U17 (P37) Output Signal

* If CPU CLOCK is abnormal. see ltem 6.2.4.

5.2.5 Calendar Clock Operation Test

Measure whether the signal in Figure 5.6 is being transmitted to U 20 (P 10) of calendar clock.

Figure 5.6 Calendar Clock Signal

〈Reference〉 Figure 5.7 "Calendar Clock Peripheral Circuit"

* If the calendar clock is abnormal, see Item 6.2.5 "Abnormal Calendar Clock".

Figure 5.7 Calendar Clock Peripheral Circuit

5.3 1/O Peripheral Circuit

5.3.1 LCD Operation Test

(1) When executing the test program in Figure 5.8. LCD block in Figure 5.9 is erased and displayed in order.

```
5 PRINT CHRक(27);CHR$(85)
10 OUT 185,255:OUT 186,3
20 OUT 240,56:OUT 240,57
30 FOR N=1 TO 319:PRINT "X";:NEXT
40 FOR N=0 TO ?
50 OUT 248,56:OUT 185,255:OUT 186,3:OUT 240,57
60 OUT 240,56:OUT 185,255-2^N:OUT 240,57
70 FOR I=1 TO 608:NEXT
80 OUT 185,0 :OUT 186,0:OUT 240,57
90 NEXT:OUT 240,56
100 FOR N=0 TO 1
110 OUT 240,56:OUT 186,3-2^N:OUT 240,57
120 FOR I=1 TO 600:NEXT
125 OUT 185,255:OUT 186,3
1 3 0 \text { NEXT}
140 OUT 185,255:OUT 186,3
150 OUT 240,56:OUT 240,57
```

Figure 5.8 Test Program

Figure 5.9 LCD Canvas
(2) By executing the test program in Figure 5.10 , you can confirm the signal in Figure 5.11 on LCD connector (CN7)

```
10 PRINT "1"; : GOTO 10
```

Figure 5.10 Test Program

Figure 5.11 LCD Connector Signal

〈Reference〉 Figure 5.12 "LCD Peripheral Circuit"

* If the LCD is abnormal. see Item 6.3.1 "Abnormal LCD'.

Figure 5.12 LCD Peripheral Circuit

5.3.2 SIO2 Port Operation Test

Preparation

Connect the pin in Figure 5.14 with SIO 2 connector.
(1) SIO2 Port Test Program

Test using the program in Figure 5.13.
Repeat to transmit/receive the data (Addresses \&Hl to \&HFF), and display the received data on the monitor, then compare it with the transmitted data. If it is normal, "SIO2 TEST OK" is displayed. or "SIO2 ERROR" is displayed.
You can confirm the signal in Figure 5.15 in P2 and P3 of the SIO2 connector.

```
10 OUT 144,64:OUT 216,27
20 OUT 188,3 :OUT 189,64 :PRINT CHR車(12)
30 FOR A=1 TO 255 :OUT 200,A:B=INP(200)
31 'U=INP(216) AND 4 :IF A=4 THEN LPRINT "OKK";
40 IF A<>B GOTO 80 ELSE PRINT B;
6 0 ~ N E X T
70 PRINT:PRINT "SIO2 TEST OK":END
80 PRINT:PRINT "SIO2 ERROR!!":END
```

Figure 5.13 Test Program

- SIO2 6-pin DuPont BERG modular jack

Pin number	Signal name
1	GND
2	T×D
4	R×R
4	RTS
5	CTS
6	Vcc

Figure 5.14 Connected Circuit
(Reference〉 Figure 5.16 "Serial Interface Peripheral Circuit".

* If SIO 2 is abnormal. see Item 6.3.2 "Abnormal SIO2".

Figure 5.15 SIO2 Data Signal

5.3.3 BCR Interface Operation Test

(Preparation)

Connect the pin Figure 5.18 with the BCR connector.
(1) BCR Interface Test Program

Test using the program in Figure 5.17. If the BCR interface is normal, "BCR TEST OK" is displayed, or "BCR ERROR" is displayed. The signal in U27 (P6) changes from an " L " level to " H " level by connecting the circuit.

```
10 FOR N=1 TO 255
20 A=INP(187) AND 8
30 IF A AND 8 THEN PRINT N; ELSE GOTO 180
4 0 ~ N E X T
50 PRINT :PRINT "BCR TEST OK" :END
100 PRINT :PRINT "BCR ERROR !!"
```

Figure 5.17 Test Program

Figure 5.18 Pin Connection
(Reference〉 Figure 5.19 "BCR Peripheral circuit"

* If BCR is abnormal, see Item 6.3.3 "Abnormal BCR Interface".

Figure 5.19 BCR Peripheral Circuit

5.3.4 RS-232C Interface Operation Test

(Preparation)

Connect the pin in Figure 5.21 with the RS-232C connector.
(1) RS-232C Connector Test Program

Test using the program in Figure 5.20.
Repeat transmitting and receiving the data (address \&HI to \&HFF). and display the received data on the monitor. then compare it with the transmitted data. If the RS-232C interface is normal, you can confirm each terminal signal in Figure 5.22, "RS-232C TEST OK" is displayed when the test is finished. If it is abnormal, "RS-232C ERROR" is displayed.

```
10 OUT 144,192:OUT 216,27
20 OUT 188,3: OUT 189,64 :PRINT CHR$(12)
30 FOR A=1 TO 255:OUT 200,A:B=INP(200)
4 0 ~ I F ~ A < > B ~ G O T O ~ 8 0 ~ E L S E ~ P R I N T ~ B ; ~
50 FOR N=1 TO 100:NEXT
6 0 ~ N E X T
70 PRINT:PRINT "RS-232C TEST OK":END
80 PRINT:PRINT "RS-232C ERROR !!":END
```

Figure 5.20 Test Program

Figure 5.21 Pin Connection

$$
-1
$$

Figure 5.22 RS-232C Data Signal
(Reference) Figure 5.16 Serial Interface Peripheral Circuit

* If the RS-232C is abnormal, see Item 6.3.4 "Abnormal RS-232C".

5.3.5 SIO1 Interface Operation Test

〈Preparation〉

Connect the pin in Figure 5.24 with SIOl connector.
(1) SIOl Interface Test Program

Test using the program in Figure 5.23.
Repeat transmitting and receiving the data (address \&Hl to \&HFF). Display the received data on the monitor, then compare it with transmitted data. If it is normal. "SIO1 TEST OK" is displayed, otherwise "SIO1 ERROR" is displayed. If SIOl operates correctly, you can verify the signal in Figure 5.25 at the connector pin.

```
10 OUT 144,28:OUT 216,27
20 OUT 188,8 :OUT 189,64:PRINT CHR$(12)
30 FOR A=1 TO 255 :OUT 200,A:B=INP(200)
4 0 ~ I F ~ A < > B ~ G O T O ~ 8 0 ~ E L S E ~ P R I N T ~ B ; ~
6 0 ~ N E X T
70 FRINT:PRINT "SIO1 TEST GK":END
80 PRINT:PRINT "SIO1 ERROR!!":END
```

Figure 5.23 Test Program

- SIO1 8-pin DuPont BERG modular jack

SIOI Connector

Pin number	Signal name
1	GND
2	TXD
4	RxR
5	RTS
6	CTS
7	VCc
8	NC

Figure 5.24 Pin Connection

Figure 5.25 SIO1 Data Signal
(Reference) Figure 5.16 "Serial Interface Peripheral Circuit"

* If the SIOI interface is abnormal, see Item 6.3.5 "Abnormal SIO1."

5.3.6 Printer Interface Operation Test

(Preparation)

Connect the pin in Figure 5.26 with the printer bus connector.
(1) The terminal number I (PSTB) transmits " H " level and the terminal number 21 (BUSY) transmits "L" level.
(2) By executing the test program in Figure 5.27, you can verify the signal in Figure 5.28.

Pin number	Signal name	Pin number	Signal name
1	STROBE	2	GND
3	PDO	4	GND
5	PD1	6	GND
7	PD2	8	GND
9	PD3	10	GND
11	PD4	12	GND
13	PD5	14	GND
15	PD6	16	GND
17	PD7	18	GND
19	NC	20	GND
-21	BUSY	22	GND
23	NC	24	GND
25	SLCT	26	NC

Figure 5.26 Connected Circuit

Figure 5.27 Test Program
$\overline{\text { PSTB }}$

Figure 5.28 Each Terminal Signal

(Reference) Figure 5.29 "Printer Interface Peripheral Circuit"

* If the printer interface is abnormal. see Item 6.3.6 "Abnormal Printer Interface".

Figure 5.29 Printer Interface Peripheral Circuit

5.3.7 Audio Cassette Interface Operation Test

(1) REC Operating Test

By executing the test command in Figure 5.30 , you can verify the signal in Figure 5.31.

Figure 5.30 Test Command

Figure 5.31 Terminal Signals
(2) MON Operation Test
(Preparation)
Connect the pin in Figure 5.32 with the cassette connector.
a) By connecting the circuit, you can measure the signal in Figure 5.33.

Figure 5.32 Pin Connection

Figure 5.33 Terminal Signals
b) By executing the test command in Figure 5.34, you can measure the signal in Figure 5.35.

Figure 5.34 Test Command

Figure 5.35 Terminal Signals
(Reference〉 Figure 5.36 "Audio Cassette Interface Peripheral Circuit"

* If the Audio cassette interface is abnormal, see Item 6.3.7 "Abnormal Audio Cassette Interface".

5.3.8 I/O Port Operation Test

* If the operating test is abnormal, see Item 6.3.8 "Abnormal I/O Port".
(Reference) Figure ROM peripheral circuit
Figure 81C55 peripheral circuit
Figure 6402 peripheral circuit
(1) OUT 90 H Operating Test

By executing the test program in Figure 5.37, the signal at U36 (P9) changes from " L " level to " H " level.

```
10 OUT 144.8
```

Figure 5.37 Test Program
(2) OUT AlH Operating Test

If pushing the SHFT-key and the BANK-key at the same time in MENU mode, you can confirm the signal shown in Figure 5.38 in U53 (P1).

Figure 5.38 Signal in U53 (P1)
(3) IN AOH Operation Test

By pushing the SHIFT-key and the BANK-key at the same time in MENU mode, the signal in Ull (P2) changes from "L" level to the signal shown in Figure 5.39.

Figure 5.39 Signal in 411 (P1)
(4) OUT B9H Operation Test

By executing the test program in Figure 5.40 , you can confirm the signal shown in Figure 5.41 in Ul8 (P 21).

10 GOTO 10

Figure 5.40 Test Program

Figure 5.41 Signal in U18 (P21)
(5) OUT BAH Operation Test

By executing the test program in Figure 5.42, the signal in U 18 (P31) changes from "H" level to "L" level.

```
10 OUT 186,0
```

Figure 5.42 Test Program
(6) IN BBH Operation Test You can confirm the signal shown in Figure 5.43 in U18 (P37).

Figure 5.43 Signal in U18(P37)
(7) IN/OUT C8H Operation Test
(Preparation)
Connect the pin 2 of the RS-232C connector with the pin 3. (See Figure 5.21 "Pin connection" of item "RS-232C Interface Operating Test".
By executing the test program in Figure 5.44, you can confirm the signal shown in Figure 5.45 in U21 (P12).

```
10 OUT 144,192:OUT 216,3
20 OUT 183,3 :OUT 189,64:PRINT CHR$(12)
30 A=9 :OUT 200,A:B=INP(200)
40 IF A<>B GOTO 80 ELSE PRINT B;
70 GOTO 30
80 PRINT "ERROR"
```

Figure 5.44 Test Program

Figure 5.45 Signal in U21 (P12)
（8）OUT D8 Operation Test
〈Preparation〉
Connect the pin 2 of the RS－232C connector with the pin 3．（See Figure 5．21
＂Pin Connection＂of item＂RS－232C Interface Operating Test＂．
By executing the test program in Figure 5．46，you can confirm the signal shown in Figure 5.47 in U21（P12）．

```
10 OUT 144,192:OUT 216,27
20 OUT 183,3 :OUT 189,64:PRINT CHR末(12)
30 A=9 :OUT 200,A:B=INP(280)
40 IF AC>B GOTO 80 ELSE PRINT B;
70 GOTO 30
80 PRINT "ERROR"
```

Figure 5.46 Test Program

Figure 5.47 Signal in U21（P12）
（9）IN D8H Operation Test
a）When switching the power switch from OFF to ON，the signal in U34（P2） changes from＂L＂level to＂ H ＂level．
b）Execute the test program in Figure 5．48；if IN D8H is normal，＂ 128 ＂is displayed．

```
18 PRINT INP(216) AND 128
```

Figure 5.48 Test Program

5.3.9 Speaker Operation Test

(1) Speaker Operation Test Program

Test using the program in Figure 5.49. If the speaker is normal, it repeats $O N$ and OFF.

10 BEEP
20 GOTO 10

Figure 5.49

5.3.10 Keyboard Operation Test

(1) Push all key-switches, and verify that the character is displayed on the LCD when pushing character key-switch and that the special functions operate correctly when pushing special function key-switches.

CHAPTER 6
 TROUBLESHOOTING

This chapter explains primary defects and how to troubleshoot them. It is impossible to explain all problems, so we hope this chapter will help you in your maintenance.

Repairing

* Clear the user's claim, and describe it in a reception or a report.
* Describe the accessories in a reception.
* Repairing the instruments which have set switches such as mode, notes the switch condition.
* Check the view.
* If it is damaged, according the claim, repair it. If the damage does not accord the claim, repair it after consulting the user.

〈Reference〉 CHAPTER 4 DISASSEMBLY/REASSEMBLY

 CHAPTER 5 OPERATING TEST
6.1 Troubleshooting Flowchart

6.2 CPU Peripheral Circuit

6.2.1 PC-8201 Abnormal Power Supply

Turn on PC-8201 power.

Symptoms

Nothing is displayed on the LCD.
(1) Process of checking
a) When using a battery

1: Is the voltage of the battery cassette 6 V ?
2: Is 6 V of power being transmitted to CN3 (P3) on the power board?
b) When using a DC adapter

1: Is the 9 V power supplied to DC adapter?
2: Is the 9 V power supplied to CN 3 (P 3) on the power board?
If it is not supplied there, the adapter jack connection is bad or D8 is bad.
c) When using a battery or DC adapter

1: Is the signal transmitted to each part in Figure 6.1?

Figure 6.1 Power Supply Circuit, Output Signal
d) Is the voltage power supplied to each pin of CN1?

```
6 - - - 5V
3 --- -5V
12 ---5V
16 --- 6V
18 --- 9V
```

$4--5 \mathrm{~V} \quad$ If the voltage is not supplied to these pins, the
$5--$ GND power board is bad.

6.2.2 PC-8201 Abnormal Reset

Symptoms

Always at reset state.
(CN1 (P9) keeps "L" level.)
a) If $\mathrm{CN}(\mathrm{P} 10)$ is less than 7.5 V power, $\mathrm{U} 2 . \mathrm{Q} 16, \mathrm{C} 1$, or D 7 of power board are bad.
b) If the collector of Transistor 2 is not " L " level, transistor 2 is bad.

Symptoms
Reset is not enabled at power-on.
a) When pushing a reset switch, if reset does not operate, the reset switch is bad.
b) Check the collectors of transistors 2 and 1 .

6.2.3 PC-8201 Abnormal CPU (80C85)

Symptoms

The CPU does not operate.

* See Item 5.1.3 "CPU (80C85) Operation Test".

If you can verify following abnormalities, exchange the CPU board.
(1) Causes:
a) RESET (P36) is " L " level.
b) READY is " L " level.
c) Clock keeps "L" level or "H" level. (See Item 5.1.3 "CPU Clock Operation Test".)

6.2.4 Abnormal CPU Clock

Symptoms
The CPU does not operate.

If you can verify following abnormalities, exchange the CPU board.
a) When you cannot verify the correct signal at U17 (P37).
b) If there is no signal at U 17 (P1. P2), then U 17 . the crystal transmitter, C 12 , or C 11 are bad.

6.2.5 Abnormal Calendar Clock

* See Item 5.1.5 "Calendar Clock Operation Test".

If you can verify following abnormalities, exchange the CPU board.
a) If you cannot verify the correct signal in UlO (P 10), then U 10 is bad.

6.3 1/O Peripheral Circuit

6.3.1 Abnormal LCD Display

* See Item 5.2.1 "LCD Operation Test".

If you can verify following abnormalities. exchange the LCD board.
a) If you can verify the correct signal at the LCD connector, the LCD board is bad.
b) If the correct signal is not at the LCD connector. U18, U42, U23, U16, U2, U3, U4, U5, U17, or U14 are bad.

6.3.2 Abnormal SIO2 Port

* See Item 5.2.2 "SIO2 Port Operation Test".

If you can verify following abnormalities, exchange the CPU board.
a) If something is abnormal when executing the general port operating test program (when "SIO ERROR" is displayed). U25, U21, or U22 are bad.

6.3.3 Abnormal BCR Interface

* See Item 5.2.3 "BCR Interface Operation Test".

If you can verify following abnormalities, exchange the CPU board.
a) If something is abnormal when executing the BCR operating test program (when "BCR ERROR" is displayed). U27 is bad.

6.3.4 Abnormal RS-232C Interface

* See Item 5.2.4 "RS-232C Interface Operation Test".

If you can verify following abnormalities, exchange the CPU board.
a) If something is abnormal when executing the RS-232C operating test program (when "RS-232C ERROR" is displayed). U30, U31, U21, U19, or U22 are bad.

6.3.5 Abnormal SIO1 Interface

* See Item 5.2.5 "SIOI Interface Operation Test".

If you can verify following abnormalities, exchange the CPU board.
a) If something is abnormal when executing the SIOI interface operating test program (when "SIOI ERROR" is displayed). U25, U19. U21, or U22 are bad.

6.3.6 Abnormal Printer Interface

* See Item 5.2.6 "Printer Interface Operation Test".

If you can verify following abnormalities, exchange the CPU board.
a) If the data signal (PDB0 to PDB7) is abnormal. confirm the signal in U28 and in U35.

If they are normal, the printer bus connector is bad.
If they are abnormal, U28 or U35 are bad.
b) If PSTB signal is abnormal, confirm the signal in U12 (P2).

If it is normal, the printer bus connector is bad.
If it is abnormal. U12 is bad.
c) If BUSY signal is abnormal, confirm the signal in U18 (P39).

If it is normal, the printer connector is bad.
If it is abnormal, U18 is bad.

6.3.7 Abnormal Audio Cassette Interface

* See Item 5.2.7 "Audio Cassette Interface Operation Test".

If you cannot verify the correct signal when executing the audio cassette interface operating test program, the cause is listed below.
a) If REM + and REM - are opened while REM is operating, RL (relay) is bad.
b) If the REC operating test, the MON operating test and the REM operating test are all normal and WRITE or READ to the audio cassette is abnormal, the cause is listed below.

* Cassette bus connector is bad.
* U43, U41. U44, or U27, of serial interface circuit are bad. and U26 is bad.

6.3.8 Abnormal I/O Port

* See Item 5.2.8 "I/O Port Operation Test".

If you can verify following abnormalities, exchange the CPU board.
a) OUT 90 H is abnormal

If the output signal at $\mathrm{U} 36(\mathrm{P} 9)$ is abnormal, U36 or U33 are bad.
b) OUT AlH is abnormal

If the output signal at U 53 (PI) is abnormal, U33, U11, or U53 are bad.
c) IN AOH is abnormal

If the output signal at U11 (P2) is abnormal, U11 or U33 are bad.
d) OUT B9H is abnormal If the output signal at U 18 (P 21) is abnormal. U 18 is bad.
e) OUT BAH is abnormal If the output signal at U 18 (P 31) is abnormal, U 18 is bad.
f) IN BBH is abnormal

If the output signal at U 18 (P37) is abnormal, U 20 is bad.
g) OUT C8H is abnormal

If the output signal at U 21 (P12) is abnormal, U 21 is bad.
h) IN C8H is abnormal

If the output signal at U 19 (P 10) is abnormal, U 31 is bad.
i) OUT D8H is abnormal If the output signal at $\mathrm{U} 21(\mathrm{P} 12)$ is abnormal, U 21 is bad.
j) IN D8H is abnormal

If the output signal at U 19 (P6) is abnormal, U19 is bad.

6.3.9 Abnormal Speaker

* See Item 5.2.9 "Speaker Operation Test".
(1) When the speaker doesn't operate: Test using the operation program.
a) If the signal in figure is transmitted to U 18 (P31), exchange the speaker.
b) If the signal in U18 (P31) stays low, exchange the CPU board.
(2) When the speaker doesn't stop the operation:
a) Exchange the CPU board.

6.3.10 Abnormal Keyboard

* See Item 5.2.10 "Keyboard Operation Test".

Abnormal Symptom

Though only one key is pushed, more than two characters are displayed.
(1) The cause is chattering of keyboard, so exchange the keyboard.

Abnormal Symptom

Nothing is displayed on the LCD.
(1) If specific character is not displayed, the key-switch is bad. Exchange the key-switch.
(2) If all characters are not displayed exchange the CPU board.

APPENDIX A OPERATIONAL MISTAKES

-3: When executing cold-start, turn on the PROTECT switch of the PC-8201 and the one of the RAM cartridge.
But the program is Bank $=1$ is cleared.

APPENDIX B
 IC REMOVAL

B-1 Necessary Equipment

(1) Solder Iron must be small (about 25 W); the tip should be thin.
(2) Solder

Use solder containing resin.
(3) Solder Remover
(4) IC puller or cutting pliers (for board) screwdriver (minus) (for socket)

B-2 ICs on Printed Circuit Board

(1) IC removal from circuit boards
a) Turn the board upside down. Remove the solder from IC pin holes with solder remover.
b) Gently pull the IC with a puller which fits the width and the number of pins. If you do not have a puller, pull carefully; be sure not to bend the pins with the pliers.
(2) Insertion
a) Insert the IC pins in their holes. turn board upside down. Use an electrically conductive mat under the PC-8201 when working on it.
b) Put a little solder on the iron.
c) Put the iron closely and heat. At once the solder melts. It is sucked in through the hole, and if it extends to the point of connecting, remove the iron.

Do not allow excess spolder to pile up. The excess solder could cause electrical problems.

B-3 ICs with Sockets

(1) Removal from Socket
a) Gently pull the IC with a puller.

If you don't have a puller, use a screwdriver between the socket and the IC by prying up and down. Be careful not to bend the IC pins.
(2) Insertion in socket
a) Gently insert the IC.

If you don't have a puller. insert it after confirming that all pins have been inserted correctly.

B-4 Drawings of Insertion and Removal of IC

Removal

(1) Remove solder.

(2) Remove IC (with pliers or puller).

Installation

(1) Insert the IC pins in their holes.

(2) Melt some solder on tip of the iron.

$A P X-B-2$
(3) Attach some solder at the point of connection.

APPENDIX C PARTS LIST

If you need to repair the PC-8201, change the unit parts. Prepare the maintenance parts shown in Table 1.

PART NAME	NOTE	
MAIN PRINTED BOARD	WITH Ni-Cd BATTERY (Separate package)	
POWER BOARD		
LCD UNIT	COMMON TO PC-8201	(JAPAN)
KEYBOARD UNIT		
PRINTER CONNECTOR BOARD	COMMON TO PC-8201	(JAPAN)
POWER BOARD CONNECTOR CABLE	COMMON TO PC-8201	(JAPAN)
PIEZO ELECTRO BUZZER (WITH CABLE)	COMMON TO PC-8201	(JAPAN)
BATTERY CASE UNIT	COMMON TO PC-8201	(JAPAN)
MASK ROM		
SPIRING OF CARTRIDGE SLOT	COMMON TO PC. 8201	(JAPAN)
TOP CASE		
BOTTOM CASE	COMMON TO PC-8201	(JAPAN)
Ni-Cd BATTERY	COMMON TO PC-8201	(JAPAN)
CARTRIDGE SLOT COVER	COMMON TO PC-8201	(JAPAN)
OPTION ROM/RAM COVER	COMMON TO PC-8201	(JAPAN)
FOOT RUBBER	COMMON TO PC-8201	(JAPAN)
PART OF CARTRIDGE SLOT	COMMON TO PC-8201 (ADDITIONAL PART)	(JAPAN)
KEYBOARD SUPPORTING PART (UPPER)	COMMON TO PC-8201 (ADDITIONAL PART)	(JAPAN)
KEYBOARD SUPPORTING PART (LOWER)	COMMON TO PC-8201 (ADDITIONAL PART)	(JAPAN)
REAR SIDE CAP	COMMON TO PC-8201 (ADDITIONAL PART)	(JAPAN)
SCREW KIT (6 items)	COMMON TO PC-8201 (ADDITIONAL PART)	(JAPAN)
KEY SWITCH (TACT)	COMMON TO PC-8201	(JAPAN)
KEY SWITCH (CURSOR)	COMMON TO PC-8201	(JAPAN)
KEY SWITCH (PUSH)	COMMON TO PC-8201	(JAPAN)
KEY SWITCH (LOCK)	COMMON TO PC-8201	(JAPAN)
KEY TOP KIT (60 items)		

APX-C-2

APPENDIX D CIRCUIT DIAGRAM

PC-8201 Circuit

1. PC-8201 CPU Circuit
2. PC-8201 RAM Circuit
3. PC-8201 ROM Circuit
4. PC-8201 CMT Circuit
5. PC-8201 8155 Circuit
6. PC-8501 6402 Circuit
7. PC-8201 Keyboard Circuit
8. PC-8201 Connector Circuit
9. PC-8201 Power Source Unit Circuit

APPENDIX E LSI DATA SHEET

MSM80C85A AS/RS

Single Chip 8-Bit CMOS Microprocessor

General

The MSM80C85A is an 8 -bit, 1 -chip parallel processing CPU employing silicon-gate CMOS technology. The MSM80C85A, compatible with the MSM8085A, has almost the same processing capabilities and low power dissipation as compared with the MSM8085A; promising high-performance system configuration.

Features

- High speed and low-power dissipation enabled by use of silicon-gate CMOS technologies
- Single power supply of 3 V to 6 V
- Compatibility with MSM8085A
- Instruction cycle: $1.3 \mu \mathrm{~s}$ on $\mathrm{Vcc}=5 \mathrm{~V}$
- Built-in clock oscillator
- For vectored interrupts (One nonmaskable)
- Built-in serial input/output ports (One input, one output)
- Direct addressing of 64 K Byte storage
- Compatible with Intel 8085 A

Circuit Configuration

(These specifications are subject to change without notice.)

Pin Connections
(Top View) 40 Lead Plastic DIP

Description of Pins Functions

Pin symbol	Name	Input/ Output	Functions
A8 ~ A15	Address buses	Output	Upper eight bits of storage address or eight bits of I/O address; placed in high-impedance state at HOLD and HALT modes.
ADO \sim AD7	Bilateral address \& data buses	Input/ Output	Lower eight bits of storage address or I/O address appear on these buses at the first clock cycle. They serve as data buses during the second and third clock cycles. Placed into highimpedance state at HOLD and HALT modes.
ALE	Address latch enabling output	Output	Generated during the first clock cycle; used by peripherals to latch address. Trailing edge permits setup time and hold time required to latch address data. ALE signal may also be used to strobe status data.
S0, SI	Status output	Output	Bus status S1 S0 HALT 0 0 WRITE 0 1 READ 1 0 FETCH 1 1 Sl code can be used as early indicution of R/W status.
$\overline{\mathrm{RD}}$	Read Data	Output	Used to select storage or $1 / O$ address for read or to show that data bus should be used in data transfer. Placed in high-impedance state at HOLD and HALT modes.
$\overline{W R}$	Write data	Output	Enable data on data bus to be written into selected storage or I/O address. Data is written at trailing edge of WR. Placed in high-impedance state at HOLD and HALT modes.
	Restart interrupt request (input)	Input	These three input signals have the same timing as INTR signal except that they are capable of iniernal and automatic insertion of the RESTART signal. RST7.5 has highest priority and RST5.5 the lowest. This group of interrupt signals have priority over INTR.
TRAP	Trap interrupt input	Input	Trap interrupt is a restart interrupt signal that cannot be masked, and can be accepted at the same timing as INTR. The trap interrupt input signal has highest priority and is not masked or enabled.
$\frac{\overline{\text { RESET }}}{\overline{\mathrm{IN}}}$	Reset input	Input	This reset signal, at least three clock pulses of which should be input, reseis program counter at 0 and resets interrupt enable and HLDA. Not affected by flags or any register except the instruction register. RESET IN continues to be asserted as long as it is low.
RESET OUT	Reset output	Output	RESET OUT can be used to reset system, indicating that the CPU is being reset. RESET OUT must be synchronized with processor clock signal.

Pin symbol	Name	Input/ Output	Functions
$\mathrm{X1}$. X2	Clock inputs	Input	These two pins serve to connect external crystal oscillator for the purpose of generating clock signals internally. Pin Xl can also receive externally generated clock signals.
CLK	Clock output	Output	This clock signal, used as clock output, is generated by crystal oscillator connected externally to CPU.
$10 / \bar{M}$	Data transfer control output	Output	Indicates whether data transfer is to memory or I/O unit. Put into high-impedance state at HOLD and HALT modes.
READY	Ready signal	Input	Indicates that storage or peripheral is ready for data transfer when READY is high. When READY is low, CPU will not complete data transfer cycle until READY become high again. READY should be given sufficient set-up time and hold time.
HOLD	Hold request signal	Input	At HOLD, CPU relinquishes bus control immediately upon completion of the current machine cycle. CPU resumes bus control after released from HOLD. CPU places address bus, data bus, $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, and $10 / \overline{\mathrm{M}}$ in high-impedance state upon acknowledging HOLD.
HLDA	Hold response signal	Output	Acknowledges HOLD request; indicates that CPU will relinquish bus control at the next clock cycle. Upon completion of HOLD, HLDA goes low. At the half clock cycle following the disasserted HLDA, CPU resumes bus control.
INTR	Interrupt request signal	Input	Used as general-purpose interrupt request. INTR executes sampling only at the last clock cycle of instruction. When interrupt is received, INTR stops the program counter and asserts INTA. RESTART or CALL signal can be inserted to m make an interruption in this cycle so as to make a jump to service rutines. Interrupt request is inhibited by receivt of RESET or interrupt. INTR is software maskable.
$\overline{\text { INTA }}$	Interrupt reception control signal	Output	Used instead of $\overline{\mathrm{RD}}$ at the same time as $\overline{\mathrm{RD}}$ signal in instruction cycle after INTR received.
SID	Serial data	Input	Serial data input pin. Data on this line is stored in accumulator bit 7 when RIM instruction executed.
SOD	Serial data output	Output	Serial data output pin. Data is output using SMM instruction.

Functions

- Outline

The MSM80C85A uses a multiplexed data and address bus. The upper eight bits of an address are output to the address bus and the lower eight bits to the address/data bus. The lower eight-bit addresses can be output only in the first state in each machine cycle. They must be held in an external latch by simultaneously using ALE. The address/data bus serves as a bilateral data bus the same way as in the MSM8080A.
Data is transferred on the bilateral data bus. The CPU outputs $\overline{R D} . \overline{W R}$, and $I O / \bar{M}$ signals for bus control signal and $\overline{\text { INTA }}$ for interrupt reception. The CPU receives HOLD, READY. and interrupt signals synchronized with the clock.
For serial transmission of data, serial-data input SID and serial-data output SOD. are available. Three maskable restart interrupts and one unmaskable TRAP interrupt are available in addition to those of the MSM8080A.

- Status data

Status data is a signal that indicates the bus cycle status. This signal is output from pins S0 or Sl and held until completion of the cycle. In contrast to the MSM80C85A. status data in the MSM8080A are output from data bus at the start of each machine cycle. Bus status are given as follows:

	S1	S0
HALT	0	0
WRITE	0	1
READ	1	0
FETCH	1	1

- Interrupts and serial I/O

The MSM80C85A is provided with five interrupt input lines: INTR, RST5.5. RST6.5, RST7.5, and TRAP. INTR functions the same as the MSM8080A INT. RST input lines 5.5 .6 .5 , and 7.5 are all maskable restart interrupts. TRAP is an unmaskable restart interrupt. Restart interrupt priority is determined in terms of the restart address, how to sense interrupt, and internal priority. TRAP has highest priority. followed by RST7.5. RST6.5. RST5.5 and INTR.
Note that this preferential order is not taken into account for routines already running even if higher-preference interruption is made to them. If RST5.5 is asserted during an RST7.5 routine, execution of RST7.5 is suspended. RST6.5. RST5.5. and INT should all be asserted until their interrupt requests are acknowledged. While RST7.5 may be input in the form of pulse because its request is detected at its leading edge to be set. A request thus set is held until it is satisfied or SIM or RESET instructions release the request state. An RST 7.5 request can be set even if masked; interruption is inhibited.
TRAP is detected at its leading edge and should be asserted until the request is accepted. Before TRAP can be accepted a second time. it must first be disasserted.
then reasserted. Serial I/O is controlled by the RIM and SIM instruction. SID is read in by the RIM instruction and the SIM instruction sets SOD data.

Name	Restart address (hex)	
		Where sensed
TRAP	24_{16}	
RST7.5	$3 C_{16}$	Level and edge
RST6.5	34_{16}	Edge
RST5.5	$2 C_{16}$	Level
	$2 C_{16}$	Level

- Basic timing

The MSM80C85A uses a multiplexed data and address bus. ALE is used to latch the lower eight bits of the address on the data bus. Figure 1 shows three basic cycles of the instruction fetch cycle, the storage content read cycle, and the I/O write-in cycle. At the I/O read and write cycles, the upper and lower eight bits of the address become equal. If slower storage or I/O is used in the MSM80C85A, Twalt status can be inserted using the READY signal, the same as with the MSM8080A.

Figure 1 Basic Timing Chart for Instructions

- Driving circuits for inputs X1 and X2 Inputs X1 and X2 of the MSM80C85A can be driven either by a crystal oscillator or external clock pulse.

Recommended circuits for oscillation

$C 1=C 2=50 \mathrm{pF}$ when input frequency
is 4 to 6 MHz .
$C 1=C 2=100 \mathrm{pF}$ when input frequency is 1 to 4 MHz .

Input frequency is 1 to 6 MHz (external clock puise)

List of Machine Instructions

List of Machine Instructions (Cont)

List of Machine Instructions (Cont)

Symbol	Contents		
r	Represents register		
m	2-byte data		
n	1-byte data		
<B2>	2nd byte of instruction		
<B3>	3rd byte of instruction		
AAA	Binary equivalent of n in RST instructions		
F	Eight-bit data including flags such as S, Z, P, CYI and CY2. These flags are configured in the order of $\mathrm{S}, \mathrm{Z}, \mathrm{X}, \mathrm{CY} 1, \mathrm{X}, \mathrm{P}, \mathrm{X}$ and CY 2 ; where X shows undetermined flag.		
PC	Program counter		
SP	Stack pointer		
SSS or DDD	Sequential order determined by register or storage contents. Table shown below lists order values for SSS or DDD, where $\mathrm{M}=(\mathrm{H})(\mathrm{L})$	Register or storage	S S S or D D D 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1
-	Indicates direction of data trasfer		
()	Indicates contents of register, storage, etc.		
\checkmark	Logical sum		
\forall	Exclusive logical sum		
\wedge	Logical product		
-	Negate		

Note: The number of states and cycles shown above also show satisfied and unsatisfied conditions.

Electrical Characteristics

- Absolute maximum ratings

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Vcc	Reference to GND	$-0.5 \sim+7$	V
Input voltage	V_{IN}		$-0.5 \sim \mathrm{Vcc}+0.5$	V
Output voltage	VOUT		$-0.5 \sim \mathrm{Vcc}+0.5$	V
Storage temperature	Tstg	$\mathrm{Ta}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$
Allowable power dissipation	P_{D}	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	1.0	W

- Operating range

Parameter	Symbol	Conditions	Unit
Supply voltage	Vcc	$3 \sim 6$	V
Operating temperature	Top	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$

- Recommended operating conditions

Parameter	Symbol	MIN	TYP	MAX	Unit
Supply voltage	Vcc	4.5	5	5.5	V
Operating temperature	Top	-40	+25	+85	${ }^{\circ} \mathrm{C}$
Low input voltage level	VIL	-0.3		+0.8	V
High input voltage level	VIH	2.2		Vcc +0.3	V

- Static electrical characteristics

Parameter	Symbol	Measurement conditions		MIN	TYP	MAX	Unit
Low output voltage level	VOL	$1 \mathrm{LL}=2 \mathrm{~mA}$	$\begin{aligned} & \mathrm{Vcc}=4.5 \mathrm{~V} \sim 5.5 \mathrm{~V} \\ & \mathrm{Ta}=-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C} \end{aligned}$			0.45	v
High output voltage level		$10 \mathrm{H}=-400 \mu \mathrm{~A}$		2.4			v
		$1 \mathrm{OH}=-40 \mu \mathrm{~A}$		4.2			V
Input leakage current	${ }^{\text {L }} \mathrm{LI}$	$0 \leq \mathrm{V}_{\text {I }} \leq \mathrm{Vcc}$		-10		10	$\mu \mathrm{A}$
Output leakage current	${ }_{\text {L }} \mathrm{O}$	$0 \leq$ VouT \leq Vcc		-10		10	$\mu \mathrm{A}$
Supply current	Icc	$\begin{aligned} & \mathrm{Tcyc}=320 \mathrm{~ns} \\ & \mathrm{CL}=0 \end{aligned}$			11	22	mA
		Reset signal applied	$\begin{aligned} & \mathrm{Vcc}=4.75 \mathrm{~V} \sim 5.25 \mathrm{~V} \\ & \mathrm{Ta}=0 \mathrm{C} \sim+85^{\circ} \mathrm{C} \end{aligned}$		11	17	mA

- Switching characteristics
$\left(\mathrm{Ta}=-40^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C} . \mathrm{Vcc}=4.5 \mathrm{~V} \sim 5.5 \mathrm{~V}\right)$

Parameter	Symbol	Measurement conditions	MIN	MAX	Unit
Clock period	${ }^{\text {t }}$ CYC		320	2000	ns
Low-level time lapse for clock	${ }_{1}$	$\begin{aligned} & \mathrm{t} C Y \mathrm{C}=320 \mathrm{~ns} \\ & \mathrm{CL}=150 \mathrm{pF} \end{aligned}$	80		ns
High-level time lapse for clock	t2		120		ns
Clock rise or fall time	$\mathrm{t}_{5}, \mathrm{t}_{\mathbf{f}}$			30	ns
Delay time from leading edge of X1 to that of CLK	tXKR		30	120	ns
Delay time from leading edge of X1 to trailing edge of CLK	${ }^{\text {t X K }}$		30	150	ns
Delay time (1) from A8-15 valid to trailing edge of ALE	${ }^{\text {t }} \mathrm{AC}$		270		ns
Delay time from $\mathrm{A} 0-7$ valid to trailing edge of control signal	${ }^{\text {t }}$ ACL		240		ns
Time from AO-15 valid to data input	${ }^{\text {t }}$ AD			575	ns
Time from trailing edge of $\overline{\mathrm{RD}}$ (INTA) from address floating state	tAFR			0	ns
Delay time (1) from A8-15 valid to trailing edge of ALE	${ }^{\text {taL }}$		115		ns
Delay time from A0-7 valid to trailing edge of ALE	${ }^{\text {t }}$ LLL		90		ns
Time from address valid to READY status	${ }^{\text {taRY }}$			220	ns
Time for which address is determined after leading edge of control signal	${ }^{\text {t }} \mathrm{CA}$		120		ns
Control signal pulse width	${ }^{\text {t }} \mathrm{C}$		400		ns
Delay time from leading edge of control signal to that of ALE	${ }^{\text {t }}$ CL		40		ns
Data set-up time for leading edge of $\overline{\text { WR }}$	${ }^{\text {t }}$ W		420		ns
Delay time from trailing edge of HLDA to activated state	${ }^{\text {thabe }}$			210	ns
Delay time from leading edge of HLDA to bus floating state	${ }^{\text {thabF }}$			210	ns
Time from HLDA valid to leading cdge of CLK	thack		110		ns

Parameter	Symbol	Measurement conditions	MIN	MAX	Unit
Hold time of HOLD for trailing edge of CLK	HIDH	$\begin{aligned} & \mathrm{t} \mathrm{CYC}=320 \mathrm{~ns} \\ & \mathrm{CL}=150 \mathrm{pF} \end{aligned}$	0		ns
Set-up time of HOLD for trailing edge of CLK	tHDS		170		ns
Hold time of INTR for trailing edge of CLK	${ }^{\text {I }} \mathrm{NH}$		0		ns
Set-up time of INTR for trailing edge of CLK	${ }^{\text {I }}$ NS		160		ns
Time for which address is valid after trailing edge of ALE	${ }^{\text {L }}$ LA		100		ns
Delay time from trailing edge of ALE to trailing edge of control signal	tLC		130		ns
Time from trailing edge of ALE to that of CLK	${ }^{\text {t }}$ LCK		100		ns
Time from trailing edge of ALE to valid data at read	${ }^{\text {LLDR }}$			460	ns
Time from trailing edge of ALE to valid data at write	${ }^{1}$ LDW			200	ns
ALE signal pulse width	${ }^{\text {t }}$ L		140		ns
Time for setting READY against trailing edge of ALE	${ }^{\text {L LRY }}$			110	ns
Delay time from leading edge of $\overline{\mathrm{RD}}$ to determination of next address	${ }^{\text {t RAE }}$		150		ns
Time from trailing edge of $\overline{R D}$ (INTR) to valid data	${ }^{\text {t }} \mathrm{RD}$			300	ns
Time from leading edge of control signal to trailing edge of control signal	${ }^{1} \mathrm{RV}$		400		ns
Data hold time for leading edge of $\overline{R D}$ (INTA)	${ }^{\text {trDH }}$		0		ns
Hold time of READY for leading edge of CLK	$\mathrm{t}_{\mathrm{R} Y \mathrm{H}}$		0		ns
Set-up time of READY for leading edge of CLK	tRYS		110		ns
Time for valid data after leading edge of $\overline{W R}$	twD		100		ns

Parameter	Symbol	Measurement conditions	MIN	MAX	Unit
Delay time from trailing edge of WR to data validity	IWDL	tCYC $=320 \mathrm{~ns}$ CL $=150 \mathrm{pF}$		40	ns

Notes: 1. The specifications for A8 through A15 apply to $10 / \bar{M}$, S0, and SI except that T4 through T6 are undefined.
2. Timings are all measured on condition that $\mathrm{VOL}_{\mathrm{OL}}=0.8 \mathrm{~V}, \mathrm{VOH}_{\mathrm{OH}}=2.2 \mathrm{~V}$, and input reference voltage is 1.5 V .

Timing Charts

- Clock waveform

- Read cycle

Note: READY must stay unchanged throughout set-up and hold times.

- Write cycle

Note: READY must stay unchanged throughout set-up and hold times.

- Hold cycle

- Interrupt and hold cycle

\bullet During this time lapse, $10 / \bar{M}$ is floating.

$$
\mathrm{APX}-\mathrm{E}-16
$$

General

The MSM81C55RS is a static RAM in combination with I/O ports and timer, for use with microprocessors. The MSM81C55RS is made from silicon-gate CMOS technology. It features very low power dissipation of up to $100 \mu \mathrm{~A}$ as standby current when not selected.

The MSM81C55 has 2K-bit of static RAM. configured as 256×8 bits. The MSM81C55RS has an access time of 400 ns at maximum so that it can be used also in the 80 C 85 A system without wait states.

The MSM8IC55RS has three general purpose I/O ports: two 8 -bit ports and one 6 -bit port. respectively, ports A, B, and C. Port C is used to enable and set the modes for the other two ports.

MSM81C55RS also has a 14-bit built-in programmable counter/timer which can be used to generate square pulses for timers or count pulses.

Features

- High-speed operation and low power dissipation
- RAM configuration of 256×8-bit bytes
- Single power supply of 3 V to 6 V
- Completely static operation
- Built-in address latch circuitry
- 8-bit programmable I/O ports (ports A and B)
- 6-bit programmable I/O port (port C)
- 14-bit programmable binary counter/timer
- Multiplexed address/data buses
- 40-pin DIP (MSM81C55RS)
- 44-pin flat package (MSM81C55GS)
- Compatible with Intel 8155

Circuit Configuration

(These specifications are subject to change without notice.)

Pin Connections

Electrical Characteristics

- Absolute maximum ratings

Parameter	Symbol	Conditions	Ratings		Unit
			MSM81C55RS	MSM81C55GS	
Supply voltage	Vcc	In reference to GND	$-0.5 \sim+7$		V
Input voltage	VIN		$-0.5 \sim \mathrm{Vcc}+0.5$		V
Output voltage	Vout		$-0.5 \sim \mathrm{Vcc}+0.5$		V
Storage temperature	Tstg	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$-55 \sim+150$		C
Allowable power dissipation	PD	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	1.0	0.7	W

- Operating range

Parameter	Symbol	Ratings	Unit
Supply voltage	Vcc	$3 \sim 6$	V
Operating temperature	TOP	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$

- Recommended operating conditions

Parameter	Symbol	MIN	TYP	MAX	Unit
Supply voltage	Vcc	4.5	5	5.5	V
Operating temperature	TOP	-40	+25	+85	${ }^{\circ} \mathrm{C}$
Low input voltage level	VIL	-0.3		+0.8	V
High input voltage level	VIH	2.2		Vcc +0.3	V

- Static electrical characteristics

Parameter	Symbol			MIN	TYP	MAX	Unit
Low output voltage level	Vol	$\mathrm{IOL}=2 \mathrm{~mA}$	$\begin{aligned} & \mathrm{Vcc}=4.5 \mathrm{~V} \sim 5.5 \mathrm{~V} \\ & \mathrm{Ta}=-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C} \end{aligned}$	-	-	0.45	V
High output voltage level	VOH	$\mathrm{IOH}=-400 \mu \mathrm{~A}$		2.4	-	-	V
		$\mathrm{IOH}=-40 \mu \mathrm{~A}$		4.2	-	-	V
Input leakage current	ILI	$0 \leq$ Vin \leq Vce		-10	-	10	$\mu \mathrm{A}$
Output leakage current	ILO	$0 \leq$ VouT \leq Vcc		-10		10	$\mu \mathrm{A}$
Standby supply current	Iccs	$\begin{aligned} & \mathrm{CE} \geqq \mathrm{Vcc}-0.2 \mathrm{~V} \\ & \mathrm{VIH}_{\mathrm{IH}} \leqq \mathrm{Vcc}-0.2 \mathrm{~V} \\ & \mathrm{VIL} \leqq 0.2 \mathrm{~V} \end{aligned}$		-	0.1	100	$\mu \mathrm{A}$
Average operating supply current	Icc	Storage cycle time: $1 \mu \mathrm{~s}$		-	-	5	mA

- Switching characteristics
$\left(\mathrm{Vcc}=4.5 \mathrm{~V} \sim 5.5 \mathrm{~V}, \mathrm{Ta}=-40 \sim+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	MIN	MAX	Unit	Remarks
Address-to-Latch Set Time	${ }^{\text {A }}$ L	50		ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
Latch-to-Address Hold Time	$\mathrm{t}_{\mathrm{L} A}$	30		nS	
Latch-to-Read (Write) Delay Time	${ }_{\text {L }}^{\text {L }}$ C	100		ns	
Read-to-Output Delay Time	${ }^{1} \mathrm{RD}$		170	ns	
Address-to-Output Delay Time	t_{AD}		400	ns	
Latch Width	t_{LL}	100		ns	
Read-to-Data Bus Float Time	trDF	0	100	ns	
Read (Write)-to-Latch Delay Time	${ }^{4} \mathrm{CL}$	20		ns	
Read (Write) Width	${ }^{\text {t }} \mathrm{CC}$	250		ns	
Data-to-Write-set Time	${ }_{\text {t }}$ W	150		ns	
Write-to-Data-in Hold Time	IWD	0		ns	
Recovery Time	$t_{\text {R V }}$	300		ns	
Write-to-Port Output Delay Time	tw P		400	ns	
Port Input-to-Read Set Time	$t_{\text {PR }}$	70		ns	
Read-to-Port Input Hold Time	$t_{\text {R P }}$	50		ns	
Storbe-10-Buffer Full Delay Time	${ }^{\text {t }}$ SBF		400	ns	
Strobe Width	${ }^{\text {t }}$ S	200		ns	
Read-to-Buffer Empty Delay Time	$\mathrm{t}_{\text {R BE }}$		400	ns	
Strobe-to-Interrupt ON Delay Time	${ }^{1} \mathrm{~S} 1$		400	ns	
Read-to-Interrupt OFF Delay Time	trDI		400	ns	
Port Input-to-Strobe Set Time	tpss	50		ns	
Strobe-to-Port Input Hold Time	tPHS	120		ns	
Sirobe-to-Buffer Empty Delay Time	${ }^{\text {t Sbe }}$		400	ns	
Write-to-Buffer Full Delay Time	twBF		400	ns	
Write-to-Interrrpt OFF Delay Time	twi		400	ns	
Timer Output Delay Time (Low Level)	${ }^{\text {t }} \mathrm{TL}$		400	ns	
Timer Output Delay Time (High Level)	${ }^{\text {T }}$ H		400	ns	
Read-to-Data Bus Enable Delay Time	$t_{\text {R DE }}$	10		ns	
Timer Cycle Time	${ }^{\text {tCYC }}$	320		ns	
Timer Input Rise/Fall Time	$\mathrm{t}_{\mathrm{r}}, \mathrm{rf}$		80	ns	
Timer Input Low Level Time	11	80		ns	
Timer Input High Level Time	t2	120		ns	

Note: The above timings for both input and output are all measured with $\mathrm{V}_{\mathrm{L}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{H}}=2.2 \mathrm{~V}$ as the reference level.

Timing Charts

- Read cycle

- Write cycle

- Strobed input mode

APX-E-22

- Strobed output mode

- Basic input mode

- Basic output mode

*The timing for DATA BUS is the same as that for read or write cycle.
- Timer waveform

Note 3: This dotted-line pulse is periodically output depending on the program contents for the output mode (M) $=1$).

RAM Data Holding Characteristics on Low Supply Voltage

Parameter	Symbol	Conditions	Ratings			Unit
			MIN	TYP	MAX	
Data Holding Supply Voltage	VCCH	$\mathrm{V}_{\mathrm{iN}}=0 \mathrm{~V}$ or $\mathrm{Vcc}, \mathrm{ALE}=0 \mathrm{~V}$	2.0	-	-	V
Data Holding Supply Current	lCCH	$\begin{aligned} & \mathrm{VCc}=2 \mathrm{~V}, \mathrm{ALE}=0 \\ & \mathrm{VIN}=0 \mathrm{~V} \text { or } \mathrm{Vcc} \end{aligned}$	-	0.05	2.0	$\mu \mathrm{A}$
Set-Up Time	$\mathrm{t}_{\text {SU }}$		30	-	-	ns
Hold Time	t_{R}		20	-	-	ns

APX-E-24

Description of Pins Functions

Pin Symbol	Functions
RESET	A high level at this pin resets the system, and forces the three I/O ports to input mode.
ALE	At the trailing edge of ALE (address latch enable), AD0 to AD7, IO/M. and $\overline{\mathrm{CE}}$ are latched.
$\mathrm{AD0} \sim 7$	Tri-state bilateral address/data buses. These buses latch 8 -bit address data at the trailing edge of ALE. They are used for 8 -bit data transfers with direction determined by $\overline{\text { WRITE }}$ or READ.
$\overline{\mathrm{CE}}$	A high level at $\overline{\mathrm{CE}}$ inhibits both read and write.
IO/M	A high level at IO/M signal selects IO, a low level selects RAM memory.
$\overline{\mathrm{RD}}$	A low level at $\overline{R D}$ enables a read from RAM onto $A D 0$ to $A D 7$ during a RAM cycle or selected port data durnig an I/O cycle.
$\overline{\mathrm{WR}}$	A low level at $\overline{W R}$ enables data on AD 0 to AD 7 to be written to RAM during a RAM cycle or to a sclected port during an I/O cycle.
$\begin{aligned} & \text { PA } 0 \sim 7 \\ & (\text { PBO } \sim 7) \end{aligned}$	General-purpose 1/O pins. The direction of data is determined by programming the command/status register (C/S register).
$\mathrm{PCO} \sim 7$	Can be used as a general purpose I / O pin or control pin for PA or PB port. Functions of these pins when used as control terminals are: PCO . . A A INTR (Port A interrupt) PC1...A BF (Port A buffer full) PC2 ... $\overline{\mathrm{A}}$ STB (Port A strobe) PC3 . . A ANTR (Port B interrupt) PC4... B BF (Port B buffer full) PC5 . . $\overline{\mathrm{B}} \quad \mathrm{STB}$ (Port B strobe)
$\begin{aligned} & \text { TIMER } \\ & \text { IN } \end{aligned}$	Input signal for counter/timer
$\begin{aligned} & \overline{\text { TMER }} \\ & \overline{\text { OUT }} \end{aligned}$	Timer output signal. This pin outputs square pulses and other pulses depending on internal programming.
Vcc	Power supply of +5 V
GND	GND

Description for Operations

(1) Programming command/status (C/S) register

The command register is an 8 -bit latch. The C / S register contents can be changed anytime by writing to 10 address XXXXX 000 in an 10 cycle. The bit configuration for the C / S register is shown below.

00: NOP - (no operation) has no effects on counter operation.
01: STOP-Stops when timer is running. Otherwise, NOP.
10: STOP AFTER TC-Stops when TC is reached. Otherwise, NOP.
11: START - Starts immediately after entering mode and count length if timer is not operating. When timer is operating the command enters new mode and count length, and then starts immediately when TC is reached.
*Allocation table for port control

	ALT1	ALT2	ALT3	ALT4
PC0	Input port	Output port	A INTR	A INTR
PC1	Input port	Output port	A BF	A BF
PC2	Input port	Output port	$\overline{\mathrm{A} \mathrm{STB}}$	$\overline{\mathrm{A} \mathrm{STB}}$
PC3	Input port	Output port	Output port	B INTR
PC4	Input port	Output port	Output port	B BF
PC5	Input port	Output port	Output port	$\overline{\mathrm{BSTB}}$

(2) Read C / S register

The status register is a 7 -bit latch and holds I / O and timer status. The C / S register is read at 10 address XXXXX 000 . Configuration of the status word is shown below.

(3) PA, PB registers

Both registers can be used as either input or output ports according to programming of the C/S register. They can also be used in the basic or strobe mode. The IO address of the PA register is $\mathrm{XXXXX001}$; that of the PB register is $\mathrm{XXXXX010}$.
(4) PC register

The PC register can be used as an input port, output, or for control signal according to the contents of C / S register. IO address of the PC register is $\mathrm{XXXXX011}$.
(5) Timer

This is a 14 -bit counter which counts TIMER pulses and outputs a square pulse when the final value of TC is reached. The IO address of the timer register's lower byte is $\mathrm{XXXXX100}$. While that of its upper byte is $\mathrm{XXXXX10} 1$.
The timer can be programmed, byte by byte, by writing to the count length register (CLR) while selecting the timer address during a write. Bits 0 to 13 store the count length and bits 14 and 15 the timer output mode. The operator can read the counter contents and the output mode. The initial value is first to the counter register. It can be take any value from 2 through 3FFF (hexadecimal). Timer format and output mode are shown below.

APX-E-27

00 Low level is output during the latter half (Note 1) of the counting period.
$0 \quad 1 \quad$ Low level is output during the latter half of the counting period; and a count length automatically programmed is entered when the final value TC is reached. Then the operation is repeated.
$10 \quad$ A pulse is output when the final value TC is reached.
$1 \quad 1 \quad$ A pulse is output each time the final value TC is reached; automatically inputting a count length which has been given in the program. Then the operation is repeated.

Note 1: In the case of an asymmetric count, such as 9, the output is high for 5 counts, and low for four.

Note 2: When the MSM81C55RS is reset, it stops counting. The counter is not set to any specific initial value or output mode. To resume counting after a reset, use the START instruction in the C/S register.
(6) Standby mode

Standby mode is provided at the trailing edge of ALE after $\overline{\mathrm{CE}}$ is disasserted. This is because $\overline{\mathrm{CE}}$ from the MSM81C55RS is latched at the leading edge of ALE. Simultaneously the levels of the input port and timer input should be set at a potential of Vcc or GND. A battery should be used only after setting the level of output ports low or using all ports as input ports, and also setting the timer output to low or adding a buffer whose power-supply terminal is connected to the battery.

